в чем разница между сферой и шаром
Разница между шаром и сферой
Когда людям задают вопрос, чем отличается сфер от шара, многие попросту пожимают плечами, думая, что фактически это одно и то же (аналогия с кругом и окружностью). Действительно, все ли из нас хорошо знают из школьной программы геометрию и могут сходу ответить на данный вопрос? Сфера имеет некоторые отличия от шара, которые нужно знать не только школьникам, чтобы получить хорошую оценку за свои продемонстрированные знания, но и многим другим людям, например, чья работа непосредственно связана с чертежами.
Определение
Шар – совокупность всех точек пространства. Все эти точки находятся от центра геометрического тела на расстоянии, которое не больше заданного. Само данное расстояние называется радиусом. Шар, как геометрическое тело, образуется следующим образом: происходит вращение полукруга возле его диаметра. Что касается сферы, то это и есть поверхность шара (например, замкнутый шар включает ее, открытый – нет). Вычисление площади или объема шара – это целые геометрические формулы, которые очень сложны, несмотря на кажущуюся простоту самой геометрической фигуры.
Сфера, как было отмечено выше, представляет собой поверхность шара, его оболочку. От центра сферы все точки в пространстве равноудалены. Что касается радиуса геометрического тела, то им называют любой отрезок, одна точка которого – непосредственно центр сферы, а другая может находиться в любой точке на поверхности. Можно сказать, что сфера является оболочкой шара без какого-либо содержимого (более конкретные примеры будут приведены ниже). Также как и шар, сфера является телом вращения. Кстати, многие также задаются вопросом, чем же отличаются круг и окружность от сферы и шара. Здесь все просто: в первом случае это фигуры на плоскости, во втором – в пространстве.
Сравнение
Уже было сказано о том, что сфера является поверхностью шара, что уже дает возможность говорить об одном весомом признаке отличия. Разница между двумя геометрическими телами наблюдается и в некоторых других аспектах:
Сфера и шар – определение, формула объема и площади с примерами
Сфера и шар – это аналог круга и окружности в трехмерном пространстве. Стоит поговорить о каждой из этих фигур, выделить сходства и различия, а так же формулы, свойственные этим фигурам.
Трехмерное пространство
Большая часть геометрических построений производится в плоскости, но в старших классах начинают изучать трехмерные фигуры. Двухмерное пространство имеет только две характеристики: длину и ширину. В трехмерных областях добавляется высота. В математике 6 класса изучаются отдельные 3д фигуры.
На плоскости фигуру характеризовала площадь и периметр. В трехмерных объектах к ним прибавляется объем.
Рис. 1. Трехмерное пространство.
Кроме того, имеется ряд специфических свойств 3д фигур. Их может пересекать прямая и плоскость, могут имеется секущие плоскости, которые принимают формы других фигур.
Применение 3д фигур для составления задач значительно усложняет их, но в то же время делает куда более интересными. Приведем определения шара и сферы, после чего попробуем выделить различия этих фигур.
Шар и сфера – это аналог круга и окружности в плоскости. Шар представляет собой фигуру, полученную вращением полукруга вокруг одной точки.
Радиус это отрезок, соединяющий центр шара и любую из точек на его поверхности.
Объем показывает, какое пространство занимает фигура. Чтобы понять, что такое объем нужно представить себе фигуру полой. Тогда объем это количество воды, которое можно налить в эту фигуру
Шар, как и любую другую трехмерную фигуру, можно рассечь плоскостью. Секущей плоскостью шара является круг, центр которого можно найти, опустив из центра шара перпендикуляр на окружность.
Рис. 2. Сечение шара.
Хоть в школьном курсе такие ситуации не случаются, но нужно понимать, что шар может быть рассечен плоскостью под углом. Но даже в этом примере, секущая плоскость останется шаром.
Сфера
Сфера это фигура, представляющая собой множество точек в пространстве, равноудаленных от центра сферы. Сфера:
В чем различие
Тогда возникает вопрос, а чем отличается шар от сферы кроме определения? Дело в том, что различия шара и сферы куда более размыты, нежели различия круга и окружности. Сфера так же имеет объем и площадь поверхности.
Пожалуй, кроме определения, разница заключается в том, что в задачах никогда не находят объем сферы. Как правило, ищут объем шара. Это не значит, что у сферы нет объема. Это трехмерная фигура, поэтому объем у нее есть.
Просто проводится аналогия с окружностью, у которой нет площади. Это не правило, но скорее традиция, которую нужно запомнить: в геометрии не приветствуется формулировка объем сферы.
Еще одно отличие, которое можно считать более или менее значимым: секущая плоскость сферы: окружность, которая не имеет внутреннего пространства, но имеет длину. Секущая плоскость шара: круг, который имеет площадь и не имеет длины окружности. Поэтому стоит быть аккуратным в формулировках задачи, чтобы не было ошибок из-за подобных мелочей.
Что мы узнали?
Мы узнали, что такое сфера и шар. Поговорили об их сходствах и различии. Узнали, что различий у этих фигур почти нет. Решили, что не стоит приводить такую формулировку, как объем сферы.
Что такое шар (сфера): определение, свойства, формулы
В публикации мы рассмотрим определение и основные свойства шара и сферы, а также формулы, с помощью которых можно найти площадь поверхности и объем данных геометрических фигур.
Определение шара и сферы
Шар – это совокупность всех точек в трехмерном пространстве, которые находятся на расстоянии не больше заданного от точки, называемой центром шара (на рисунке ниже – это точка O). Другими словами, это совокупность точек, ограниченных сферой.
Шар образуется путем вращения круга вокруг своего диаметра (оси) на 180° или полукруга – на 360°.
Сфера – это поверхность шара. Образуется путем вращения окружности вокруг своего диаметра на 180° или полуокружности – на 360°.
Различают два вида шаров:
Радиус шара (сферы) – расстояние между центром и точками, лежащими на его поверхности. На рисунке выше обозначен буквой R.
Диаметр шара (сферы) – отрезок, проходящий через центр шара и соединяющие две противоположные точки на его поверхности. Совпадает с осью шара, обычно обозначается буквой d.
Полюсы шара (сферы) – точки A и B, расположенные на концах его диаметра.
Свойства шара и сферы
Свойство 1
Любое сечение шара плоскостью является кругом.
Свойство 2
Любое сечение сферы плоскостью является окружностью.
Свойство 3
Все точки сферы равноудалены от ее центра.
Свойство 4
Сфера имеет самый большой объем среди всех фигур в пространстве, имеющих одинаковую площадь поверхности.
Свойство 5
Через две любые диаметрально противоположные точки (максимально отдаленные друг от друга точки на окружности) можно провести неограниченное количество кругов для шара или окружностей для сфер радиусом, равным радиусу шара/сферы.
Примечание: если точки не диаметрально противоположны, то провести можно только один круг (окружность).
Части шара
Сегмент шара – это часть шара, отсекаемая плоскостью. Иногда называется шаровым сегментом. На рисунке ниже окрашен в зеленый цвет.
Срез шара – часть шара между двумя параллельными плоскостями, пересекающими его. Также может называться шаровым слоем. На рисунке ниже закрашен желтым.
Сектор шара – состоит из шарового сегмента и конуса, вершина которого находится центре шара, а основание совпадает с основанием сегмента. На рисунке ниже сектор залит оранжевым.
Формулы для шара/сферы
В формулах ниже используется как радиус (R), так и диаметр фигур (d). Число π в расчетах обычно округляется до двух знаков после запятой и приблизительно равняется 3,14.
Сфера и шар
Всего получено оценок: 122.
Всего получено оценок: 122.
Сфера и шар – это аналог круга и окружности в трехмерном пространстве. Стоит поговорить о каждой из этих фигур, выделить сходства и различия, а так же формулы, свойственные этим фигурам.
Трехмерное пространство
Большая часть геометрических построений производится в плоскости, но в старших классах начинают изучать трехмерные фигуры. Двухмерное пространство имеет только две характеристики: длину и ширину. В трехмерных областях добавляется высота. В математике 6 класса изучаются отдельные 3д фигуры.
На плоскости фигуру характеризовала площадь и периметр. В трехмерных объектах к ним прибавляется объем.
Кроме того, имеется ряд специфических свойств 3д фигур. Их может пересекать прямая и плоскость, могут имеется секущие плоскости, которые принимают формы других фигур.
Применение 3д фигур для составления задач значительно усложняет их, но в то же время делает куда более интересными. Приведем определения шара и сферы, после чего попробуем выделить различия этих фигур.
Шар и сфера – это аналог круга и окружности в плоскости. Шар представляет собой фигуру, полученную вращением полукруга вокруг одной точки.
Радиус это отрезок, соединяющий центр шара и любую из точек на его поверхности.
Объем показывает, какое пространство занимает фигура. Чтобы понять, что такое объем нужно представить себе фигуру полой. Тогда объем это количество воды, которое можно налить в эту фигуру
Шар, как и любую другую трехмерную фигуру, можно рассечь плоскостью. Секущей плоскостью шара является круг, центр которого можно найти, опустив из центра шара перпендикуляр на окружность.
Хоть в школьном курсе такие ситуации не случаются, но нужно понимать, что шар может быть рассечен плоскостью под углом. Но даже в этом примере, секущая плоскость останется шаром.
Сфера
Сфера это фигура, представляющая собой множество точек в пространстве, равноудаленных от центра сферы. Сфера:
В чем различие
Тогда возникает вопрос, а чем отличается шар от сферы кроме определения? Дело в том, что различия шара и сферы куда более размыты, нежели различия круга и окружности. Сфера так же имеет объем и площадь поверхности.
Пожалуй, кроме определения, разница заключается в том, что в задачах никогда не находят объем сферы. Как правило, ищут объем шара. Это не значит, что у сферы нет объема. Это трехмерная фигура, поэтому объем у нее есть.
Просто проводится аналогия с окружностью, у которой нет площади. Это не правило, но скорее традиция, которую нужно запомнить: в геометрии не приветствуется формулировка объем сферы.
Еще одно отличие, которое можно считать более или менее значимым: секущая плоскость сферы: окружность, которая не имеет внутреннего пространства, но имеет длину. Секущая плоскость шара: круг, который имеет площадь и не имеет длины окружности. Поэтому стоит быть аккуратным в формулировках задачи, чтобы не было ошибок из-за подобных мелочей.
Что мы узнали?
Мы узнали, что такое сфера и шар. Поговорили об их сходствах и различии. Узнали, что различий у этих фигур почти нет. Решили, что не стоит приводить такую формулировку, как объем сферы.
Чем отличается сфера от шара
В геометрии существует ряд базовых понятий, от которых принято отталкиваться при описании того или иного предмета. К таковым относится определение геометрической точки. Некая совокупность точек, подпадающих под конкретное свойство, называется геометрической фигурой. Сфера и шар – абстрактные объекты, состоящие из множества геометрических точек. Многие считают эти фигуры одинаковыми, но это заблуждение. В чем же разница между сферой и шаром?
Сфера (от древнегреческого σφαῖρα, изначально обозначающего мяч/шар) — это геометрическая равноудаленная совокупность точек пространства. Центром сферы является некая заданная точка. Все остальные точки расположены на равном от нее расстоянии, которое называется радиусом.
Под шаром понимается совокупность точек пространства, находящихся на расстоянии, не превышающем радиуса от определённой точки. Другими словами, шар является геометрическим телом, то есть имеет длину, ширину и глубину. В современной математике принято говорить о наличии у шара определенной формы. По умолчанию шар считается «замкнутым». В таком случае сфера является его естественной границей и принадлежащей ему частью. Если же, сферу вычесть из шара, тот становится «открытым».
В качестве вывода можно сказать, что сфера и шар являются абстрактными геометрическими объектами, задаваемыми через некоторое геометрическое место точек пространства. Однако только шар является полноценным геометрическим телом, поскольку включает в себя не только описание ограничивающей его поверхности, но и всего внутреннего пространства. С такой точки зрения сфера — это внешняя граница задаваемого в пространстве шара.
Выводы: