видеопамять hbm что это
Знакомьтесь: High Bandwidth Memory (HBM). Что такое HBM‑память и зачем она нужна?
Производители видеокарт постоянно находятся в поиске новых решений. В гонке за максимальную энергоэффективность и пропускную способность видеопамяти участвуют традиционная GDDR5 и новая HBM. Для чего понадобился новый вид памяти и почему не обойтись использованием GDDR5 вы узнаете в переводе статьи с портала bit-tech.
Память GDDR5 долгое время оставалась выбором №1 для самых высокопроизводительных решений. Сегодня её продолжают использовать в потребительских видеокартах, а также в игровых приставках PlayStation 4 и Xbox One X. Тем не менее с увеличением пропускной способности GDDR5 увеличился и уровень потребления энергии. Большой расход на подпитку памяти приводит к нехватке питания для самого процессора и падению производительности.
GDDR5 также препятствует дальнейшему уменьшению форм-фактора видеокарт. Интерфейс GDDR5 требует большого количества логики для достижения высокой производительности. Это съедает место на печатной плате. Достаточно большое пространство занимают и модули питания, которые должны справляться с большим энергопотреблением памяти.
Подобные проблемы GDDR5 могли бы быть решены за счёт уменьшения и интеграции компонентов в один чип. Однако не всё так просто: процессоры и DRAM настолько различаются по своему устройству и решаемым задачам, что их не удаётся реализовать на одном кристалле. Полупроводниковые пластины для процессоров очень дороги и не предназначены для использования в DRAM.
Требовалось найти более эффективное решение. Им стала базовая соединительная подложка (base logic die). Благодаря такой подложке графический процессор и DRAM являются единым чипом, сохраняя при этом необходимые производственные различия. Это позволило увеличить скорость передачи данных, уменьшить рабочие частоты и, как следствие, уменьшить энергопотребление устройств.
Новый тип памяти, названный High Bandwidth Memory (HBM), обеспечивает высокую пропускную способность не столько за счёт частоты, как GDDR5, но и за счёт большей ширины шины. Это достигается путём использования трёхмерной компоновки: каждая интегральная схема памяти располагается поверх предыдущей. Поэтому полупроводниковые пластины также должны быть и очень тонкими, порядка 100 микрон.
В одной сборке HBM-памяти из 4 слоёв шина в 1024 бит из 8 независимых 128-битных каналов. 1 ГГц частоты процессора обеспечивает пропускную способность в 128 ГБ/с. Важно, что по сравнению с GDDR5 для работы HBM-памяти требуется более низкое напряжение — 1,3 вольта.
Таким образом, HBM-память успешно решает две главные проблемы GDDR5: низкая пропускная способность на ватт и низкая пропускная способность на миллиметр печатной платы. Новый дизайн памяти является более производительным и потребляет гораздо меньше энергии. Так, пропускная способность чипа с 1 ГБ HBM-памяти в 4 раза выше, чем чипа с 8 гигабайтами GDDR5.
На основе HBM-памяти построены следующие модели графических карт NVIDIA: Tesla P100, NVIDIA Titan V, Quadro GP100, Quadro GV100 и Tesla V100, которая используется в нашей услуге ««Выделенные серверы с GPU».
С оригиналом статьи вы можете ознакомиться на сайте bit-tech.
Современная видеопамять — GDDR5 vs HBM
Ни для кого не секрет, что современным видеокартам для работы нужна собственная память, причем чем ее больше и чем она быстрее — тем лучше. И на сегодняшний день идет соревнование двух разных типов памяти — «традиционной» GDDR5 и новой HBM. Каждая из них имеет свои плюсы и минусы, и в этой статье рассмотрим, что лучше для игровой видеокарты.
История GDDR — как DDR, только быстрее
Когда видеокарты стали активно развиваться, создатели видеокарт особо не задумывались, какую память использовать — скоростей обычной ОЗУ вполне хватало для работы, поэтому ее они и использовали. Однако время шло, производительность видеокарт росла очень быстро, а вот скорость ОЗУ наращивалась медленно: к примеру, пропускная способность FPM RAM в 1990 году была порядка 200 МБит/с, а у DDR2 к 2005 году она была всего 3200 МБит/с, то есть за 15 лет рост был в 16 раз. Видеокарты же за то время прошли путь от простейшего ускорения 2D графики на разрешениях порядка 400х200 пикселей до полноценного вывода 3D на разрешениях около FHD, то есть рост производительности был на 2 порядка минимум. Поэтому скоростей обычной ОЗУ в видеокартах уже стало не хватать, и в 2006 году появились первые решения на GDDR2 памяти: по сути это была та же DDR2, но работающая на существенно более высоких частотах и использующая более короткую шину. В дальнейшем вышло улучшение в виде GDDR3, которая имела еще большие частоты. GDDR4 из-за небольшого прироста производительности в сравнении с GDDR3 широкого распространения не получила, и вот, в 2008 году, вышел первый видеоускоритель на GDDR5 памяти, которая уже была основана на DDR3 (она в среднем вдвое быстрее DDR2). И с тех пор прогресс ощутимо замедлился — лишь в 2016 году стали выходить решения на GDDR5X: да, этот тип памяти в теории может быть вдвое быстрее GDDR5, но вот ничего качественно нового он не привнес (по сути контроллер GDDR5X просто может выбирать за цикл 64 байта памяти против 32 у GDDR5, отсюда и идет рост в 2 раза):
В итоге, грубо говоря, за почти 30 лет существований видеоускорителей их память качественно не менялась — это все та же ОЗУ, просто очень быстрая.
HBM — как SSD в мире HDD
Итак, как мы выяснили, GDDR5 является по сути обычной оперативной памятью: быстрые чипы памяти, с эффективной частотой порядка 6-9 ГГц, соединяются с GPU по узкой шине, всего 128-512 бит. В случае с HBM AMD поступили по-другому: эффективные частоты памяти низкие, порядка 1 ГГц (сравнимо с GDDR2), но используется четыре стэка (stack — пачка, стопка) чипов памяти, каждый из которых имеет шину в 1024 бита — в итоге для связи с GPU получается шина в 4096 бит — до 8 раз шире, чем в случае с GDDR5. Однако это накладывает свои ограничения: даже шину в 512 бит подвести к GPU бывает достаточно трудно, а с шиной в 4096 бит это вообще было нереально, поэтому AMD пришлось пойти другим путем: разместить чипы памяти на одной подложке с GPU. Увы — это принесло как и плюсы, так и минусы: с одной стороны, такое близкое размещение чипов памяти к GPU позволяет существенно упростить конструкцию и ускорить взаимодействие памяти с видеочипом, с другой стороны — из-за технических проблем с реализацией больших чипов (и большого числа чипов) на одной подложке, пришлось ограничить размер памяти одного стэка одним гигабайтом, а так как стэка четыре — максимальный объем HBM памяти для одного видеочипа может быть 4 ГБ:
С учетом того, что эта память была очень дорогой, а производство трудным — AMD стали ставить ее только во флагманы (Fury X, Fury Nano), и тут объем в 4 ГБ сыграл над AMD злую шутку: производительность GPU у Fury была хорошая, местами сравнимая с референсной GTX 980 Ti, но вот у последней 6 ГБ памяти, и в играх, где нужно больше 4 ГБ памяти (Rise of Tomb Rider, Deus Ex: Mankind Divided), видеокарта от AMD вынуждена была использовать ОЗУ как часть видеопамяти, и поэтому итоговый fps был ощутимо ниже, чем у 980 Ti.
В 2016 году AMD представляет новую версию своей памяти, HBM2. Исправлений было много: во-первых, частота памяти возросла с 500 МГц (эффективные 1 ГГц для DDR) до 2 ГГц (соответственно 4 ГГц для DDR), во-вторых — стали использоваться так называемые псевдоканалы: один аппаратный канал памяти разбивается на два виртуальных, то есть один стек теперь может обслуживать вдвое больше памяти. Так же выросло само возможное число стеков — теперь их может быть не 4, а 8. В итоге, к одному GPU теперь можно «подключить» 1 ГБ х 2 х 8 = 16 ГБ памяти, что очень солидно (напомню — топовое пользовательское решение, Titan Xp, имеет 12 ГБ GDDR5X памяти).
Сравнение производительности — HBM2 vs GDDR5X
В итоге, на данный момент, HBM2 избавилась от, пожалуй, единственной «детской болезни» — объема памяти теперь с избытком хватает для современных игровых видеокарт. Остается один вопрос — и кто же все-таки быстрее? Для этого возьмем два топовых решения от компании PNY (которая известна своими профессиональными видеокартами).
Nvidia Quadro GP100 имеет 16 ГБ HBM2 (то есть теоретический максимум), и ее пропускная способность — 717 Гб/с:
Nvidia Quadro P6000 является топовым решением с GDDR5X, ее тут 24 ГБ, с пропускной способностью в 432 Гб/с:
Цифры говорят сами за себя. Даже с учетом того, что GDDR5X можно разогнать, самый потолок, который удастся получить — это 500 Гб/с, что все еще на 30% медленнее скорости HBM2. Что это означает для пользователей? Наконец-то, спустя несколько десятков лет, мы получаем действительно новую память, которая не будет сдерживать рост производительности GPU. А с учетом того, что в профессиональных решениях HBM2 уже используется, ее можно ожидать уже в следующем поколении пользовательских видеокарт от Nvidia (Volta) и в текущем от AMD (Vega).
Чем отличаются поколения видеопамяти
Содержание
Содержание
Память, будь то оперативная память или видеопамять, является неотъемлемой частью современного компьютера. Сегодня вкратце узнаем, как все начиналось, как работает, почему диагностические программы показывают неверные частоты, в чем измеряется производительность памяти, как рассчитывается пропускная способность памяти и почему «МГц» для памяти — некорректное выражение.
До 2000-ых годов использовалась оперативная память стандарта SDR.
Потом ей на смену пришел новый стандарт памяти — DDR, который имел удвоенную пропускную способность памяти за счет передачи данных как по восходящим, так и по нисходящим фронтам тактового сигнала. Первоначально память такого типа, как и SDR, применялась в видеоплатах, но позднее появилась поддержка со стороны чипсетов.
DDR (Double Data Rate) расшифровывается как «удвоенная скорость передачи данных».
Таким образом, за один такт передается вдвое больше информации. Увеличилось количество передаваемой информации, реальная частота памяти осталась неизменной. Вместе с этим появилось такие понятия как эффективная частота, которая стала в два раза больше реальной.
Именно с приходом стандарта DDR появилась путаница с реальной и эффективной частотой работы памяти.
Реальная частота — частота шины модуля памяти. Эффективная частота — удвоенная частота шины модуля.
Как можно видеть, реальная частота памяти составляет 1900 МГц, в то время как эффективная в 2 раза больше — 3800 МГц, потому что за один такт теперь поступает вдвое больше данных.
Для того чтобы информация передавалась с удвоенной скоростью, она должна поступать из массива памяти вдвое быстрее. Реализовали это с помощью удвоения внутренней ширины модуля памяти. Благодаря чему за одну команду чтения мы стали получать сразу 2n единицы данных. Для стандарта DDR n = 1. Такая архитектура была названа n-prefetch (предвыборка). У памяти стандарта DDR, одной командой, при чтении, передается от ядра к буферу ввода-вывода две единицы данных.
Вместе с ростом производительности уменьшилось рабочее напряжение с 3.3V у SDR до 2.5V у DDR. Это позволило снизить энергопотребление и температуру, что дало возможность повысить рабочие частоты. На самом деле, потребление и, как следствие, нагрев, — это одна из самых больших проблем оперативной памяти того времени. При полном чтении всего модуля объемом 2 Гбайта память потребляет до 25 Ватт.
Оперативная память стандарта DDR2 пришла на смену стандарту DDR в 2003 году, правда, поддерживающие ее чипсеты появились годом позже. Основное отличие DDR2 от DDR заключается в увеличенной вдвое частоте работы внутренней шины, по которой данные поступают в буфер «ввод-вывод». Передача на внутреннюю шину теперь осуществляется по технологии (4n-Prefetch), одной командой из массива памяти к буферу поступает 4 единицы данных.
Таким способом удалось поднять пропускную способность в два раза, не увеличивая частоту работы чипов памяти. Это выгодно с точки зрения энергоэффективности, да и количество годных чипов, способных работать на меньшей частоте, всегда больше. Однако у данного способа увеличения производительности есть и минусы: при одинаковой частоте работы DDR2 и DDR временные задержки у DDR2 будут значительно выше, компенсировать которые можно только на более высоких частотах работы.
Рабочее напряжение понизилось почти на 30% до 1.8V.
На основе стандарта DDR для видеокарт в 2000 году был разработан новый стандарт памяти GDDR.
Технически GDDR и DDR похожи, только GDDR разработан для видеокарт и предназначен для передачи очень больших объемов данных.
GDDR (Graphics Double Data Rate) расшифровывается как двойная скорость передачи графических данных.
Несмотря на то, что они используются в разных устройствах, принципы работы и технологии для них очень похожи.
Главным отличием GDDR от DDR является более высокая пропускная способность, а также другие требования к рабочему напряжению.
Разработкой стандарта видеопамяти GDDR2 занималась компания NVIDIA. Впервые она была опробована на видеокарте GeForce FX 5800 Ultra.
GDDR2 это что-то среднее между DDR и DDR2. Память GDDR2 работает при напряжении 2.5V, как и DDR, однако обладает более высокими частотами, что вызывает достаточно сильный нагрев. Это и стало настоящей проблемой GDDR2. Долго данный стандарт на рынке не задержался.
Буквально чуть позже компания ATI представила GDDR3, в которой использовались все наработки DDR2. В GDDR3, как и DDR2, реализована технология 4n-Prefetch при операции записи данных. Память работала при напряжении 2V, что позволило решить проблему перегрева, и обладала примерно на 50% большей пропускной способностью, чем GDDR2. Несмотря на то, что разработкой стандарта занималась ATI, впервые его применила NVIDIA на обновленной видеокарте GeForce FX 5700 Ultra. Это дало возможность уменьшить общее энергопотребление видеокарты примерно на 15% по сравнению с GeForce FX 5700 Ultra с использованием памяти GDDR2.
Современные типы видеопамяти
На сегодняшний день наиболее распространенными типами видеопамяти являются GDDR5 и GDDR6, однако до сих пор в бюджетных решениях можно встретить память типа GDDR3-GDDR4 и даже DDR3.
GDDR3
GDDR4
Стандарт GDDR5 появился в 2008 году и пришел на смену стандарту GDDR4, который просуществовал совсем недолго, так и не получив широкое распространение вследствие не лучшего соотношения цена/производительность.
GDDR5 спроектирована с использованием наработок памяти DDR3, в ней используется 8-битовый Prefetch. Учитывая архитектурные особенности (используются две тактовые частоты CK и WCK), эффективная частота теперь в четыре раза выше реальной, а не в два, как было раньше. Таким способом удалось повысить эффективную частоту до 8 ГГц, а вместе с ней и пропускную способность в два раза. Рабочее напряжение составило 1.5V.
GDDR5X — улучшенная версия GDDR5, которая обеспечивает на 50% большую скорость передачи данных. Это было достигнуто за счет использования более высокой предварительной выборки. В отличие от GDDR5, GDDR5X использует архитектуру 16n Prefetch.
GDDR5X способна функционировать на эффективной частоте до 11 ГГц. Данная память использовалась только для топовых решений NVIDIA 10 серии GTX1080 и GTX1080Ti.
Память стандарт GDDR6 появился в 2018 году. GDDR6, как и GDDR5X, имеет архитектуру 16n Prefetch, но она разделена на два канала. Хотя это не улучшает скорость передачи данных по сравнению GDDR5X, оно позволяет обеспечить большую универсальность.
Сейчас данная память активно используется обоими производителями видеокарт в новой линейке NVIDIA серий GeForce 20 и 16 (кроме некоторых решений: GTX 1660 и GTX 1650, так как в них используется память GDDR5). При покупке нужно внимательно изучить характеристики видеокарты, потому как разница в производительности от типа памяти в данном случаи достигает от 5 до 15%. В то время как разница в цене совершенно несущественна.
GDDR5
GDDR6
Также тип памяти GDDR6 активно используется компанией AMD в видеокартах RX 5000 серии.
На начальном этапе GDDR6 способна функционировать с эффективной частотой 14 ГГц. Это позволяет удвоить пропускную способность относительно GDDR5. В дальнейшем эффективная частота будет увеличена, как это происходило с другими типами памяти.
Современные типы видеопамяти
↑ следующая новость | предыдущая новость ↓
Видеокарты всегда оснащались самой продвинутой с технологической точки зрения, а потому и самой быстрой памятью. Начиная с 2009 года наиболее быстрой графической памятью была GDDR5, впервые появившаяся в видеокартах AMD Radeon HD 4800. Но время идет, и современным картам пропускной способности GDDR5 уже не хватает. В старших моделях видеокарт стала появляться видеопамять GDDR5X, HBM и HBM2. Сравним эти микросхемы памяти.
Тип памяти | GDDR5 | GDDR5X | HBM | HBM2 |
Производители | Samsung, Hynix, Micron | Micron | Hynix, Samsung | Samsung, Hynix |
Формат чипа | Квадратный/прямоугольный чип | Квадратный/прямоугольный чип | Куб/прямоугольный параллелепипед | Куб/прямоугольный параллелепипед |
Максимальный объем | 8 ГБ на чип | 16 ГБ на чип | 1 ГБ на стек | 4/8 ГБ на стек |
Максимальная пропускная способность | 8 Гбит/с | 10-14 Гбит/с Планируется переход на 16 Гбит/с | 1 Гбит/с | 2 Гбит/с |
Ширина шины | 32 бит на чип | 64 бит на чип | 1024 бит на стек | 1024 бит на стек или больше |
Энергопотребление | Низкое | Ниже, чем у GDDR5 | Ниже, чем у GDDR5X | Ниже, чем у HBM |
Применение | Большинство видеокарт от бюджетных до High-End, например, GT740, GTX 1060, RX480 | GeForce GTX 1080, Nvidia Titan X (Pascal) | Radeon R9 Fury X, Radeon Pro Duo | Nvidia Tesla P100, Nvidia Quadro GP100 |
GDDR5
GDDR5X
Так же GDDR5X потребляет меньше энергии по сравнению с GDDR5. Чипы памяти GDDR5X доступны в объемах 4 ГБ, 6 ГБ, 8 ГБ и 16 ГБ. Самые популярные графические карты, использующие память данного типа включают в себя GeForce GTX 1080 и Nvidia TITAN X (Pascal). Высокопроизводительные графические карты для рабочих станций, такие как Nvidia Quadro P5000 и Quadro P6000, также используют высокоскоростную память GDDR5X. Samsung планирует запустить память GDDR6 в 2018 году, которая станет настоящим преемником памяти GDDR5. Он будет иметь скорость до 16 Гбит/с и иметь еще более низкое энергопотребление.
Стоит отметить, что замена памяти с GDDR5 на GDDR5X невозможна, так как чипы имеют разное количество контактов (170 у GDDR5 и 190 у GDDR5X).
Каждая «стопка» (стек) памяти HBM не зависит от остальных, но они работают вместе. Из-за малого форм-фактора HBM также известна как компактная память или многоуровневая память. Обычный стек памяти HBM состоит из четырех слоев DRAM на базовой матрице и имеет два 128-битовых канала на каждый кристалл DRAM, что в сумме дает 8 каналов, что приводит к 1024 бит на стек стека интерфейса памяти. Таким образом, видеокарта, имеющая четыре стека 4-Hi HBM, имеет ширину шины памяти 4 x 1024 = 4096 бит. Рабочая скорость памяти HBM составляет 1 Гбит/с, но ее пропускная способность памяти намного выше по сравнению с памятью GDDR5. Это связано с гораздо более широкой шиной памяти. Ширина полосы пропускания памяти HBM может достигать 128 Гбайт/с на стек. HBM может иметь емкость 1 ГБ на каждый стек и поддерживает 4 ГБ на каждый пакет.
Память HBM потребляет меньше энергии по сравнению с памятью GDDR5 и GDDR5X. Первой видеокартой, использующей память HBM, стала AMD Radeon R9 Fury X. Она также используется в двух видеокартах с графическим процессором Radeon Pro Duo.
FAQ по видеокартам GeForce: что следует знать о графических картах?
Страница 3: PCB, система питания, упаковка GPU и видеопамять
GDDR5, GDDR5X, GDDR6, HBM
Помимо GPU, важным компонентом видеокарты остается память, поскольку она должна как можно быстрее обеспечивать графический процессор данными. Данные на видеокарту поступают через интерфейс PCI Express, они загружаются в видеопамять, после чего к ним может обращаться GPU с пропускной способностью почти 1 Тбайт/с. С годами технологии памяти совершенствовались.
GDDR (Graphics Double Data Rate) остается важным стандартом памяти современных видеокарт помимо High Bandwidth Memory (HBM). Как и в случае оперативной памяти DDR на материнских платах, GDDR тоже прошла через несколько поколений. В случае памяти DDR (и GDDR) передача данных производится на подъеме и спаде тактового сигнала. Со сменой поколений пропускная способность памяти GDDR существенно увеличилась. Вместе с тем энергопотребление продолжало снижаться. Память GDDR по 256-битному интерфейсу дает пропускную способность 25,6 Гбайт/с. У GDDR6X она достигает 936 Гбайт/с, планируются и более быстрые варианты. Тактовые частоты с поколениями увеличились со 166 МГц до нынешних 2.000 МГц и выше.
Видеокарты NVIDIA GeForce RTX базируются на новой памяти GDDR6X производства Micron. Память GDDR6X работает примерно на тех же частотах, что и GDDR6, напряжения тоже сравнимы. Но отличия имеются, к ним мы вернемся чуть ниже.
За последние годы было несколько попыток перейти на память HBM на рынке видеокарт. Однако высокая себестоимость памяти HBM и соответствующего интерфейса привели к тому, что сегодня почти все видеокарты оснащаются GDDR. На серверном сегменте все иначе. NVIDIA предлагает архитектуру Ampere в сочетании с памятью HBM, а именно A100 Tensor GPU. Память HBM2 обеспечивает пропускную способность до 2 Тбайт/с, та же GDDR6X пока не дает больше 936 Гбайт/с.
Важно понимать, что сжатие выполняется без потерь. Так что никакие данные не искажаются, и разработчикам не приходится адаптировать свои продукты каким-либо образом.
NVIDIA использует для сжатия памяти цветовую дельта-компрессию (Delta Color Compression). Она основана на хранении полной цветовой информации только о базовом пикселе, для остальных пикселей сохраняется разница с базовым (дельта). Для этой цели используется матрица 8×8 пикселей. Поскольку близко расположенные пиксели обычно мало отличаются по цвету, хранение для них разницы оказывается по объёму информации выгоднее, чем полного значения цвета. Поэтому в случае дельта-компрессии информация о пикселях занимает меньше места в памяти, также достигается экономия пропускной способности памяти. В качестве примера работы технологии можно привести полностью черный и белый блоки, которые будут храниться в памяти как <1.0, 0.0, 0.0, 0.0>или <0.0, 1.0, 1.0, 1.0>. Здесь можно сэкономить ресурсы, сохраняя только 0.0 или 1.0 в качестве значения.
NVIDIA улучшила процедуру определения сжимаемого контента. Ранее известное соотношение 2:1 теперь может использоваться чаще, то есть применяться к большему массиву данных. Появились и соотношения сжатия 4:1 и 8:1.
Сжатие цветовой информации позволяет увеличить эффективную пропускную способность памяти, поскольку физически ей приходится передавать меньше информации. Что повышает эффективность работы интерфейса памяти.
С контроллером GDDR6(X) NVIDIA продолжила использовать технологию определения и исправления ошибок Error Detection and Replay (EDR). Память GDDR6X работает на эффективной частоте порядка 1.200 МГц. Память становится все сложнее, частоты увеличиваются, поэтому ошибки неизбежны. По этой причине с памятью DDR5 была добавлена ECC для чипов. И подобная встроенная поддержка ECC вполне сравнима с EDR.
Через Error Detection and Replay определяются ошибки (Error Detection), после чего данные передаются повторно, пока ошибок не будет (Replay). Теперь ошибки передачи определяются на уровне контроллера памяти и не приводят к появлению артефактов. Для проверки целостности данных применяется алгоритм Cyclic Redundancy Check (CRC). Если данные будут повреждены при передаче, то контрольная сумма CRC не совпадет.
Без CRC или Error Detection and Replay на высоких частотах повышается риск возникновения ошибок и появления артефактов. Также есть риск краха драйвера или системы.
Благодаря Error Detection and Replay ошибки получается выявлять и исправлять. Но при дальнейшем разгоне можно выйти на уровень, когда пропускную способность далее увеличить уже не получается. Но до этого уровня «вылетов» не происходит, можно надеяться на безошибочную работу. Таким образом, EDR не только защищает целостность данных при обычной работе видеокарты, но и помогает разогнать память до предела возможностей.
Подсистема питания
Подсистема питания играет важную роль на современных видеокартах. NVIDIA как раз недавно существенно улучшила систему питания на эталонных дизайнах. В линейке GeForce RTX 30 система питания очень мощная и качественная, что видно по моделям Founders Editions и эталонным дизайнам, которые используются партнерами.
Подсистема питания GPU, памяти и других компонентов важна для эффективной и стабильной работы видеокарты. Все же речь идет о питании до 28 млрд. транзисторов в случае 8-нм техпроцесса, с несколькими уровнями напряжения, которые должны быть точно отрегулированы. Кроме того, система питания должна гибко адаптироваться в зависимости от нагрузки. Наконец, потери на подсистеме питания должны быть минимальны, то есть она не должна становиться существенным потребителем энергии.
В составе подсистемы питания важную роль играют модули стабилизации напряжения VRM (Voltage Regulator Modules). Они гарантируют, что напряжение 12 В, которое поступает от блока питания ПК, будет преобразовано в напряжение около 1 В, которое необходимо для питания GPU и памяти.
Корпусировка GPU
Если посмотреть на типичную корпусировку GPU, то графический процессор будет расположен по центру, его окружают различные компоненты SMD, по большей части резисторы. Упаковка GPU припаивается к PCB видеокарты через BGA. В показанном примере видеопамять GDDR6(X) расположена вне корпусировки GPU, на видеокарте.
NVIDIA также выпускает A100 Tensor GPU с встроенной в корпусировку памятью HBM. В таком случае GPU и HBM расположены ближе и соединены подложкой. В подложке имеются горизонтальные и вертикальные проводники на разных слоях, которые и обеспечивают связь между GPU и HBM.
Собственно, в этом кроется одна из причин (за исключением доступности и цен самой HBM), почему память HBM сегодня устанавливается лишь на некоторые видеокарты. На данный момент NVIDIA использует HBM с соответствующей корпусировкой GPU для ускорителей A100 Tensor GPU. Здесь затраты играют уже не такую существенную роль, а приложения выигрывают от высокой доступной пропускной способности памяти.
Дополнительные интерфейсы
NVLink 3.0 позволяет соединять до 12 GPU друг с другом. Но в линейке видеокарт RTX поддерживаются только две видеокарты. С теми же A100 Tensor GPU поддерживаются до 12 ускорителей, скорость обмена составляет до 600 Гбайт/с. Подобная пропускная способность намного выше 31,5 Гбайт/с, которые дает PCIe 4.0 x16. Установленная видеопамять используется подключенными GPU совместно. В случае двух GeForce RTX 3090 с 24 Гбайт каждая объем общей видеопамяти составляет 48 Гбайт.
В дата-центрах числа уже другие. 16 A100 Tensor GPU с 80 Гбайт каждый дают в сумме 1,28 Тбайт быстрой памяти со скоростью доступа 600 Гбайт/с. За быструю передачу информации между GPU отвечает коммутатор NVLink, суммарная пропускная способность достигает 9,6 Тбайт/с.
- взрослая моль ест больше в 3 раза чем молодая
- в ларгусе холодно что делать