в чем разница между кинетической и потенциальной энергией
Различия между кинетической энергией и потенциальной энергией 2021
Кинетическая энергия против потенциальной энергии
В нашей повседневной жизни мы всегда видим применение кинетической энергии. Если вы учитесь в школе и видите, что ваш учитель пишет на доске, есть кинетическая энергия. Простое движение ее рук также является кинетической энергией. Если ваш карандаш падает, и вы его подбираете, вы проявляете кинетическую энергию. Если вы играете в баскетбол с друзьями, вы обладаете кинетической энергией.
Чтобы сделать это более понятным для вас, вот несколько примеров потенциальной энергии, применяемой в нашей повседневной жизни. Если вы просто стоите рядом с дорогой, вы проявляете потенциальную энергию. Другим примером этого является сэндвич поверх вашего обеденного стола. Он не двигается, но когда ваша кошка толкает его, чтобы упасть со стола, этот падающий сэндвич проявит кинетическую энергию. Другим хорошим примером потенциальной энергии является вода на закрытой дамбе. Вода просто остается в глубине плотины. Но когда власти освободят воду от плотины, она проявит кинетическую энергию.
Понимаете, физика не должна быть такой сложной. Если вы понимаете кинетическую энергию и потенциальную энергию, вы можете определить, какая энергия обладает этим объектом. Если объект находится в движении, это кинетическая энергия. Если объект находится в покое, это потенциальная энергия.
Эта статья призвана различать кинетическую энергию и потенциальную энергию. В вашей следующей поп-викторине мы надеемся, что вы сможете определить, что есть.
Пояснение, чем кинетическая энергия отличается от потенциальной
Любое тело на Земле, имеющее вес, обладает энергией. Предмет располагает ею не только при наличии скорости движения, но и при ее отсутствии. Как это получается, в чем кинетическая энергия отличается от потенциальной, что они из себя представляют и есть ли связь между ними?
Физические тела на нашей планете пребывают в двух состояниях: покоя и движения. Каждое из этих положений характеризуется противоположными видами механической энергии: в первом случае – потенциальной, во втором случае – кинетической. Ее расход необходим при совершении работы по перемещению объекта в пространстве. В международной системе СИ единицей измерения признан Джоуль, сокращенно Дж.
Состояние покоя
Для понимания, чем кинетическая энергия отличается от потенциальной, определимся с сущностью каждой из них. Потенциальная энергия определяется расположением тел и его составляющих относительно друг друга. Она проявляется при влиянии силы тяжести или упругости на какое-либо физическое тело. В формуле выражается так:
Кинетическая энергия увеличивается с ростом веса тела и высоты предмета относительно наблюдаемой системы отсчета, которой чаще всего выступает Земля.
Состояние движения
Для детального пояснения, чем потенциальная энергия отличается от кинетической, обозначим природу тел в состоянии движения. Кинетическая энергия появляется у физического тела в результате движения. При поступательном движении формула ее нахождения выглядит так:
Это свидетельствует о присутствии зависимости от скорости движения и массы тела. При скорости, равной 0 (что соответствует состоянию покоя), ее значение будет составлять 0. Она тождественно равна работе, совершаемой при движении тела.
Помимо поступательного движения, существует вращательный тип передвижения, при котором работа определяется моментом инерции и угловой скоростью.
Объект может обладать кинетической энергией при пребывании на Земле в положении покоя, если в качестве системы отсчета взят другой объект Солнечной системы вместо Земли (Луна, Солнце).
Примерами тел с кинетической энергией являются перемещающиеся транспортные средства, любое катящееся физическое тело.
Одновременное сосуществование двух сил
Значения кинетической и потенциальной энергии для некоторых тел одновременно могут быть ненулевыми.
В целом можно проследить переход из одной в другую и наоборот. Например, мальчик отпускает мяч сверху вниз. В момент покоя над землей в руках мальчика кинетическая энергия равняется 0, а потенциальная энергия имеет максимальное значение по модулю, так как движение полностью отсутствует. При падении в самой нижней точке около земли, перед ударом, их значения поменяются на противоположные.
Летающие стрелы, маятники, падающая с плотины вода выступают наглядными примерами сосуществования двух сил.
Ключевое отличие между силами покоя и движения
Между определениями кинетической и потенциальной энергии существует разница, и она заключается в сущности самих разновидностей механических сил. Потенциальная энергия характеризует нереализованную сторону предмета в состоянии покоя, а кинетическая энергия описывает предмет в состоянии движения.
Согласно закону сохранения энергии, эти две силы, характеризующие состояние физического предмета, никуда не исчезают, а попеременно переходят из одной в другую. Это и является объяснением того, чем кинетическая энергия отличается от потенциальной.
Чем отличается кинетическая энергия от потенциальной?
Для приведения любого тела в движение обязательным условием является произведение работы. При этом, для выполнения данной работы необходимо израсходовать некоторую энергию.
Энергия характеризует тело с точки зрения возможности производить работу. Единицей измерения энергии является Джоуль, сокращенно [Дж].
Полная энергия любой механической системы эквивалентна суммарному значению потенциальной и кинетической энергии. Поэтому, принято выделять потенциальную и кинетическую энергию в качестве разновидностей механической энергии.
Если речь ведется о биомеханических системах, то полная энергия таких систем состоит дополнительно из тепловой и энергии обменных процессов.
В изолированных системах тел, когда на них действуют лишь сила тяжести и упругости, величина полной энергии неизменна. Это утверждение является законом сохранения энергии.
Что же из себя представляет и тот, и другой вид механической энергии?
О потенциальной энергии
Потенциальная энергия это энергия, определяемая взаимным положением тел, либо составляющих этих тел, взаимодействующих друг с другом. Иными словами, эта энергия определяется величиной расстояния между телами.
К примеру, когда тело падает вниз и приводит в движение окружающие тела на пути падения, сила тяжести производит положительную работу. И, наоборот, в случае поднятия тела вверх, можно говорить о производстве отрицательной работы.
Формула потенциальной энергии
Следовательно, каждое тело при нахождении на определенном расстоянии от земной поверхности обладает потенциальной энергией. Чем больше высота и масса тела, тем больше значение работы, совершаемой телом. В то же время, в первом примере, при падении тела вниз, потенциальная энергия будет отрицательной, а при поднятии потенциальная энергия положительна.
Это объясняется равенством работы силы тяжести по значению, но противоположностью по знаку изменению потенциальной энергии.
Также примером возникновения энергии взаимодействия может служить предмет, подверженный упругой деформации — сжатая пружинка: при распрямлении ей будет производиться работа силы упругости. Здесь речь идет о совершении работы вследствие изменения расположения составляющих тела относительно друг друга при упругой деформации.
Подытожив информацию, отметим, что абсолютно каждый предмет, на который воздействует сила тяжести или сила упругости, будет обладать энергией разницы потенциалов.
О кинетической энергии
Кинетической является энергия, которой начинают обладать тела вследствие совершения процесса движения. Исходя из этого, кинетическая энергия тел, находящихся в покое, равняется нулю.
Формула кинетической энергии
Работа поступательного движения, которую производит движущееся тело, напрямую зависит от массы и скорости в квадрате. Работа вращательного движения зависит от момента инерции и квадрата угловой скорости.
Примеры тел, обладающих потенциальной и кинетической энергией
Все предметы, поднятые и находящиеся на некотором расстоянии от земной поверхности в неподвижном состоянии, способны обладать потенциальной энергией. Как пример, это бетонная плита, поднятая краном, которая находится в неподвижном состоянии, взведенная пружина.
Кинетическую энергию имеют движущиеся транспортные средства, а также, в целом, любой катящийся предмет.
При этом, в природе, бытовых вопросах и в технике потенциальная энергия способна переходить в кинетическую, а кинетическая, в свою очередь, наоборот, в потенциальную энергию.
Мяч, который бросают с некоторой точки на высоте: в самом верхнем положении потенциальная энергия мячика максимальна, а значение кинетической энергии равно нулю, поскольку мяч не движется и пребывает в состоянии покоя. При снижении высоты потенциальная энергия соответственно постепенно уменьшается. Когда мячик достигнет земной поверхности, то он покатится; в данный момент кинетическая энергия увеличивается, а потенциальная будет равна нулю.
Некоторые тела могут обладать в одно и то же время обоими разновидностями механической энергии. В качестве примера приведем воду, которая падает вниз с плотины, маятники, летящие стрелы.
Вывод — чем отличается кинетическая энергия от потенциальной?
Подводя итог, отметим, что и та, и другая энергия являются разновидностями механической энергии. Главное их отличие: потенциальной энергией является энергия взаимодействующих тел, находящихся на расстоянии, а кинетическая представляет собой энергию движения данных тел.
Кинетическая и потенциальная энергия
Сравнительная таблица
Взаимопревращение кинетической и потенциальной энергии
Закон сохранения энергии гласит, что энергия не может быть разрушена, но может быть преобразована только из одной формы в другую. Возьмите классический пример простого маятника. Когда маятник качается, подвесное тело движется выше, и благодаря его положению потенциальная энергия увеличивается и достигает максимума наверху. Когда маятник начинает движение вниз, накопленная потенциальная энергия преобразуется в кинетическую энергию.
Когда пружина растягивается в одну сторону, она прикладывает усилие к другой стороне, чтобы она могла вернуться в исходное состояние. Эта сила называется восстанавливающей силой и действует, чтобы привести объекты и системы в их положение с низким уровнем энергии. Сила, необходимая для растяжения пружины, сохраняется в металле как потенциальная энергия. Когда пружина освобождается, накопленная потенциальная энергия преобразуется в кинетическую энергию восстанавливающей силой.
Когда какая-либо масса поднимается, гравитационная сила Земли (и в этом случае восстанавливающая сила) действует, чтобы вернуть ее вниз. Энергия, необходимая для поднятия массы, сохраняется в виде потенциальной энергии благодаря ее положению. Когда масса уменьшается, накопленная потенциальная энергия преобразуется в кинетическую энергию.
Этимология
Слово «кинетический» происходит от греческого слова kinesis, что означает «движение». Термины «кинетическая энергия» и «работа», как их понимают и используют сегодня, зародились в 19 веке. В частности, считается, что «кинетическая энергия» была придумана Уильямом Томсоном (лордом Кельвином) около 1850 года.
Термин «потенциальная энергия» был придуман Уильямом Ранкином, шотландским физиком и инженером, который занимался различными науками, включая термодинамику.
Типы кинетической энергии и потенциальной энергии
Кинетическая энергия может быть классифицирована на два типа, в зависимости от типа объектов:
Потенциальная энергия классифицируется в зависимости от применяемой восстанавливающей силы.
Все виды энергии кратко и с примерами
Энергия — это способность выполнять работу, и как таковая, она проявляется по-разному. В этом смысле существует два основных типа энергии: энергия положения или состояния, также называемая потенциальной энергией, а другая — это энергия в действии или движении и называемая кинетической энергией.
Оба типа энергии могут преобразовывать друг друга и являются частью других форм энергии. В зависимости от источника, откуда они берутся, мы можем говорить об электрической, ядерной, химической, излучающей или магнитной энергии.
Кинетическая энергия
Кинетическая энергия шара для боулинга опрокидывает кегли.
Кинетическая энергия — это энергия в действии, энергия движения. Зависит от количества массы тела, а также от скорости. Таким образом, шар для боулинга выбьет больше кеглей, потому что он имеет большую массу. Более быстрый шар для боулинга будет более эффективным, чем медленный.
Человек может использовать в своих интересах кинетическую энергию многих природных ресурсов. Например, ветер движется воздухом, и ветрогенераторы используют это для производства электроэнергии.
Потенциальная энергия
Потенциальная энергия тела также зависит от массы объекта.
Потенциальная энергия является другим основным типом энергии и связана с положением или состоянием объекта по отношению к другому.
Потенциальная энергия увеличивается, когда притягиваемые тела отделяются или когда отбрасываемые или отталкиваемые тела объединяются. Область, в которой объекты притягиваются или отталкиваются, называется силовым полем. Примерами силовых полей могут быть, например, гравитационное силовое поле Земли или магнитное силовое поле.
Потенциальная и кинетическая энергия
Потенциальная энергия преобразуется в кинетическую энергию, а также может быть найдена в других видах энергии, таких как потенциальная гравитационная энергия или упругая потенциальная энергия.
Гравитационная потенциальная энергия
В тот момент, когда спортсмен достигает высшей точки, он обладает большей потенциальной энергией.
Когда потенциальная энергия связана с гравитационной силой, она называется потенциальной гравитационной энергией. Гравитационное силовое поле вокруг нашей планеты притягивает объекты к ее центру. Когда мы поднимаем объекты, отделяя их от Земли, мы увеличиваем их гравитационную потенциальную энергию.
Существует потенциальная гравитационная энергия между Солнцем и планетами, а также между Луной и Землей. Фактически, приливы являются результатом притяжения, которое Луна создает на земных водоемах.
Упругая потенциальная энергия
Когда мы растягиваем пружину, энергия, чтобы вернуться к своей первоначальной форме, сохраняется как потенциальная энергия.
Другой формой потенциальной энергии является энергия, которую содержит пружина, когда мы растягиваем или сжимаем её. Эта энергия называется упругой потенциальной энергией: это энергия материалов, когда они растягиваются или скручиваются. Когда мы сжимаем пружину, мы увеличиваем ее потенциальную энергию.
Эластичная потенциальная энергия — это то, что движет в пружине. Также в прыжках с шестом в легкой атлетике у нас есть пример того, как упругая потенциальная энергия превращается в гравитационную потенциальную энергию.
Механическая энергия
Механическая энергия — это сумма энергии положения и движения.
Механическая энергия тела охватывает движение и положение объекта, то есть это сумма кинетической и потенциальной энергии этого объекта.
Когда мы качаемся, мы превращаем кинетическую энергию в потенциал и наоборот, поэтому мы можем двигаться быстрее и выше.
Например, ребенок на скейтборде на предыдущем изображении обладает кинетической энергией, которая позволяет ему закрепиться на стене, набирая потенциальную энергию. Когда оно начинает падать, потенциальная энергия превращается в кинетическую энергию и набирает скорость.
Химическая энергия
Химическая энергия сохраняется в связях между атомами.
Химическая энергия — это форма потенциальной энергии, которая сохраняется в связях между атомами в результате сил притяжения между ними.
Во время химической реакции одно или несколько соединений, называемых реагентами, превращаются в другие соединения, называемые продуктами. Эти превращения происходят из-за разрыва или образования химических связей, которые вызывают изменения в химической энергии.
Энергия высвобождается, когда связи разрушаются во время химических реакций. Это то, что известно как экзотермическая реакция. Например, автомобили используют химическую энергию бензина для выработки тепловой энергии, которая используется для движения автомобиля. Точно так же пища хранит химическую энергию, которую мы используем живыми существами, чтобы функционировать.
Когда соединения образуются, требуется энергия; Это реакция эндотермического типа. Фотосинтез — это эндотермическая реакция, энергия которой исходит от Солнца.
Тепловая энергия
Тепловая энергия огня передается тепловой энергии горшка через тепло.
Тепловая энергия (внутренняя энергия) представляет собой тип кинетической энергии, являющейся продуктом движения или внутренней вибрации частиц в телах. Когда мы измеряем температуру с помощью термометра, мы измеряем то движение атомов и молекул, которые составляют тело. При более высокой температуре большее движение и, следовательно, большая тепловая энергия.
Кроме того, тепловая энергия перемещается между телами через тепло. Когда вы помещаете горячий предмет рядом с холодным, происходит передача энергии от самого горячего к самому холодному, до точки, где они имеют одинаковую температуру. Тепло также передается через инфракрасное излучение или движение горячих жидкостей или газов.
Электрическая мощность
Электрические батареи превращают химическую энергию в электрическую.
Электричество — это тип энергии, который зависит от притяжения или отталкивания электрических зарядов. Существует два вида электричества: статическое и текущее. Статическое электричество связано с наличием статических нагрузок, т.е. нагрузок, которые не двигаются. Электрический ток происходит из-за перемещение грузов.
Пример статического электричества — когда мы натираем воздушный шарик на волосы. Воздушный шар удерживает электроны от волос, заряжаясь отрицательно, в то время как волосы заряжены положительно. Если вы подойдете к воздушному шарику к своей голове, не касаясь его, вы увидите, как пряди волос тянутся к воздушному шарику.
Электрический ток — это поток зарядов из-за движения свободных электронов в проводнике. Это движение происходит в электрическом поле, то есть в области вокруг заряда, где действует сила. Электрические заряды легко переносятся такими материалами, как металлы, особенно серебро, медь и алюминий.
В батареях или электрических батареях происходит превращение химической энергии в электрическую энергию. Химическая энергия происходит в результате реакции между электродами и электролитом, когда положительный полюс соединен с отрицательным полюсом батареи. Вольт — это единица измерения потенциальной энергии на заряд в батарее.
Ядерная энергетика
Существует три типа ядерной реакции: радиоактивный распад, слияние и деление. При радиоактивном распаде ядро радиоактивного атома самопроизвольно выделяет энергию. При делении ядра ядро бомбардируется нейтроном, что приводит к образованию двух новых атомов. При ядерном синтезе легкие ядра объединяются в тяжелые ядра.
Использование ядерной энергии
Магнитная энергия
Магниты используются для захвата магнитных материалов, таких как гайки и болты.
Способность объекта выполнять работу из-за его положения в магнитном поле является потенциальной энергией магнитного поля. Магниты имеют магнитное поле и две области, называемые магнитными полюсами. Равные полюса отбрасываются, а разные полюса притягиваются. Наиболее используемые магнитные материалы — это железо и его сплавы.
Например, железный винт, который приближается к магниту, но не касается его, обладает потенциальной магнитной энергией. Объекты движутся в направлении, которое уменьшает их потенциальную магнитную энергию.
Микрофоны, например, хорошо работают благодаря магнитной энергии. Операция заключается в следующем: микрофон имеет мембрану, которая вибрирует со звуком. Эта вибрация передается на кабель, обмотанный вокруг магнита, который посылает электрический сигнал на усилитель, делая звук громче. В этом случае мы имеем преобразование звуковой энергии в магнитную энергию, затем электрическую энергию и затем звуковую энергию.
Железные дороги с электромагнитной подвеской — еще один пример того, как мы можем использовать магнитную энергию для выполнения работы. Железная дорога движется через магнитное поле, которое движется вдоль ферромагнитного пути.
Звуковая энергия
Колокол вибрирует от удара и производит звуковые волны, которые распространяются по воздуху.
Звуковая энергия — это механическая энергия частиц, которые вибрируют в форме волн через среду передачи. Средой, через которую проходят звуковые волны, может быть воздух, вода или другие материалы. Все, что вызывает шум, генерирует звуковую энергию.
Звук распространяется в твердых телах быстрее, чем в жидкостях, и быстрее в жидкостях, чем в газах. Поэтому если прислонить ухо к полу, можно слышать, потому что скорость звука на земле в четыре раза выше, чем в воздухе.
Именно благодаря звуковой энергии мы можем слышать. Когда звуковые волны в воздухе проникают в ваши уши, они стимулируют специальные клетки, которые посылают информацию в мозг. Чем больше энергии имеет звуковая волна, тем громче будет звук.
Карты морского дна выполнены с использованием звуковой системы. Гидролокатор посылает звуковые волны и рассчитывает пройденное расстояние, используя скорость звука в воде.
В медицине ультразвук используется для удаления камней в почках. Эхокардиограмма является еще одной технологией, которая использует звуковые волны, чтобы увидеть плод у беременных женщин.
Лучистая энергия
Свет — это лучистая энергия, которая распространяется волнами.
Энергия в форме света или тепла — это лучистая энергия, более известная как излучение. Излучение — это электромагнитные волны, которым не нужны средства для перемещения подобно звуковым волнам, чтобы они могли перемещаться в космическом пространстве. Источником электромагнитных волн являются электроны, которые вибрируют, создавая электрическое поле и магнитное поле.
Различные типы лучистой энергии или излучения (потоки) упорядочены по уровням энергии в электромагнитном спектре. Они путешествуют в космосе со скоростью 300 миллионов метров в секунду, то есть со скоростью света.
Рентгеновские и гамма-лучи — это невидимые излучения с большим количеством энергии. Оба имеют важные применения в медицине. Рентген используется для диагностики переломов костей, в то время как гамма-излучение используется для диагностики неврологических заболеваний, таких как болезнь Паркинсона и Альцгеймера, или при заболеваниях сердца.
Ультрафиолетовые (УФ) лучи представляют собой тип невидимого излучения, создаваемого Солнцем и некоторых специальных ламп. Эти лучи отвечают за загар, который мы приобретаем, когда подвергаем себя воздействию солнца. Однако чрезмерное воздействие ультрафиолетовых лучей может вызвать ожоги и рак кожи. Вот почему вы должны защищать свое тело, когда вы долго на солнце, особенно кожу (чтобы защититься от рака кожи) и глаза.
Видимый свет излучения — это то, что человеческий глаз может воспринимать. Обычно мы видим белый свет, который является не более чем смесью огней разных цветов. Свет находится в энергетических пакетах, называемых фотонами, которые не имеют массу.
Инфракрасное излучение, микроволна и радиоволны менее энергичное излучение электромагнитного спектра. Радиоволны и микроволны — это волны, используемые в коммуникациях для передачи звука и изображений.
Солнечная энергия
Солнце — самый важный источник энергии для жизни на Земле.
Солнечная энергия — это лучистая энергия солнца. Он путешествует в пространстве, пока не достигнет Земли в виде электромагнитных волн. Большая часть солнечного излучения, которое достигает атмосферы Земли, — это ультрафиолетовое излучение, видимый свет и инфракрасные лучи.
Солнце состоит из водорода и гелия. В этом случае энергия исходит от процесса ядерного синтеза: ядра водорода объединяются, образуя гелий и лучистую энергию.
Люди научились использовать солнечную энергию. Сегодня энергия солнечного света используется для отопления домов и зданий, увеличения их тепловой энергии. Видимый солнечный свет проходит через стекла окон и поглощается материалами внутри комнаты. Это заставляет материалы нагреваться.
Лучистая энергия Солнца ответственна за существование жизни на Земле. Растения собирают эту энергию для производства пищи, превращая ее в химическую энергию. Солнечная энергия управляет движением воздуха в атмосфере, вызывая ветры.
Возобновляемые и невозобновляемые источники энергии
Такие ресурсы, как солнце и ветер, являются возобновляемыми источниками энергии.
Закон сохранения энергии гласит, что энергия не может быть создана или уничтожена, может только быть преобразована. Это означает, что при подсчете количества энергии в системе это количество всегда будет одинаковым, хотя и по-разному.
Когда мы говорим о возобновляемых или невозобновляемых энергоресурсах, мы действительно имеем в виду источники или ресурсы, из которых люди извлекают энергию.
Уголь и нефть являются ископаемым топливом, в котором химическая энергия сохраняется в связях между атомами углерода. Ископаемое топливо не возобновимо, потому что оно было сформировано миллионы лет назад из доисторических организмов. Эти источники энергии, помимо ограниченного существования, наносят серьезный ущерб окружающей среде.
Наша цель должна заключаться в том, чтобы воспользоваться другими источниками энергии, такими как солнце, ветер, внутреннее земное тепло и океанские волны, которые являются возобновляемыми и не загрязняющими окружающую среду. Вода может использоваться снова и снова благодаря естественному процессу круговорота воды.
Другой аспект, который мы должны принять во внимание, это не тратить энергию. Электрическая энергия вашего дома имеет свою стоимость. Если у вас долгое время открыт холодильник или вы оставили лампы в своей комнате, особенно если вас там нет, вы увеличиваете потребление электроэнергии в своем доме, и это будет оплачиваться вашими родителями. Экономия энергии — это разумное и осознанное использование.