в результате темновой фазы фотосинтеза образуется что
Биология. 11 класс
§ 22-1. Темновая фаза фотосинтеза. Значение фотосинтеза. Хемосинтез
Темновая фаза *(на примере С3-фотосинтеза). Как вы знаете, реакции темновой фазы осуществляются в строме хлоропласта независимо от наличия света. Однако для их протекания необходимы такие продукты световой фазы, как АТФ и восстановленный НАДФ.*
Из окружающей среды в хлоропласты поступает углекислый газ. В ходе темновой фазы фотосинтеза происходит его *связывание (фиксация) и* восстановление до органических веществ. *У фотоавтотрофов обнаружено несколько разных способов фиксации СО2 и его последующего использования для синтеза органических соединений. При этом основным, наиболее распространенным механизмом является так называемый С3-путь фотосинтеза. Его можно разделить на несколько этапов.
1. Связывание углекислого газа. В строме хлоропласта молекулу СО2 присоединяет особый акцептор — рибулозо-1,5-дифосфат (РДФ). Это производное пятиуглеродного моносахарида рибулозы. Реакция протекает с использованием воды и катализируется ферментом РДФ-карбоксилазой, на долю которой может приходиться более половины всех белков хлоропластов. Считается, что РДФ-карбоксилаза — самый распространенный белок на Земле. В результате присоединения углекислого газа к РДФ образуется неустойчивое шестиуглеродное соединение, которое распадается на две молекулы фосфоглицериновой кислоты (ФГК):
Молекула ФГК — первичного продукта фиксации СО2 — содержит 3 атома углерода. Поэтому данный механизм связывания углекислого газа и назван С3-путем фотосинтеза.
2. Восстановление ФГК. Далее фосфоглицериновая кислота подвергается ферментативному восстановлению до фосфоглицеринового альдегида (ФГА). Процесс протекает с использованием продуктов световой фазы фотосинтеза — АТФ и НАДФ ∙ Н+Н + :
3. Превращение ФГА в другие продукты фотосинтеза и РДФ. Некоторая часть молекул ФГА идет на синтез глюкозы и других моносахаридов, спиртов, карбоновых кислот, аминокислот (образуются путем аминирования карбоновых кислот) и т. п. Далее из них могут синтезироваться более сложные соединения — олиго- и полисахариды (крахмал, целлюлоза), липиды, белки и др.
Однако бóльшая часть молекул ФГА превращается в рибулозо-1,5-дифосфат , способный снова связывать СО2. Реакции регенерации РДФ протекают с затратами энергии АТФ. Таким образом, С3-путь фиксации углекислого газа представляет собой циклический процесс. В честь американского биохимика М. Кальвина, исследовавшего этот способ ассимиляции СО2 (Нобелевская премия за 1961 г.), он назван циклом Кальвина.*
*За один «оборот» цикла Кальвина фиксируется одна молекула углекислого газа. Поэтому для синтеза шестиуглеродной молекулы глюкозы (С6Н12О6) требуется шесть «оборотов» цикла. Пять из них необходимы для регенерации РДФ, а один идет собственно на образование глюкозы (рис. 22-1.1).*
*При С3-фотосинтезе для образования одной молекулы глюкозы из С О2 нужно использовать, а затем снова регенерировать 6 молекул РДФ, окислить 12 молекул НАДФ∙Н+Н + (он служит источником атомов водорода) и расщепить 18 молекул АТФ (она является поставщиком энергии). Общее уравнение темновой фазы фотосинтеза можно записать следующим образом (для упрощения не указаны молекулы воды, необходимые для гидролиза АТФ):
Следовательно, АТФ *и восстановленный НАДФ,* полученные в ходе световой фазы, используются в темновой фазе для образования глюкозы и других продуктов фотосинтеза. При этом энергия макроэргических связей АТФ преобразуется в энергию химических связей органических веществ.
Если объединить процессы, протекающие в световой и темновой фазах, исключив промежуточные продукты *и сократив молекулы воды* (рис. 22-1.2), можно получить суммарное уравнение фотосинтеза:
*Другие пути фиксации СО2 при фотосинтезе. У некоторых растений первичным продуктом фиксации углекислого газа является не ФГК, как при С3-пути фотосинтеза, а четырехуглеродное соединение — щавелевоуксусная кислота (ЩУК). Такой механизм связывания СО2 известен как С4-путь фотосинтеза, или путь Хэтча–Слэка (в честь австралийских ученых М. Д. Хэтча и Ч. Р. Слэка, детально исследовавших этот способ ассимиляции углекислого газа).
Для растений, использующих С4-путь фотосинтеза (например, кукурузы, проса, сорго, сахарного тростника), характерно особое строение листьев. Их проводящие пучки окружены двумя слоями фотосинтезирующих клеток. Внутренний слой образует так называемую обкладку проводящего пучка. Наружный слой представлен клетками мезофилла (основной хлорофиллоносной ткани листьев растений, в большинстве случаев дифференцированной на столбчатую и губчатую паренхиму), в гиалоплазме которых и происходит фиксация СО2 по С4-пути.
Акцептором углекислого газа при С4-фотосинтезе служит трехуглеродное соединение — фосфоенолпировиноградная кислота (ФЕП):
*Известно, что у С3-растений, фиксирующих СО2 только с помощью цикла Кальвина, фотосинтез протекает быстро лишь при довольно высокой концентрации углекислого газа в воздухе. С4-путь даже в условиях низкого содержания СО2 позволяет накапливать в клетках обкладки углекислый газ в количестве, достаточном для эффективного протекания цикла Кальвина. Следовательно, у С4-растений фотосинтез осуществляется интенсивно и при низких концентрациях СО2 в окружающей среде. При этом отпадает необходимость постоянно держать устьица открытыми (для поступления большего количества СО2 к фотосинтезирующим клеткам), что снижает потери воды в ходе транспирации. Все это позволяет С4-растениям осваивать засушливые, жаркие местообитания.
В подобных условиях могут существовать и растения, использующие так называемый САМ-фотосинтез (сокращение от англ. crassulacean acid metabolism — кислотный метаболизм толстянковых). Этот путь характерен преимущественно для суккулентов — толстянок, кактусов, каланхоэ и др. В связи со строгой экономией воды устьица САМ-растений в дневное время закрыты. Открываются они только ночью, в самый прохладный период суток. Следовательно, углекислый газ может поступать в листья только ночью. В гиалоплазме хлорофиллоносных клеток он фиксируется по С4-пути и накапливается в вакуолях в виде яблочной кислоты (см. рис. 22-1.3). Днем, когда устьица закрыты, яблочная кислота переходит в гиалоплазму и высвобождает запасенный СО2. Он поступает в строму хлоропластов и вовлекается в цикл Кальвина.
Таким образом, механизм САМ-фотосинтеза сходен с С4-фотосинтезом. Различие заключается в том, что у С4-растений связывание углекислого газа по С4— и С3-пути происходит в разных типах клеток, а у САМ-растений — в пределах одной и той же клетки, но в разное время суток.*
Фотосинтез
Типы питания
Фотосинтез
Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.
В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»
Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.
Светозависимая фаза (световая)
Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.
Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):
Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).
При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:
Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.
Светонезависимая (темновая) фаза
При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.
Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.
Значение фотосинтеза
Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.
Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.
Значение хемосинтеза
Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.
Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
В результате темновой фазы фотосинтеза образуется что
Фотосинтезом называют процесс преобразования энергии света в энергию химически связей органических соединений с участием хлорофилла. В результате фотосинтеза образуется около 150 млрд тонн органического вещества и приблизительно 200 млрд тонн кислорода ежегодно. Этот процесс обеспечивает круговорот углерода в биосфере, не давая накапливаться углекислому газу и препятствуя тем самым возникновению парникового эффекта и перегреву Земли. Образующиеся в результате фотосинтеза органические вещества частично расходуются гетеротрофными организмами, но значительная их часть в течение миллионов лет образовала залежи полезных ископаемых (каменного и бурого угля, нефти).
К. А. Тимирязев (1843–1920) назвал роль фотосинтеза «космической», поскольку он связывает Землю с Солнцем (космосом), обеспечивая приток энергии на планету.
Структурной и функциональной единицей хлоропластов являются тилакоиды – плоские мембранные мешочки, уложенные в стопки (граны) (рис. 3).
Рис. 3. Строение хлоропласта
Отдельные граны соединены друг с другом ламеллами.
В мембранах тилакоидов расположены особые комплексы, в которые входит молекула хлорофилла, а также молекула переносчиков электронов – цитохромов. Мембранная система – это то место, где протекают световые реакции фотосинтеза.
Строма хлоропластов по своему строению напоминает гель – здесь протекают темновые реакции.
Избыток углеводов, образовавшихся в процессе фотосинтеза, запасается в виде зерен крахмала.
Фотосинтез происходит в две фазы, а именно в световую фазу и темновую фазу.
Во время световой фазы происходит образование энергии, которая затем расходуется на темновые реакции. Процесс световой фазы фотосинтеза включает в себя нециклическое фотофосфорилирование и фотолиз воды. В качестве побочного продукта реакции в результате фотолиза воды выделяется кислород. Реакция происходит на мембранах тилакоидов.
Квант красного света, поглощенный хлорофиллом П680 (фотосистема ІІ), переводит электрон в возбужденное состояние (рис. 6). Возбужденный светом электрон приобретает большой запас энергии, вследствие чего перемещается на более высокий энергетический уровень. Такой электрон захватывается акцептором электронов Х, перемещаясь с одной ступени на другую, то есть от одного акцептора к другому, он теряет энергию, которая используется для синтеза АТФ.
Рис. 6. Схема процессов световой фазы фотосинтеза
Место вышедших электронов молекулы хлорофилла П680, занимают электроны воды, так как вода под действием света подвергается фотолизу, где в качестве побочного продукта образуется кислород. Фотолиз происходит в полости тилакоида (рис. 7).
Рис. 7. Фотолиз воды
В фотосистеме І возбужденные электроны под действием фотона света также переходят на более высокий уровень и захватываются акцептором Y. В конце концов, электроны доходят от Y до переносчика – НАДФ, и, взаимодействуя с ионами водорода, выделенными при фотолизе воды, образуют восстановленный НАДФН. НАДФ расшифровывается как – никотинамидадениндинуклеотидфосфат.
Рис. 8. Взаимодействие фотосистемы I и фотосистемы II
Место вышедших электронов в молекуле П700 занимают электроны, полученные от фотосистемы II П680 (рис. 8). Таким образом, на свету электроны перемещаются от воды к фотосистемам II и I, и затем к НАДФ. Такой однонаправленный поток электронов носит название нециклического потока электронов, а образование АТФ, которое при этом происходит, носит название нециклического фотофосфорилирования. Таким образом, в световой фазе образуются АТФ и восстановленный НАДФ, богатые энергией, и в качестве побочного продукта реакции выделяется кислород.
Темновая фаза фотосинтеза. Если световая фаза протекает только на свету, то темновая фаза не зависит от света. Темновая фаза протекает в строме хлоропластов, куда переносятся богатые энергией соединения, а именно АТФ и восстановленный НАДФ, кроме этого, туда же поступает углекислый газ в качестве источника углеводов, который берется из воздуха и поступает в растения через устьица. В реакциях темновой фазы углекислый газ восстанавливается до глюкозы с помощью энергии, запасенной молекулами АТФ и НАДФ.
Превращение углекислого газа в глюкозу в ходе темновой фазы фотосинтеза получило название цикла Кальвина – по имени его первооткрывателя.
Первая стадия фотосинтеза – световая – происходит на мембранах хлоропласта в тилакоидах.
Вторая стадия фотосинтеза – темновая – протекает внутри хлоропласта, в строме.
Суммарное уравнение фотосинтеза выглядит следующим образом. При взаимодействии 6 молекул углекислого газа и 6 молекул воды образуется одна молекула глюкозы и выделяется шесть молекул кислорода. Этот процесс протекает на свету в хлоропластах у высших растений.
Таким образом, фотосинтез – процесс превращения вещества и энергии.
Лекция № 12. Фотосинтез. Хемосинтез
Фотосинтез
Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:
У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.
Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.
Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.
Световая фаза
Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:
Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:
Радикалы •ОН объединяются, образуя воду и свободный кислород:
Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:
2Н + + 2е — + НАДФ → НАДФ·Н2.
Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.
1 — строма хлоропласта; 2 — тилакоид граны.
Темновая фаза
Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.
Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:
Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3— и С4-фотосинтез.
С3-фотосинтез
Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.
Фотодыхание
Фотодыхание:
1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.
Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:
О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).
Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).
С4-фотосинтез
С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.
Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.
Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.
Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.
Строение С4-растений: С4-фотосинтез: Значение фотосинтезаКупить проверочные работы
Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации. При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час. ХемосинтезСинтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом. К хемосинтезирующим организмам относятся некоторые виды бактерий. Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH3 → HNO2 → HNO3). Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+ ). Серобактерии окисляют сероводород до серы или серной кислоты (H2S + ½O2 → S + H2O, H2S + 2O2 → H2SO4). В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза. Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др. Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков» Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз» Смотреть оглавление (лекции №1-25)
|