в чем измеряется затухание сигнала в ов
Важнейшими параметрами волоконного световода являются оптические потери и затухание передаваемой энергии. Эти параметры определяют дальность связи по ВОК и его эффективность. Затухание в оптических волокнах обусловлено проявлением следующих потерь:
α c – собственные потери волоконных волноводов
α k – дополнительные кабельные потери
α ik – потери на поглощение в инфракрасной области
α pr – потери, вызванные присутствием в оптических волокнах примесей
Собственные потери волоконных световодов состоят, в свою очередь, из потерь на поглощение α p и потерь на рассеяние α r :
Затухание в результате поглощения связано с потерями на диэлектрическую поляризацию, существенно зависит от свойств материала оптического волокна и рассчитывается по следующей формуле:
tgδ – тангенс угла диэлектрических потерь
Затухание в инфракрасной области, расположенной в диапазоне длин волн свыше 1,6 мкм, рассчитывается по формуле:
C и k – постоянные коэффициенты. Для кварцевого стекла C = 0,9; k = (0,7—0,9) мкм.
С – коэффициент рэлеевского рассеяния.
Рекомендуем хостинг TIMEWEB
Рекомендуемые статьи по этой тематике
Километрическое (погонное) затухание оптического кабеля – понятие, значение, измерение
Затухание в оптическом волокне на километр измеряется в дБ/км (децибел / километр). Оно имеет различные значения в зависимости от длины волны, на которой измеряется: 850 нм, 1300 нм, 1310 нм, 1490 нм, 1550 нм, 1625 нм.
Типичные значения километрического затухания (нормы затухания) на различных длинах волн.
Длина волны | Нормы затухания в оптическом кабеле |
850 нм | 3 дБ/км |
1300 нм | 0,75 дБ/км |
1310 нм | 0.33 дБ/км |
1380 нм | 0.50 дБ/км |
1490 нм | 0.24 дБ/км |
1550 нм | 0.22 дБ/км |
1625 нм | 0.23 дБ/км |
Указанные в таблице значения могут отличаться в небольших пределах. Так, для сигнала, передающегося на длине волны 1550 нм нормальным считается километрическое затухание в пределах 0,18 – 0,23 дБ/км, а для сигнала на длине волны 1310 нм – допустимым будет затухание 0,32 – 0,36 дб/км.
Кроме того, километрическое затухание кабеля находящегося длительное время в эксплуатации зачастую будет больше аналогичного значения нового кабеля в катушке. К этому приводит совокупность причин: попадание воды в муфты и кабель, превышение допустимых радиусов изгиба кабеля и волокон в сплайс кассете и т д.
Измерить значение километрического затухания можно при помощи оптического рефлектометра. Для этого нужно выставить маркеры по краям ровного участка (между соседними событиями). Многие рефлектометры автоматически рассчитывают километрическое (погонное значение). Если такой возможности нет, то необходимо вручную определить расстояние между маркерами и потери в волокне между маркерами. После этого найти погонное значение по формуле:
А километрическое – километрическое затухание
Аab – потери на участке волокна, выделенном маркерами
Lab – протяженность участка волокна, выделенного маркерами
Методика измерения оптического затухания в классических ВОЛС и активных PON сетях
Затухание (потери) оптического сигнала – это параметр, который показывает насколько уменьшился уровень сигнала на выходе оптической линии в сравнении с уровнем на ее входе. Измеряется затухание в деци Беллах (дБ). В зависимости от того, в каких единицах измерения выражены входной и выходной уровень сигнала, для вычисления затухания используются различные формулы. Более подробно об этом описано в статье «Взаимозависимость между мощностью и затуханием».
В связи с тем, что чаще всего мощность сигнала измеряется в дБм, затухание определяется по формуле:
Рисунок 1 – Формула для определения затухания оптического сигнала
Исходя их формулы, делаем вывод, что для определения затухания в линии, достаточно и необходимо знать мощность сигнала на входе в линию (Pвх) и мощность сигнала на выходе из нее (Pвых).
Что же такое мощность сигнала на входе в линию и чем она отличается от выходной мощности передатчика? Ответ очень прост. Выходная мощность передатчика – это действительно паспортная величина, которая указывается в соответствующих документах. Она учитывает мощность используемого лазера (или светодиода) и средние потери на разъеме. Для оценки характеристик прибора – этого вполне достаточно. Однако ввиду того, что обе эти характеристики не постоянны
для измерений паспортное значение выходной мощности использовать нельзя. Именно поэтому, мощность сигнала на входе в линию (Рвх) необходимо измерять. Для этого:
Перед соединением следует произвести чистку коннекторов патч корда и адаптеров измерительных приборов при помощи специальных приспособлений.
Рисунок 2 – Определение опорного уровня оптического сигнала
Рисунок 3 – Порты источника (слева) и измерителя (справа) оптической мощности без адаптеров FC, SC, ST, LC
На рисунке 3 изображены порты измерительных приборов: источника и измерителя мощности. Порт источника (UCI) выполнен в виде металлической ферулы диаметром 2,5 мм. В этом случае соединение волокон выполняется путем совмещения ферулы измерительного прибора с ферулой коннектора. Естественно, даже небольшая погрешность в совмещении приведет к дополнительным потерям на соединении. Порт измерителя мощности (SOC) представляет собой свето чувствительную площадку, диаметром примерно 2 мм. При подключении коннектора к измерителю мощности, непосредственного контакта с площадкой не возникает, вместе с тем все излучение без потерь попадает в измеритель мощности.
Измерение потерь рекомендуется проводить в направлениях А-Б, Б-А с последующим вычислением среднего значения по формуле
Рисунок 4 – Формула определения среднего значения потерь на участке ВОЛС
Среднее значение определяется вследствие неравномерности затухания в различных направлениях из-за неоднородности диаметров оптического волокна.
Рисунок 5 – Измерение потерь в направлениях А-Б и Б-А при помощи оптических тестеров
Вследствие различных диаметров сердцевин оптического волокна, потери сигнала распространяющегося слева направо будут меньше, чем в обратном направлении. Различие же диаметров волокон обусловлено процессами производства оптического волокна, которые более подробно описаны в статье “Производство оптических волокон”
Для повышения удобства выполнения двусторонних тестов, используют тестеры. Они в одном корпусе совмещают и источник и измеритель мощности, а иногда еще и измеритель ORL.
Рисунок 6 – Двустороннее измерение потерь в оптической линии при помощи тестеров
В случае измерения потерь в работающей PON сети, измерения проводятся на длине волны 1625нм. Кроме того, перед ONT устанавливаются фильтры, отсекающие сигналы на этой длине волны.
Рисунок 7 – Измерение оптических потерь в активной PON сети
Измерение затухания классической оптической линии (видео)
Вебинар на тему “Методики измерения параметров в классических ВОЛС и PON”
Затухание оптических волокон
Лекция 4
Потери энергии и нелинейные эффекты
1. Затухание оптических волокон;
2. Дисперсия и полоса пропускания ОВ;
3. Числовая и входная апертура;
4. Нелинейные эффекты в оптических волокнах.
При передаче импульсных сигналов по ОВ их амплитуда уменьшается и искажается форма (они уширяются). Ограничение дальности связи по ОК, также как и по металлическим кабелям, обуславливается затуханием и ограничением полосы частот (F) (дисперсией) передаваемого импульсного сигнала (рисунок 4.1). Затухание приводит к уменьшению амплитуды передаваемого сигнала на выходе ОВ, а дисперсия приводит к уширению (размыванию) импульсных сигналов. Зависимость затухания и дисперсии от электрических параметров среды можно получить, рассматривая распространение в ней плоских волн.
а — нет потерь и бесконечно большая полоса пропускания; б — имеются потери и ограничена полоса частот
Затухание оптических волокон
Одним из факторов, ограничивающих дальность оптической связи, является затухание сигналов. Кварцевое стекло хотя и незначительно, но загрязнено, а также имеет добавки для изменения показателя преломления сердцевины или оболочки ОВ, что вызывает потери мощности сигнала на поглощение и рассеяние. Германий и фосфор увеличивают показатель преломления кварцевого стекла, а бор и фтор — наоборот уменьшают его.
Чем меньше затухание (потери) и чем меньше дисперсия распространяемого сигнала в волокне, тем больше может быть расстояние между регенерационным и участками или повторителями.
На затухание света в волокне влияют такие факторы, как: потери на поглощении; потери на рассеянии; кабельные потери.
Потери на поглощении и на рассеянии вместе называют собственными потерями, в то время как кабельные потери в силу их природы называют также дополнительными потерями, рисунок 4.2.
Коэффициент затухания ОВ обуславливается собственными потерями волокна и выражается в виде
где αрр, αпм, αик, αпр — составляющие коэффициента затухания за счет Рэлеевского рассеяния, поглощения в материале волокна, инфракрасного поглощения и поглощения на примесях оптического волокна, соответственно.
Таким образом, коэффициент затухания в ОВ определяется двумя факторами: рассеянием энергии в окружающее пространство αрр и потерями энергии в материале волокна αпм.
Собственные затухания. Общие потери на поглощение в ОВ определяются формулой
Механизм основных потерь, возникающих при распространении по ОВ электромагнитной энергии, иллюстрируется рисунком 4.3. Часть мощности, поступающей на вход световода Рвх, рассеивается из-за изменения направления распространяемых лучей на нерегулярностях и их высвечивания в окружающее пространство αрр, другая часть мощности поглощается материалом оптического волокна αпм, в виде поляризации диполей ОВ, посторонними примесями, что проявляется в виде Джоулева тепла αпр. В результате мощность на выходе Рвых уменьшается.
Затухания из-за поглощения энергии в материале ОВ. Потери на поглощение существенно зависят от чистоты материала и при наличии посторонних примесей могут быть значительными. Потери на рассеяние лимитируют предел минимально допустимых потерь в ОВ.
При поглощении происходит преобразование световой энергии в тепловую. Потери на поглощение состоят из собственного поглощения в ультрафиолетовой и инфракрасной областях спектра и поглощения световых квантов ионами металлов переходной группы (железа, кобальта, хрома, никеля, меди) и ионами гидроксильных групп, представляющих вредные примеси в плавленом кварцевом стекле, из которого изготовляют волокна.
Примесное поглощение для разных стекол, в зависимости от валентного состояния, изменяется. Так ионы металлов переходной группы, присутствующие в стекле, имеют электронные переходы в области длин волн (0,5 1,0) мкм и вызывают соответствующие полосы поглощения. Пики поглощения за счет ионов металлов очень широкие.
Рассеяние света принципиально неустранимо и вносит свой вклад в затухание ОВ даже в том случае, когда потери света на поглощение равны нулю.
Процесс рассеяния сводится к генерации вторичных волн молекулами или частицами под действием падающего на них излучения. Если линейные размеры частицы меньше, чем примерно 1/15 длины волны, то рассеяние называется Рэлеевским. Эффект Рэлеевского рассеяния проявляется в том, что при распространении световых лучей в волокне они отклоняются от лучевого направления (в однородной среде от прямолинейного направления). При этом угол падения луча на границу сердцевина-оболочка может стать меньше угла полного внутреннего отражения, и луч выйдет из волокна. По аналогичной причине часть лучей может начать распространяться в обратном направлении. Интенсивность рэлеевского рассеяния обратно пропорциональна четвертой степени длины волны. Поэтому при передаче световых сигналов предпочтительно использовать более длинные волны в районе 1,55 мкм.
В настоящее время в технике связи в основном применяются кварцевые ОВ, область эффективного использования которых находится в диапазоне длин волн до 2 мкм. При дальнейшем увеличении длины волны из-за значительных величин αик в ОВ проводится замена кварца на другие материалы. В частности, сообщается об испытаниях фирмой «Хьюз Эйркрафт» волокон, выполненных из поликристалла бромистого и бромойодистого таллия и имеющих на длинах волн 4. 5 мкм коэффициент затухания равный 0,01 дБ/км.
На более длинных волнах в качестве материала для волокна используются галоидные, халькогенидные и фтористые стекла.
Дополнительные кабельные затухания. Также к затуханию относятся собственные потери волокна, а также в волокнах появляются дополнительные, или кабельные потери (рассматривали макро- и микропотери).
Дополнительные потери определяются в основном процессами рассеяния энергии на неоднородностях, возникающих вследствие перечисленных влияний, и частично увеличением потерь на поглощение энергии. Причинами увеличения потерь на поглощение являются остаточные осевые и поперечные напряжения в ОВ, могущие возникнуть при изготовлении кабеля.
В ряде случаев микроизгибы могут существенно влиять на прирост αк. Значение потерь на одном микроизгибе может изменяться в пределах (0,01÷0,1) дБ. Основными причинами появления микроизгибов являются локальные неосесимметричные механические усилия различного происхождения, приложенные к очень малым участкам ОВ. Особенностями микроизгибов является то, что они, как правило, многочисленны, расстояние между соседними микроизгибами существенно больше их размера. Общий вклад потерь, создаваемых микроизгибами, может быть значителен. Вследствие микроизгиба происходит ограничение апертурного угла излучения, распространяющегося по ОВ, и часть энергии излучается из ОВ.
Измерения на ВОЛС
Когда говорят об измерениях ВОЛС, прежде всего имеют в виду измерения оптических потерь в волокне. Действительно, в первую очередь именно потери мощности излучения (а не дисперсия) становятся определяющим критерием, ограничивающим длину ретрансляционного участка линии связи. Информация, полученная в результате измерения уровня мощности сигнала в линии, понимание того, как меняется мощность этого сигнала, дает возможность судить о качестве построенной ВОЛС. И правильно получать эту информацию, уметь её интерпретировать и обрабатывать — очень важный момент в работе специалистов, имеющих дело с волоконно-оптической техникой.
Различают несколько направлений деятельности, связанных с ВОЛС, где возникает задача проведения измерений:
Комплекс измерений, которые необходимо проводить при строительстве линий связи — самый обширный. На этапе строительства параметры линии измеряются наиболее тщательно. Результаты заносятся в протоколы и оформляются в виде исполнительной документации на построенную ВОЛС, которая, в свою очередь, служит важнейшим документом, на основании которого ведется дальнейшая эксплуатация этой ВОЛС. Именно качество исполнительной документации, точность указанных в ней данных и определяет удобство и правильность работы с линией связи.
Измерения в процессе эксплуатации обычно подразумевают периодический контроль состояния линии связи. Проводятся они согласно регламенту, принятому в той организации, которая эту линию эксплуатирует. Они могут производиться в автоматическом режиме, когда за состоянием линии следит специальный программно-аппаратный комплекс, получающий информацию с оптических датчиков. В некоторых случаях достаточно измерений в «ручном» режиме, когда инженер сам проверяет линию с помощью измерительного оборудования. Но и в том, и в другом случае, крайне важна квалификация персонала, ответственного за состояние линии, его умение разобраться в том, что с ней происходит.
Под обслуживанием ВОЛС обычно понимается деятельность, направленная на поддержание линии связи в рабочем состоянии. Обслуживание производится на основании договора между владельцем линии и некоей обслуживающей организацией. Как правило, в рамках договора такая организация обязана не только следить за работоспособностью линии, но и устранять аварийные ситуации, которые на ней могут возникнуть. В таких случаях измерения проводятся с целью локализации повреждения, выяснения его характера, позволяют оперативно это повреждение устранить.
Причины потерь в оптоволокне
Потери измеряют в децибелах (дБ) и описывают отношение сигнала прошедшего через линию и сигнала, введенного в линию. Потери в линии связи будут всегда, избавиться от них невозможно, поэтому требуется принять меры, чтобы их минимизировать. Причин возникновения этих потерь много и необходимо точно понимать их характер:
Оптическое волокно (ОВ) служит хорошей средой для распространения оптического сигнала. Но даже в этой замечательной среде, а именно в кварцевом стекле, из которого изготовлена сердцевина волокна, всегда содержатся примеси, включения, из-за которых волокно теряет часть проходящего по нему света. Точечные области, в которых сконцентрированы эти примеси, служат источником рассеяния полезного сигнала и, соответственно, вызывают частичную его потерю. Поскольку распределение примесей по длине ОВ можно считать равномерным, то и свет будет равномерно ослабевать по мере прохождения по ОВ. При этом с ростом длины волны излучения способность рассеивать у волокна уменьшается. Почему бы тогда не использовать самую большую длину волны, чтобы обратить в ноль рассеяние света? К сожалению, начиная с некоторого значения длин волн в волокне появляется ещё одна составляющая затухания, а именно — инфракрасное поглощение света, то есть, преобразование оптической энергии в тепловую. А это снова потери! Результатом действия двух этих причин будет сумма потерь от каждой из них. Минимума потери в ОВ достигают при передаче сигнала на длине волны 1550 нм.
Потери света в волокне описываются величиной, называемой километрическим затуханием (т. е. величина потерь на единицу длины ОВ) и выражаются в дБ/км.
В настоящее время для λ = 1550 нм стандартным значением затухания в одномодовом ОВ считается α = 0,19–0,22 дБ/км. В зависимости от марки ОВ это значение может быть разным. Поэтому, когда выбираете кабель для будущей трассы, этот параметр важно знать и учитывать. Например, в кабельной продукции «Инкаб» используется исключительно волокно фирмы Corning®, а это дает понимание того, что у волокна в кабеле будет иметь всегда заранее известное значение затухания. Затухания волокна марки Corning SMF-28 ULTRA, которая выбрано заводом «Инкаб» в качестве основной, составляет всего лишь 0,18 дБ/км.
Следующей причиной потерь служат изгибы ОВ. Принято разделять их на два типа — микро- и макроизгибы. В первом случае речь идет о незначительном, но неизбежном изгибе волокон при размещении их в кабеле. Этот изгиб присутствует по всей длине кабеля и проконтролировать его мы не в состоянии, но, к счастью, его вклад в потери ничтожен. Второй случай гораздо серьёзнее. Потери при макроизгибах появляются уже по вине человека, который работает с волоконно-оптическим кабелем. Основная причина изогнутого волокна в построенной ВОЛС — неправильно проложенный кабель. В некоторых случаях — нарушения при монтаже кросса или муфты. Чем больше изгиб, тем больше потери. Причиной появления потерь на месте изгиба служит простое физическое явление — угол падения света на границу раздела сердцевины и оболочки превышает критический и часть излучения выходит из сердцевины. При этом, чем больше длина волны, тем больше будет величина потерь.
Потери на сварных соединениях появляются, в основном, из-за несовпадения сердцевин соединяемых волокон, которая может быть вызвана нарушением геометрии сечения ОВ. В этом случае ответственность за качество сварных несёт, если можно так выразиться, сварочный аппарат. Именно технология юстировки волокон перед сваркой, распознавание компьютером сварочного аппарата местоположения сердцевин ОВ и определяет качество сварки в плане потерь. Разные марки волокон могут иметь разные диаметры сердцевин, разные допуски на эксцентриситет и аппарат должен уметь с ними работать. При этом, разумеется, необходимо соблюдение всех сопутствующих требований к подготовке ОВ к сварке, чтобы соединение не имело дополнительных дефектов. Любой дефект сразу же переводит сварное соединение в разряд некачественного, даже без измерений. Качественным же сварное соединение обычно считается, если потери не превышают 0,05 дБ (на длине волны 1550 нм). Необходимо также помнить, что потери на стыке оцениваются только при измерении с двух сторон.
Потери на разъёмных соединениях, проще говоря — на разъёмах, вносят потери гораздо большие, нежели на сварках ОВ. За счёт того, что между поверхностями коннекторов всегда присутствует небольшой воздушный зазор, на соединение теряется гораздо больше полезного сигнала. Величину потерь, допустимых на таком соединении, принято считать равной 0,5 дБ. При этом надо понимать, что складывается эта величина из потерь на поверхностях двух коннекторов, и каков вклад каждого из них, точно определить невозможно. Величину потерь на коннекторе контролируют на производстве, но, как показывает практика, и здесь не всегда достигается хороший результат, поскольку серийное производство оптических шнуров подразумевает выборочный контроль. Поэтому для подключения измерительных приборов к тестируемой линии рекомендуется использовать прецизионные шнуры, которые проходят поштучный контроль и соответствуют более высоким требованиям. Среди продукции ООО «СвязьСтройДеталь» такие шнуры представлены серией HS (High Solution).
Все перечисленные составляющие потерь в ВОЛС могут дать представление о том, на что можно рассчитывать, проектируя будущую линию связи. Имея информацию о составе будущей линии, о марке кабеля, который собираемся использовать, о строительных длинах, из которых будет состоять трасса, о количестве сварных сростков ОВ, о количестве коннекторов в линии, можно подсчитать так называемый оптический бюджет линии. Как его рассчитывать, читайте в нашем отдельном материале.
Приборы для измерения потерь в оптическом волокне
Для контроля качества волоконно-оптических линий связи путем измерения в них потерь необходимо и достаточно применения двух типов измерительной аппаратуры. Это оптические тестеры (OLTS — Optical Loss Test Set), позволяющие измерять полные потери в линии и оптические рефлектометры (OTDR — Optical Time Domain Reflectometer), с помощью которых можно измерять распределение потерь вдоль линии.
Отличие в их применении заключается в том, что при использовании тестера необходимо использовать два устройства и подключаться к обоим концам линии, в то время как рефлектометр для измерения нужно подключать к линии только на одном конце. Разница обусловлена различными принципами измерения потерь. Оптический тестер, который в общем случае представляет из себя комплект из двух устройств — источника оптической мощности и измерителя оптической мощности, — проводит прямые измерения, то есть для определения потерь сравнивается уровень мощности на входе в линию и на выходе из неё. Разница в дБ и будет искомым результатом. Рефлектометр же, будучи подключенным только с одного конца ВОЛС, зондирует волокно тестовыми импульсами и получает отклик в обратном направлении, вызванный обратным рассеянием в волокне. Анализируя этот отклик, процессор рефлектометра рассчитывает, сколько оптической мощности теряет сигнал в каждой точке ОВ. Такой вид определения потерь можно назвать косвенным. Именно с этим, с погрешностью косвенного метода, связаны некоторые приближения в подсчёте полных потерь в линии. Этим же объясняется и превосходство по точности оптических тестеров. Помимо этого, тестером можно измерять потери в линиях любой протяжённости (от 0 м), в то время как рефлектометр не позволяет оценить потери в коротких, порядка нескольких метров волокнах (оптические шнуры). Эта особенность работы будет рассмотрена далее.
Принимая во внимания перечисленные отличия, можно описать задачи, которые решаются двумя этими типами приборов:
Тестер:
Рефлектометр:
Измерения рефлектометром и его принцип работы
Рис. 1. Структурная схема рефлектометра.
На рис. 1 показана схема OTDR, по которой наглядно можно пояснить принцип работы рефлектометра. Как правило, в состав прибора входят два основных блока. Базовый модуль содержит основной корпус, дисплей, органы управления и самую важную часть — процессор. Второй блок — оптический, в нём располагается электроника, отвечающая за генерацию оптических сигналов, источник излучения и различные оптические порты.
В измерительный порт вставляется коннектор оптического шнура (патч-корда), которым прибор подключается к тестируемому волокну линии. При запуске процесса измерения процессор даёт команду на формирование зондирующего импульса определенной мощности и длительности. Генератор формирует его в электрической форме, лазерный диод преобразует его в оптическое излучение определенной длины волны и посылает в линию. Импульс проходит через оптический порт и распространяется далее в волокне линии. В каждой точке ОВ свет испытывает рассеяние. Совсем незначительная часть света рассеивается во все стороны, причём бОльшая его часть рассеивается в обратном направлении. Эта часть возвращается по волокну обратно и, пройдя входной порт, через ответвитель попадает на фотоприёмник. Этот элемент обладает очень высокой чувствительностью, что позволяет ему улавливать сигнал, в тысячи раз ослабленный по сравнению с уровнем мощности зондирующего импульса. Сигнал регистрируется на протяжении определенного времени, оцифровывается (АЦП) и анализируется процессором. Результатом обработки этого цифрового сигнала будет некая зависимость уровня мощности от времени. Для удобства временная шкала пересчитывается в шкалу расстояний и на экран выводится результирующая кривая, характеризующая уровень обратного рассеяния в каждой точке тестируемого ОВ. Эта кривая называется рефлектограммой.
Состав рефлектограммы
Рис. 2. Общий вид рефлектограммы
На рис. 2 можно увидеть рефлектограмму, содержащую несколько характерных участков, соответствующих различным неоднородностям в ОВ. Эти неоднородности принято называть событиями.
Чтобы получить значения потерь, возникающих в той или иной части линии, необходимо прежде всего правильно интерпретировать всё, что видно на этой кривой.
Основными типами событий можно назвать следующие:
На практике можно столкнуться с различными вариациями и комбинациями этих событий и умение их корректно идентифицировать — задача иной раз не из лёгких. Но упростить себе жизнь можно, получив рефлектограмму красивого, информативного вида. Для этого следует придерживаться некоторых правил и правильно установить параметры прибора.
Самое главное правило при работе с OTDR — аккуратное обращение с вводным коннектором. Следует помнить, что в корпусе прибора установлен точно такой же коннектор (как правило, типа UPC), какой вставляем в измерительный порт снаружи. Но за одним исключением — если повредим коннектор патч-корда, всегда можно взять новый патч-корд. Коннектор, установленный в оптическом тракте прибора, заменить не сможем. При его повреждении придётся обращаться в сервис. Поэтому перед началом измерений рекомендуется убедиться в чистоте всех коннекторов, в случае загрязнений очистить все торцевые поверхности. Для этих целей рекомендуется использовать специальные чистящие приспособления. После окончания измерений все коннекторы закрываются колпачками, измерительный порт — специальной крышечкой.
Для контроля чистоты коннекторов наилучшим решением будет использование специального компактного микроскопа. Но он достаточно дорог. Поэтому в его отсутствие можно сделать оценку по следующему признаку. Если, начав измерения, видим на рефлектограмме область ввода, схожую с изображением на рис. 3, можно смело утверждать — на каком-то из коннекторов осталась грязь.
Рис. 3. Область ввода в случае загрязнения («лыжа»).
Необходимо извлечь коннектор патч-корда, провести чистку и при последующем подключении картинка будет иметь такой же вид, как на рис. 4.
Рис. 4. Область ввода с чистыми коннекторами.
Если коннекторы чистые, необходимо произвести настройку параметров измерения.
Перечислим эти параметры и поясним, на что они влияют:
Оптические рефлектометры могут производить измерения на различных длинах волн. Как правило, длины волн выбираются производителями в соответствии с рабочими диапазонами (окнами прозрачности) оптических волокон.
Хотя километрическое затухание в ОВ различно на разных длинах волн, принципы и методы проведения измерений являются одинаковыми для всех длин волн. Если для отчёта не требуется предоставить результаты измерений на нескольких длинах волн, достаточно провести измерения с λ = 1550 нм.
Под диапазоном измеряемых длин понимается длина волокна, которую рефлектометр будет изображать на рефлектограмме. Правило довольно простое — необходимо установить этот диапазон таким, чтобы на рефлектограмме уместилась вся линия целиком. Если линия будет обрываться на середине, это будет считаться недопустимым результатом.
Длительность импульса — один из самых ключевых и неоднозначных параметров. Дело в том, что при увеличении его длительности, можно обнаружить такой эффект, как увеличение так называемых «мёртвых зон» после отражающих неоднородностей. Мёртвой зоной называют участок рефлектограммы, на котором нельзя получить никакой информации об истинном уровне обратного сигнала. Связано это с тем, что всё время, которое испускается зондирующий импульс, рефлектометр будет получать и отклик от него. Этот отклик будет иметь вид резкого всплеска. И чем длиннее импульс, тем дольше будет этот всплеск перекрывать любые события, следующие за этим отражением. На рис. 5 приведены рефлектограммы, полученные на одной и той же линии, но с разными tимп.. При самом большом импульсе мы уже не «видим» сварного соединения на расстоянии 540 м от начала линии.
Рис. 5. Сравнение мёртвых зон при импульсах разной длительности.
Почему бы тогда не ставить всегда длительность импульса на минимум? В этом и заключается коварная особенность этого параметра — при уменьшении длительности импульса обнаружим, что уровень обратного сигнала из линии падает настолько быстро, что обращается в шум, не достигая конца линии. Наглядно это показано на рис. 6, где приведены рефлектограммы, снятые с линии довольно большой протяжённости, и с импульсами разной длины.
Видим, что короткие импульсы начинают искажаться и превращаются в шумы, делая часть рефлектограммы совершенно непригодной для измерения.
Рис. 6. Измерение с разной длительностью импульсов линии большой длины.
Варьируя этим параметром, в итоге можем получить результат, который нас интересует в конкретном случае: либо получить высокую детализацию и разглядеть события, находящиеся вблизи друг от друга, либо увидеть линию целиком и точно измерить потери по затуханию на линейных участках.
Кстати, с появлением мёртвой зоны на вводе связано ограничение по минимальной измеряемой длине волокна, упомянутое в начале статьи. Рефлектометр практически не способен различить длину волокна порядка 1–2 метров, поскольку даже у самых совершенных моделей эта начальная мёртвая зона составляет порядка 3 метров.
Также начальной мёртвой зоне можно приписать невозможность измерения потерь на коннекторе ближнего к измерителю кросса. Если уровень обратного сигнала после коннектора отчётливо видно, то каким был уровень до него — не позволяет мёртвая зона. Для борьбы с этим применяются так называемые согласующие кабели, представляющие из себя катушки волокна, имеющие длину, как правило, от 200 м до 1 км. Такая катушка оконечена разъёмами и ставится в оптический тракт между прибором и тестируемой линией. В результате получим рефлектограмму вида, изображенного на рис. 7.
Рис. 7. Рефлектограмма, полученная с применением согласующего кабеля.
Зная уровень сигнала до разъема на кроссе и уровень после него, определяем, сколько децибел сигнал потерял на этом разъёме.
Следующим установочным параметром является коэффициент преломления кварцевого стекла сердцевины. Для нас этот параметр правильнее будет определить как величину, показывающую, во сколько раз скорость света в вакууме превышает скорость света в волокне. Это отношение используется прибором для расчёта расстояний, которые проходит в ОВ зондирующий импульс.
И последний параметр — время усреднения. В режиме работы OTDR с усреднением происходит запоминание результатов от всех зондирующих импульсов, которые прибор посылает в линию и дальнейшее усреднение этих результатов. Это позволяет улучшить вид рефлектограммы, сглаживая линейные участки, особенно на линиях большой длины. Чем больше время усреднения, тем больше результатов будет накоплено и тем более гладкий вид будет иметь кривая. Но вместе с увеличением этого времени, увеличивается общее время, которое уйдет на измерения. Особенно это актуально при измерениях линий, содержащих большое число волокон.
Помимо режима работы «с усреднением» в рефлектометре есть режим «в реальном времени». В этом случае рефлектометр постоянно зондирует ОВ импульсами и результат каждого отклика выводит на экран. В этом случае вид кривой получается неустойчивым, колеблющимся и непригодным для снятия показаний. Использование такого режима удобно, когда необходимо определить место обрыва в линии или для идентификации нужного волокна.
Смотрите обзоры рефлектометров на канале ВОЛС.Эксперт в Ютубе