векторный преобразователь частоты что это
Асинхронный двигатель — двигатель переменного тока, в котором токи в обмотках статора создают вращающееся магнитное поле. Это магнитное поле индуктирует токи в обмотке ротора и, действуя на эти токи, увлекает за собой ротор.
Однако для того, чтобы во вращающемся роторе вращающееся магнитное поле статора индуктировало токи, ротор в своем вращении должен немного отставать от вращающегося, поля статора. Поэтому в асинхронном двигателе скорость вращения ротора всегда немного меньше скорости вращения магнитного поля (которая определяется частотой переменного тока, питающего двигатель).
Отставание ротора от вращающегося магнитного поля статора (скольжение ротора) тем больше, чем больше нагрузка двигателя. Отсутствие синхронизма между вращением ротора и магнитного поля статора — характерная черта асинхронного двигателя, от которой и происходит его название.
Вращающееся магнитное поле в статоре создается с помощью обмоток, питаемых токами, сдвинутыми по фазе. Обычно для этой цели применяется трехфазный переменный ток. Существуют также однофазные асинхронные двигатели, в которых сдвиг фаз между токами в обмотках создается включением различных реактивных сопротивлений в обмотки.
С целью регулировки угловой скорости вращения ротора, а также крутящего момента на валу современных бесщеточных двигателей, применяют либо векторное, либо скалярное управление электроприводом.
Более всего распространение получило скалярное управление асинхронным двигателем, когда для управления например скоростью вращения вентилятора или насоса, достаточно удерживать постоянной скорость вращения ротора, для этого хватает сигнала обратной связи от датчика давления или от датчика скорости.
Принцип скалярного управления прост: амплитуда питающего напряжения является функцией частоты, причем отношение напряжения к частоте оказывается приблизительно постоянным.
Конкретный вид этой зависимости связан с нагрузкой на валу, однако принцип остается таковым: повышаем частоту, а напряжение при этом пропорционально повышается в зависимости от нагрузочной характеристики данного двигателя.
В итоге магнитный поток в зазоре между ротором и статором поддерживается почти постоянным. Если же отношение напряжения к частоте отклонить от номинального для данного двигателя, то двигатель либо перевозбудится, либо недовозбудится, что приведет к потерям в двигателе и к сбоям в рабочем процессе.
Таким образом скалярное управление позволяет добиться почти постоянного момента на валу в рабочем диапазоне частот независимо от частоты, однако на низких скоростях момент все же снижается (чтобы этого не произошло, необходимо повысить отношение напряжения к частоте), поэтому для каждого двигателя имеет место строго определенный рабочий диапазон скалярного управления.
Кроме того, невозможно построить систему скалярного регулирования скорости без датчика скорости, установленного на валу, ибо нагрузка сильно влияет на отставание реальной скорости вращения ротора от частоты питающего напряжения. Но даже с датчиком скорости при скалярном управлении не получится с высокой точностью регулировать момент (по крайней мере так, чтобы это было экономически целесообразно).
В этом и заключаются недостатки скалярного управления, объясняющие относительную немногочисленность сфер его применения, ограниченных в основном обычными асинхронными двигателями, где зависимость скольжения от нагрузки не является критичной.
Для избавления от названных недостатков, в далеком 1971 году инженеры компании Сименс предложили использовать векторное управление двигателем, при котором контроль осуществляется с обратной связью по величине магнитного потока. Первые системы векторного управления содержали датчики потока в двигателях.
Сегодня подход к данному методу несколько иной: математическая модель двигателя позволяет рассчитывать скорость вращения ротора и момент на валу в зависимости от текущих токов фаз (от частоты и величин токов в обмотках статора).
Этот более прогрессивный подход предоставляет возможность независимо и почти безынерционно регулировать как момент на валу, так и скорость вращения вала под нагрузкой, ибо в процессе управления учитываются еще и фазы токов.
Некоторые более точные системы векторного управления оснащены схемами обратной связи по скорости, при этом системы управления без датчиков скорости именуются бездатчиковыми.
Так, в зависимости от области применения того или иного электропривода, его система векторного управления будет иметь свои особенности, свою степень точности регулировки.
Когда требования к точности регулировки скорости допускают отклонение до 1,5%, а диапазон регулировки — не превышает 1 к 100, то бездатчиковая система вполне подойдет. Если же требуется точность регулировки скорости с отклонением не более 0,2%, а диапазон сводится до 1 к 10000, то необходимо наличие обратной связи по датчику скорости на валу. Наличие датчика скорости в системах векторного управления позволяет точно регулировать момент даже при низких частотах до 1 Гц.
Итак, векторное управление дает следующие преимущества. Высокую точность управления скоростью вращения ротора (и без датчика скорости на нем) даже в условиях динамически изменяющейся нагрузки на валу, при этом рывков не будет. Плавное и ровное вращение вала на малых скоростях. Высокий КПД в силу низких потерь в условиях оптимальных характеристик напряжения питания.
Не обходится векторное управление без недостатков. Сложность вычислительных операций. Необходимость задавать исходные данные (параметры регулируемого привода).
Для группового электропривода векторное управление принципиально не годится, здесь лучше подойдет скалярное.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Преобразователи частоты
В данной статье мы рассмотрим что такое частотный преобразователь, сферы применения преобразователей частоты, их плюсы и минусы, а также схемы частотников.
Преобразователи частоты (или частотники) – электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.
Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.
Виды преобразователей частоты
Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:
Электромашинные частотники.
Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.
Электронные преобразователи.
Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.
Непосредственные преобразователи частоты
Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.
Устройства такого типа включаются непосредственно в питающую сеть.
Плюсы непосредственных преобразователей частоты:
Минусы непосредственных преобразователей частоты:
Преобразователи частоты с промежуточным звеном постоянного тока.
Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.
Плюсы преобразователей с промежуточным звеном постоянного тока:
Минусы преобразователей с промежуточным звеном постоянного тока:
Устройство преобразователей с промежуточным звеном постоянного тока
Состоят такие преобразователи из нескольких основных блоков:
Способы управления преобразователем
По принципу управления различают 2 основных вида частотных преобразователей:
ЧП со скалярным управлением
Частотники этого типа выдают на выходе напряжение определенной частоты и амплитуды для поддержания определенного магнитного потока в обмотках статора. Частотники с таким принципом регулирования отличаются относительно низкой стоимостью, простотой конструкции. Нижний предел регулировки скорости составляет около 10 % от номинальной частоты вращения. Их можно использовать для управления сразу несколькими двигателями. Скалярные ЧП используют для приводов насосных агрегатов, вентиляторов и других устройств и оборудования, где не требуется поддерживать скорость вращения ротора вне зависимости от нагрузки.
ЧП с векторным управлением
Микропроцессорные устройства преобразователей с векторным управлением автоматически вычисляют взаимодействие магнитных полей статора и ротора. ЧП такого типа обеспечивают постоянную частоту вращения ротора вне зависимости от нагрузки. Они используются для оборудования, где необходимо поддерживать необходимый момент силы при низких скоростях, высокое быстродействие и точность регулирования. Применение векторных ЧП позволяет регулировать частоту вращения, задавать требуемый момент на валу.
ЧП с векторным управлением делятся на преобразователи бездатчикового типа и устройства с обратной связью по скорости. Последние используются для приводов с широким диапазоном регулирования скорости до 1:1000, необходимости позиционирования точного положения вала, регулирования момента при низких скоростях, точного поддержания частоты вращения, пуска двигателя с номинальным моментом. Преобразователи без датчика скорости применяют для приводов с более низкими требованиями.
Режимы управления частотными преобразователями
В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:
1) Ручное управление.
2) Внешнее управление.
3) Управление по дискретным входам или “сухим контактам”.
4) Управление по событиям.
Преимущества частотных преобразователей.
1) Экономия электроэнергии.
2) Увеличение срока службы промышленного оборудования.
3) Отсутствие необходимости проводить техническое обслуживание.
4) Возможность удаленного управления и контроля параметров оборудования с электроприводом.
5) Широкий диапазон мощности двигателей.
6) Защита электродвигателя от аварий и аномальных режимов работы.
7) Снижение уровня шума работающего двигателя.
Сферы применения
Частотно-регулируемые приводы применяют:
Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.
Векторный преобразователь частоты что это
Технические различия между векторными и скалярными частотными
Вопрос: На рынке представлены векторные и скалярные частотные преобразователи, причем
векторные ощутимо дороже. Каковы технические различия между ними?
Вопрос не так прост, чтобы ответить на него односложным образом. Сами по себе термины
«векторный» и «скалярный» являются неточными применительно к характеристике
частотных преобразователей. Поскольку речь идет по существу о параметре переменного
тока, то использование термина «скалярный» вообще недопустимо. Из курса элементарной
значение, и направление. В этой связи разделение частотных преобразователей на скалярные
и векторные в принципе некорректно, и отражает стремление менеджеров торговых
компаний обосновать более высокие цены на один из типов преобразователей, якобы имеющий превосходство над другим.
Что касается технической стороны дела, она заключается в следующем.
Основным способом корректировки вращающего момента на валу электродвигателя является
изменение частоты и величины тока обмоток статора, что приводит к изменению силы его
вращающегося магнитного поля. Большинство частотных преобразователей устроены таким
образом, что дают возможность пользователю настроить характеристику выходных
электрических параметров под конкретный вид оборудования. Например, в зависимости от
величины момента инерции приводимого в движение оборудования можно придать
характеристике выходного тока преобразователя линейный, параболический или гиперболический вид.
Так, если необходимо стронуть с места тяжелую массу на приводимом в движение
транспортере, характеристике выходного тока следует придать гиперболический вид. Водяные насосы и вентиляторы желательно приводить в движение по параболической
кривой, что дает экономию электроэнергии. По этому алгоритму работают практически все
частотные преобразователи, называемые неправильным термином «скалярные», более точным названием которых было бы: «частотные преобразователи с предварительной настройкой частоты и величины выходного тока».
Другим эффективным средством повышения момента на валу электродвигателя является
использование 3-й гармоники выходного тока, вектор которой, как и кратных ей более
высоких гармоник, вращается в ту же сторону, что и вектор тока основной гармоники (50
Гц), т.е., имеет прямую последовательность. Другие же вращаются в обратном направлении
и имеют обратную последовательность. Общий ток нейтрали, вычисляемый по формуле:
может превышать фазные токи, поскольку амплитуда колебаний третьей гармоники
существенно больше амплитуд последующих гармоник. Данный эффект может быть
использован для увеличения мощности выходного тока и увеличения момента на валу двигателя.
Инженерная мысль, однако, не стоит на месте и некоторые разработчики приняли решение
использовать для управления моментом на валу двигателя не только частоту и силу
питающего тока, но и его фазу. Кстати, именно отсюда появился и начал гулять по интернету и рекламным изданиям термин «векторный» частотный преобразователь.
Первые попытки создать частотный преобразователь с управлением моментом двигателя по фазе питающего тока строились на измерении параметров выходного тока и напряжения (по
аналогии с электросчетчиком) и вычислении необходимого сдвига фаз. Эти попытки
оказались недостаточно эффективными, особенно на малых скоростях вращения двигателя,
хотя для этой цели использовались процессоры с внушительными вычислительными мощностями.
Технические различия между векторными и скалярными частотными
Лучших результатов удалось достичь путем введения контура обратной связи для контроля
положения ротора двигателя. Используя обратную связь по скорости вращения ротора
двигателя и, вычисляя в режиме текущего времени необходимую скорость вращения магнитного поля статора, удалось оптимизировать стабильность момента вращения в довольно широком диапазоне за счет дополнительного сдвига фаз.
Физическая природа явления кроется в конструкции асинхронного электродвигателя с
короткозамкнутым ротором. Вращающееся магнитное поле пересекает замкнутую обмотку ротора, где появляются токи, которые, взаимодействуя с магнитным полем статора, создают
механическую силу. Эта сила вынуждает ротор вращаться в направлении вращения
магнитного поля статора, однако, скорость вращения ротора всегда будет отставать на 3-6% от скорости вращения магнитного поля.
Такое отставание называется скольжением, и именно оно обеспечивает превращение
электрической энергии в механическую энергию в асинхронном электродвигателе. Строго
говоря, при отсутствии скольжения в обмотках ротора не будет возникать электродвижущая
сила, соответственно не будет взаимодействия магнитных полей и не будет возникать момент вращения ротора.
Иными словами, если в т.н. «скалярных» преобразователях объектом контроля и управления
является только магнитное поле статора, то в т.н. «векторных» преобразователя объектом
Для чего это делается? Как известно, момент вращения электродвигателя прямо
пропорционален силе тока и обратно пропорционален скорости вращения ротора.
Разработчики «векторных» преобразователей ставили перед собой вполне определенную
скоростях вращения, т.е. потерю момента вращения вследствие низкой скорости стремились
компенсировать повышением тока и усилением сцепления магнитных полей статора и ротора.
Если бы поставленная цель была достигнута, частотно-регулируемый асинхронный
электропривод превратился бы в сервопривод, где высокий постоянный момент на валу
обеспечивается даже при нулевой скорости вращения. Однако, принципиальные
конструктивные и электротехнические различия между асинхронным электродвигателем и
серводвигателем настолько велики, что никакие усилия и уловки разработчиков не могут
серьезно приблизить асинхронный электропривод к сервоприводу. Вследствие этого
В рекламе т.н. «векторных» преобразователей упор делается на постоянство момента
вращения двигателя в широком диапазоне частот. Таким способом подчеркивается, что «невекторные» преобразователи эти свойством не обладают.
Подобные утверждения не имеют под собой серьезной основы.
Во-первых, все разговоры о моменте вращения имеют смысл на этапе проектирования
привода, когда производятся необходимые расчеты, подбираются электродвигатели, редукторы, компоненты для передачи движения. В процессе эксплуатации частотно-
регулируемого асинхронного электропривода предметом контроля и управления является
уже собственно технологический параметр (скорость вращения, давление, температура, влажность, яркость и т.д.).
Технические различия между векторными и скалярными частотными
Во-вторых, асинхронный электродвигатель имеет одно уникальное свойство, а именно:
способность изменять момент вращения в зависимости от момента сопротивления на валу. Иными словами, асинхронный двигатель потребляет только такую величину тока, которая
обеспечивает равенство момента вращения и момента сопротивления, создаваемого нагрузкой.
По этой причине, при правильном выборе мощности электродвигателя на этапе
проектирования привода в т.н. «векторных» способах управления моментом вращения
вообще-то нет особой нужды, тем более что и они на минимальных скоростях малоэффективны.
Жизнь идет вперед, время покажет, является ли «векторный» вариант столбовой дорогой
развития частотно-регулируемого асинхронного привода, или канет в лету, как многие другие произведения инженерной мысли.
Сейчас же совершенно очевидно, что дополнительная плата, взимаемая за т.н. «векторность» преобразователя технически не оправдана, а любое усложнение системы, как известно, ведет к снижению ее надежности.
Другим немаловажным обстоятельством, препятствующим широкому распространению т.н.
«векторных» преобразователей, является невозможность их использования в
многодвигательных приводах, тогда как преобразователи с предварительной настройкой
частоты и величины выходного тока (т.н. «скалярные») могут одновременно управлять работой неограниченного количества электродвигателей.
Иными словами, с точки зрения эксплуатационных свойств частотных преобразователей, их
управления параметрами выходного тока, а именно:
1) Преобразователи с предварительной настройкой параметров выходного тока.
Используются в большинстве общепромышленных приводов как с обратной связью по
контролю технологического параметра так и без нее, включая приводы насосов,
вентиляторов, конвейеров, транспортеров, экструдеров, в том числе одно- и многодвигательные системы.
2) Преобразователи с динамической настройкой параметров выходного тока. Используются в однодвигательных приводах высокоточного технологического
оборудования. Могут быть с обратной связью по контролю положения ротора двигателя и без нее. По точности и глубине регулирования скорости вращения несколько превосходят преобразователи первого типа, но значительно уступают сервоприводам.
Что касается проблемы в целом, следует иметь ввиду, что для решения конкретных задач в области управляемого привода применяются соответствующие электродвигатели со своими
двигатели постоянного тока с контроллерами и, наконец, асинхронные и синхронные
электродвигатели с частотными преобразователями. Попытки создать универсальный привод
заведомо обречены на провал, поскольку конструктивные различия между приводами
слишком велики, а решаемые приводами задачи просто несопоставимы. Невозможно создать из асинхронного двигателя серводвигатель, а из синхронного шаговый, даже если встроить в него полсотни полюсов.
учетом необходимого момента на валу в самом неблагоприятном диапазоне частот
вращения, а управление технологическим параметром поручить ПИД-регулятору, который имеется в большинстве скалярных преобразователей. автор статьи
большинстве современных т.н. «скалярных» преобразователей.
Методы управления электроприводом
В современном мире преобладающая часть промышленного производства, транспортных систем, сферы жизнеобеспечения человека в той степени развития, которая достигнута сегодня, основаны на выполнении технологических процессов, где применяется оборудование с электроприводом.
Как известно, электроприводом называется электромеханическая система для преобразования электрической энергии в механическую, основным звеном которой является электрический двигатель.
От первых опытов Майкла Фарадея в 1820-ых годах, в которых он изучал взаимовлияние магнитов и проводников, до создания современных комплексов управления электроприводом прошло уже почти 200 лет. Первым был изобретён двигатель на постоянных магнитах, который стал прототипом коллекторных двигателей, следующим шагом стало создание электродвигателей переменного тока, далее – первых асинхронных электродвигателей.
В середине прошлого века наметилось разделение развития электропривода на две основные ветви в соответствии с типом применения: на нерегулируемый и регулируемый привод. В нерегулируемом электроприводе большой мощности наиболее применимыми оказались синхронные двигатели, при невысоких мощностях – асинхронные электродвигатели с короткозамкнутым ротором.
Двигатели с короткозамкнутым ротором с давних пор использовались исключительно в нерегулируемом электроприводе, так как возможность плавного регулирования скорости вращения двигателей не была в должной степени технически реализуема. Сейчас, благодаря достижениям микропроцессорной техники и электроники, ситуация кардинально поменялась, и частотно-регулируемый привод (ЧРП) стал основным типом регулируемого электропривода.
Различия скалярного и векторного методов управления
Техническим стандартом, по которому можно классифицировать современные преобразователи частоты (иначе, частотники или ПЧ, как их сокращенно называют) является метод управления, применяемый в этих устройствах при регулировании скорости вращения двигателя.
Методы управления подразделяются на:
О различии скалярного и векторного управления электроприводом можно догадаться уже по их названию.
Скалярное управление наиболее применимо в электроприводах небольшой сложности в силу относительной простоты и минимального набора требуемых для работы функциональных параметров. Подходит для применений, где требуется поддерживать постоянство (с ограниченным диапазоном и точностью, по сравнению с векторным) определенной технологической величины, и где отсутствуют большие динамические нагрузки.
Векторный метод управления относительно скалярного имеет бóльшую производительность, диапазон и точность регулирования, в том числе на малых оборотах двигателя, чем перекрывает практически все недостатки скалярного принципа управления.
Тот или иной метод управления выбирается в зависимости от требований, которые заданы для технологического процесса – это глубина и точность регулирования, необходимость управления моментом на валу двигателя, состояние привода при переходных процессах – при пуске/стопе, ускорении, торможении.
Скалярный метод управления. Назначение
Скалярный метод управления применяют для приводов малой и средней мощности с вентиляторной нагрузкой (т.е. для вентиляторов, насосов, компрессоров, дымососов с легким, либо нормальным режимом работы). Что особенно важно, при использовании скалярного метода имеется возможность управления многодвигательными приводами от одного преобразователя частоты. Жесткость статических характеристик привода практически приближена к естественной характеристике. Диапазон скалярного принципа управления, при котором возможно регулирование оборотов двигателя, без потери момента сопротивления не превышает 1:10. Благодаря этому достигается постоянная перегрузочная способность двигателя, которая не зависит от частоты приложенного напряжения, но на низких частотах может произойти перегрев двигателя и снижение развиваемого им момента. Для того чтобы этого избежать, производят установку ограничения минимального значения выходной частоты.
Изменение напряжения питания электродвигателя
при скалярном управлении
При необходимости увеличения жёсткости характеристики и расширения границ регулирования применяют различные аналоговые или импульсные датчики скорости. Для этого в преобразователях частоты имеются дискретно-аналоговые управляющие входы.
Преобразователи частоты, управление в которых реализовано на методе скалярного управления, как правило, невысокой стоимости, более простые и широко применимы в электроприводе, где отсутствуют критичные требования к точности и диапазону регулирования. При вводе в работу подобных преобразователей достаточно учитывать лишь номинальные величины параметров электропривода, осуществить настройку стандартных опций защиты и управления.
Применение
Учитывая вышеназванные особенности, можно рассмотреть следующие возможности применения для скалярного управления частотным преобразователем:
Системы водоснабжения и водоотведения представляют собой довольно сложную технологическую структуру, основные элементы которой – трубопроводные магистрали и насосные установки.
Электропривод насосных установок
Применение скалярного метода управления для выполнения плавного пуска, торможения и регулирования скорости вращения привода насосов снижает интенсивность гидравлических ударов, что позволяет сократить количество профилактических ремонтов оборудования и вероятность аварийных ситуаций, связанных с механическими нагрузками (преждевременный износ муфт, редукторов, подшипников двигателей).
При увеличении скорости напряжения питания статора пропорционально увеличивается. Скалярное управление способствует удержанию постоянства момента на валу в рабочем диапазоне частот (но на невысоких скоростях момент снижается, для этого в преобразователях частоты есть возможность задания момента для нижней границы скорости).
Для насосных систем имеется возможность настройки в ПЧ следующих полезных функций (в особенности, для тех ПЧ, которые предназначены для систем отопления, вентиляции и кондиционирования – так называемые HVAC системы):
Доступны также другие прикладные функции для оптимизации и защиты насосного привода (контроль заполнения трубопровода, контроль давления/расхода, заклинивания и т.д.).
Важным преимуществом скалярного метода является возможность одновременного управления группой агрегатов. Частотным преобразователем совместно с алгоритмом системы управления производится изменение скорости вращения привода, а также, при необходимости, числа одновременно работающих механизмов.
Вышеописанные прикладные функции имеются в преобразователях частоты и для электроприводов систем вентиляции и кондиционирования.
Векторный метод управления. Назначение
Преобразователи с частотно-векторным управлением в основном применяют для электроприводов с тяжелым режимом работы (вентиляторы высокой мощности, подъемное, буровое оборудование, системы позиционирования). Векторный метод управления не только формирует гармонические токи и напряжения фаз (как при скалярном методе), но и позволяет производить регулирование магнитного потока электродвигателя. Таким образом, производится управление магнитным полем статора и ротора, регулируется их взаимодействие между собой для оптимизации момента вращения на различных частотах. При этом, улучшается динамика электропривода за счет специального встроенного канала управления моментом нагрузки. Внутренняя обработка процессов регулирования в современных частотниках выполняется на базе мощного процессорного оборудования.
Векторной метод управления заключается в математическом представлении модели двигателя. Возможность такого решения основана на том, что проекция пространственного вектора тока статора на ось полюсов магнитного поля ротора (продольную ось) пропорциональна величине магнитного потока, а проекция на поперечную ось пропорциональна величине электромагнитного момента. Такой более прогрессивный метод позволяет независимо и почти безынерционно регулировать момент на валу и скорость вращения двигателя под нагрузкой.
Пространственный вектор
при векторном методе управления
Главной трудностью для реализации векторной системы управления является определение нахождения оси магнитного поля ротора в пространстве. Данная задача решается при помощи датчиков Холла, установленных в электроприводе, либо расчётом по известным соотношениям, где исходными данными являются мгновенные величины тока, напряжения статора и скорость вращения ротора. В среднебюджетных приводах применяется преимущественно расчётный метод, часто это системы управления двигателем без обратной связи по скорости. Такая система управления называется бездатчиковая – управление по разомкнутому контуру.
Если требования к точности регулирования скорости допускают отклонение до 1,5%, а диапазон – менее 1:100, то может быть использована бездатчиковая система управления – управление по замкнутому кругу. При требовании точности регулировки скорости с отклонением менее 0,2% и диапазона 1:10000 применяется управление с датчиком скорости на валу. Такие системы называются системами управления двигателем с обратной связью по скорости и позволяют регулировать момент на малых частотах (до 1 Гц).
По сравнению со скалярным, векторный метод управления имеет следующие преимущества:
Несмотря на ряд весомых преимуществ стоит отметить, что вычислительная сложность при векторном методе управления высока, и при расчете оптимальных режимов работы привода необходимо учитывать большое количество параметров электропривода. Но там, где требуется обеспечивать широкий диапазон и точность регулирования, особенно, на низких частотах вращения, векторный преобразователь частоты будет незаменим.
Применение
В качестве объекта электропривода, где широко применим векторный метод управления, можно привести в пример подъемные механизмы, в частности – лифтовое оборудование.
Электропривод лифтового оборудования
По данным исследований было выявлено, что электропривод, где применен преобразователь частоты для управления лифтовым оборудованием, экономит почти 40% электроэнергии (по сравнению с применениями без ПЧ). Помимо экономии электроэнергии, применение векторных преобразователей частоты обеспечивает следующие преимущества:
Как показала практика подобных применений, при использовании векторных преобразователей частоты в лифтовых системах окупаемость частотников не превышает 1,5-2 лет. При этом существенно уменьшаются затраты на обслуживание и ремонт электроприводного комплекса лифта.
Таким образом, выбирая на практике между скалярным и векторным методом регулирования скорости вращения электропривода, необходимо оценить требования, которые предъявляются к объекту управления – это диапазон и точность регулирования технологических величин, необходимость удержания момента на валу двигателя (в особенности, на малых частотах вращения), требования к контролю привода в аварийных ситуациях.
Отталкиваясь от этого, и принимая во внимание описанные в данной статье особенности применения векторного либо скалярного регулирования, можно сделать выводы о том, какой способ управления является более предпочтительным для Вашего применения.
Хотите сохранить эту статью? Скачайте её в формате PDF | Остались вопросы? Обсудите эту статью на нашей странице В Контакте | Хочешь читать статьи первым, подписывайся на наш канал в Яндекс.Дзен |
Рекомендуем прочитать также:
Выбор преобразователя частоты для привода переменного тока
Пять вопросов при выборе преобразователя частоты