распознать номера машины по фото
Распознать номера машины по фото
Сообщение valeon » 03 окт 2013, 13:27
1. Берем VirtualDUB (желательно последнй он все форматы видео понимает), открываем видео, удаляем не нужное видео, оставляем только кусок где сам инцендент. Далее Файл-сохранить последовательность картинок. выбирете папку куда сохранять. Я сохранял в формате BMP. Отобрал фото где более менее близко машина с не читаемым номером была. Как отрезать не нужное в VirtualDUB выбраете начало ненужного фрагмента нажимаете кнопку HOME на клаве, затем встанте в конец ненужного фрагмента нажмите END. затем DEL. все кусок отрезан.
2. Открываем программку PhotoZoom Pro 5. Загружаете туда первую картинку. Слева в программе выбраете разрешение 500-800, сдвигаете картинку так чтобы в правом окне был виден номер ил очертания его. Затем по порядку применяете Алгоритмы изменения размера. В каждом фильтре есть наборы настроек, их тоже прогоняете. Еще нюанс, иногда получается так что пр применении фильтра в близи номер непонятен но из далека метров с двух от монитора становиться различим. (в моем случае так и получилось). Если с первой не получилось пробуйте следующую. Процесс муторный, и долги в зависимости от ПК, программке хороший процессор нужен.
3. Если картинка четкая но смазанная есть изумительная прога SmartDeblur-2.1_win в ней все понятно. Тоже помогает хорошо.
Еще нюанс чтобы результат был хороший всегда берите оригинальное ВИДЕО без пересжатия.
з.ы. Админы готов заслуженно получить предупреждение тк не знаю в какой раздел форума, запостить.
Распознавание номеров. Практическое пособие. Часть 1
Все начиналось банально — моя компания уже год платила ежемесячно плату за сервис, который умел находить регион с номерными знаками на фото. Эта функция применяется для автоматической зарисовки номера у некоторых клиентов.
И в один прекрасный день МВД Украины открыло доступ к реестру транспортных средств. Теперь по номерному знаку стало возможным проверять некоторую информацию про автомобиль (марку, модель, год выпуска, цвет и т.д. )! Скучная рутина линейного программирования померкла перед новой свехзадачей — считывать номера по всей базе фото и валидировать эти данные с теми, что указывал пользователь. Сами знаете как это бывает «глаза загорелись» — вызов принят, все остальные задачи на время стали скучны и монотонны… Мы принялись за работу и получили неплохие результаты, чем, собственно и решили поделиться с сообществом.
Для справки: на сайт AUTO.RIA.com, в день добавляется около 100 000 фото.
Кто еще распознает
Год назад я изучил этот рынок и оказалось, что работать с номерами стран exUSSR умеет не так уж много сервисов и ПО. Ниже представлен список компаний с которыми мы работали:
Automatic License Plate Recognition
Recognitor
Какие инструменты нужны для распознавания номеров
Нахождение объектов на изображении или в видео-потоке это задача из области компьютерного зрения, которая решается разными подходами, но чаще всего с помощью, так-называемых, сверточных нейронных сетей. Нам нужно найти не просто область на фото в которой встречается искомый объект, но и отделить все его точки от других объектов или фона. Эта разновидность задач называется «Instance Segmentation». На иллюстрации ниже визуализированы разные типы задач компьютерного зрения.
Я не буду сейчас писать много теории о том как работает сверточная сеть, этой информации достаточно в сети и докладов на youtube.
Из современных архитектур сверточных серей для задач сегментации часто используют: U-Net или Mask R-CNN. Мы выбрали Mask R-CNN.
Второй инструмент, который нам понадобится — это библиотека по распознаванию текстов, которая бы могла работать с разными языками и которую можно легко настраивать под специфику текстов, которые мы будем распознавать. Тут выбор не так уж велик, самой продвинутой является tesseract от Google.
Так же есть ряд менее «глобальных» инструментов, с помощью которых нам нужно будет нормализовать область с номерным знаком (привести его в такой вид, при котором распознавание текста будет возможным). Обычно для таких преобразований используют opencv.
Так же, можно будет попробовать определить страну и тип, к которой относится найденный номерной знак, чтоб в постобработке применить уточняющий шаблон, характерный для этой страны и этого типа номера. Например, украинский номерной знак, начиная с 2015 года оформлен в сине-желтом оформлении состоит из шаблона «две буквы черыре цифры две буквы».
Кроме того, имея статистику частоты «встречания» в номерных знаках того или иного сочетания букв или цифр можно улучшить качество постобработки в «спорных» ситуациях. «
Nomeroff Net
Все материалы для нашего проекта: размеченные датасеты и натренированные модели, мы выложили в открытый доступ с разрешения RIA.com под лицензией Creative Commons CC BY 4.0
Что нам понадобится
Для того, чтобы ускорить установку планируем создать dockerfile — ожидайте в ближайших апдейтах проекта.
Nomeroff Net «Hello world»
Давайте уже что-то попробуем распознать. Клонируем с github-а репозиторий с кодом. Качаем в папку models, натренированные модели для поиска и классификации номеров, немного подправим под себя переменные с расположением папок.
UPD: Этот код является устаревшим, он будет работать только в ветке 0.1.0, свежие примеры смотрите здесь:
Все, можно распознавать:
Онлайн демка
Набросали простенькую демку для тех кому не хочется все это ставить и запускать у себя :). Будьте снисходительны и терпеливы к скорости работы скрипта.
Если нужны примеры украинских номеров (для проверки работы алгоритмов коррекции), возьмите пример из этой папки.
Что дальше
Я понимаю, что тема очень нишевая и вряд ли вызовет большой интерес у широкого круга программистов, кроме того, код и модели еще достаточно «сыроваты» в плане качества распознавания, быстродействия, потребления памяти и пр. Но все же есть надежда, что найдутся энтузиасты, которым будет интересно натренировать модели под свои нужды, свою страну, которые помогут и подскажут, где есть проблемы и вместе с нами сделают проект не хуже, чем коммерческие аналоги.
Известные проблемы
Анонс
Если это будет кому-то интересно, во второй части собираемся рассказать о том как и чем размечать свой датасет и как тренировать свои модели, которые могут работать лучше для вашего контента (вашей страны, вашего размера фото). Также поговорим о том как создать свой классификатор, который, например, поможет определять не зарисован ли номер на фото.
Распознавание автомобильных номеров в деталях
Настало время подробно рассказать, как работает наша реализация алгоритма распознавания номеров: что оказалось удачным решением, что работало весьма скверно. И просто отчитаться перед Хабра-пользователями — ведь вы с помощью Android приложения Recognitor помогли нам набрать приличного размера базу снимков номеров, снятых совершенно непредвзято, без объяснения как снимать, а как нет. А база снимков при разработке алгоритмов распознавания самое важное!
Что получилось с Android приложением Recognitor
Было очень приятно, что пользователи Хабра взялись качать приложение, пробовать его и отправлять нам номера.
Скачиваний программы и оценки
С момента выкладывания приложения на сервер пришло 3800 снимков номеров от мобильного приложения.
А еще больше нас порадовала ссылка http://212.116.121.70:10000/uploadimage — нам за 2 дня отправили около 8 тысяч полноразмерных снимков автомобильных номеров (преимущественно вологодских)! Сервер почти лежал.
Теперь у нас на руках база в 12 000 снимков фотографий — впереди гигантская работа по отладке алгоритмов. Все самое интересное только начинается!
Напомню, что в приложении Android предварительно выделялся номер. В этой статье я не буду подробно останавливаться на этом этапе. В нашем случае — каскадный детектор Хаара. Этот детектор не всегда срабатывает, если номер в кадре сильно повернут. Анализ того, как работает нами обученный каскадный детектор, когда не работает, оставлю на следующие статьи. Это ведь действительно очень интересно. Кажется, что это черный ящик — вот обучили детектор и больше ничего не сделать. На самом деле это не так.
Но все-таки каскадный детектор — неплохой вариант в случае ограниченных вычислительных ресурсов. Если автомобильный номер грязный или рамка плохо видна, то Хаар тоже неплохо себя проявляет относительно других методов.
Распознавание номера
Здесь рассказ про распознавание текста в картинках такого вида:
Общие подходы про распознавании были описаны в первой статье.
Изначально мы ставили перед собой задачу распознавания грязных, частично стертых и здорово искаженных перспективой номеров.
Во-первых, это интересно, а во-вторых, казалось, что тогда чистые будут срабатывать вообще в 100% случаях. Обычно, конечно, так и происходит. Но тут не сложилось. Оказалось, что если по грязным номерам вероятность успеха была 88%, то по чистым, например, 90%. Хотя на деле вероятность распознавания от фотографии на мобильном приложении до успешного ответа, конечно, оказалось еще хуже указанной цифры. Чуть меньше 50% от приходящих изображений (чтобы люди не пытались фотографировать). Т.е. в среднем дважды нужно было сфотографировать номер, чтобы распознать его успешно. Хотя во многом такой низкий процент связан с тем, что многие пытались снимать номера с экрана монитора, а не в реальной обстановке.
Весь алгоритм строился для грязных номеров. Но вот оказалось, что сейчас летом в Москве 9 из 10 номеров идеально чистые. А значит лучше изменить стратегию и сделать два раздельных алгоритма. Если удалось быстро и надежно распознать чистый номер, то этот результат и отправим пользователю, а если не удалось, то тратим еще немного времени процессора и запускаем второй алгоритм для грязных номеров.
Простой алгоритм распознавания номеров, который стоило бы реализовать сразу
Как же распознать хороший и чистый номер? Это совсем не сложно.
Предъявим следующие требования к такому алгоритму:
1) некоторая устойчивость к поворотам (± 10 градусов)
2) устойчивость к незначительному изменению масштаба (20%)
3) отрезание каких-либо границ номера границей кадра или просто плохо выраженные границы не должны рушить все (это принципиально важно, т.к. в случае грязных номеров приходится опираться на границу номера; если номер чистый, то ничего лучше цифр/букв не характеризует номер).
Итак, в чистых и хорошо читаемых номерах все цифры и буквы отделимы друг от друга, а значит можно бинаризовать изображение и морфологическими методами либо выделить связанные области, либо воспользоваться известными функциями выделения контуров.
Здесь стоит еще пройтись фильтром средних частот и нормализовать изображение.
На изображении приведен изначально малоконтрастный кадр для наглядности.
Затем бинаризовать по фиксированному порогу (можно порог фиксировать, т. к. изображение было нормализовано).
Гипотезы по повороту кадра
В дальнейшем метод будет иметь небольшую устойчивость к углу поворота цифр и букв, поэтому выбран такой достаточно большой шаг по углу — 10 градусов.
С каждым кадром в дальнейшем будем работать независимо. Какая гипотеза по повороту даст лучший результат, та и победит.
А затем собрать все связанные области. Тут использовалась стандартная функция findContours из OpenCV. Если связанная область (контур) имеет высоту в пикселях от H1 до H2 а ширина и высота связана отношением от K1 до K2, то оставляем в кадре и отмечаем, что в этой области может быть знак. Почти наверняка на этом этапе останутся лишь цифры и буквы, остальной мусор из кадра уйдет. Возьмем ограничивающие контуры прямоугольники, приведем их к одному масштабу и дальше поработаем с каждой буквой/цифрой отдельно.
Вот какие ограничивающие прямоугольники контуров удовлетворили нашим требованиям:
Качество снимка хорошее, все буквы и цифры отлично разделимы, иначе мы до этого шага не дошли бы.
Масштабируем все знаки к одному размеру, например, 20х30 пикселей. Вот они:
Кстати, OpenCV при выполнении Resize (при приведении к размеру 20х30) бинаризованное изображение превратит в градиентаное, за счет интерполяции. Придется повторить бинаризацию.
И теперь самый простой способ сравнить с известными изображениями знаков — использовать XOR (нормализованная дистанция Хэмминга). Например так:
Distance = 1.0 — |Sample XOR Image|/|Sample|
Если дистанция больше пороговой, то считаем, что мы нашли знак, меньше — выкидываем.
Да, мы ищем автомобильные знаки РФ именно в таком формате. Тут нужно учесть, что цифра 0 и буква «о» вообще не отличимы друг от друга, цифра 8 и буква «в». Выстроим все знаки слева направо и будем брать по 6 знаков.
Критерий раз — буква-цифра-цифра-цифра-буква-буква (не забываем про 0/о, 8/в)
Критерий два — отклонение нижней границы 6 знаков от линии
Суммарные очки за гипотезу — сумма дистанций Хэмминга всех 6 знаков. Чем больше, тем лучше.
Итак, если суммарные очки меньше порога, то считаем, что мы нашли 6 знаков номера (без региона). Если больше порога, то идем к алгоритму устойчивому к грязным номерам.
Тут еще стоит рассмотреть отдельно буквы «Н» и «М». Для этого нужно сделать отдельный классификатор, например, по гистограмме градиентов.
Следующие два или три знака над линей, проведенной по низу 6 уже найденных знаков, — регион. Если третья цифра существует, и ее похожесть больше пороговой, то регион состоит из трех цифр. Иначе из двух.
Однако, распознавание региона часто происходит не так гладко, как хотелось бы. Цифры в регионы меньше, могут удачно не разделиться. Поэтому регион лучше узнавать способом более устойчивым к грязи/шума/перекрытию, описанным далее.
Какие-то детали описания алгоритма не слишком подробно раскрыты. Отчасти из-за того, что сейчас сделан лишь макет этого алгоритма и предстоит еще протестировать и отладить его на тех тысячах изображений. Если номер хороший и чистый, то нужно за десятки миллисекунд распознать номер или ответить «не удалось» и перейти к более серьезному алгоритму.
Алгоритм устойчивый к грязным номерам
Понятно, что алгоритм, описанный выше совсем не работает, если знаки на номере слипаются из-за плохого качества изображения (грязи, плохого разрешения, неудачной тени или угла съемки).
Вот примеры номеров, когда первый алгоритм не смог ничего сделать:
А алгоритм, описанный далее, смог.
Но придется опираться на границы автомобильного номера, а потом уже внутри строго определенной области искать знаки с точно известной ориентацией и масштабом. И главное — никакой бинаризации!
Ищем нижнюю границу номера
Самый простой и самый надежный этап в этом алгоритме. Перебираем несколько гипотез по углу поворота и строим для каждой гипотезы по повороту гистограмму яркости пикселей вдоль горизонтальных линий для нижней половины изображения:
Выберем максимум градиента и так определим угол наклона и по какому уровню отрезать номер снизу. Не забудем улучшить контраст и получим вот такое изображение:
Вообще стоит использовать не только гистограмму яркости, но также и гистограмму дисперсии, гистограмму градиентов, чтобы увеличить надежность обрезки номера.
Ищем верхнюю границу номера
Тут уже не так очевидно, оказалось, если снимают с рук задний автомобильный номер, то верхняя граница может быть сильно изогнута и частично прикрывать знаки или в тени, как в данном случае:
Резкого перехода яркости в верхней части номера нет, а максимальный градиент и вовсе разрежет номер посередине.
Мы вышли из ситуации не очень тривиально: обучили на каждую цифру и каждую букву каскадный детектор Хаара, нашли все знаки на изображении, так определили верхнюю линию где резать:
Казалось бы, что тут и стоит остановиться — мы же нашли уже цифры и буквы! Но на деле, конечно, детектор Хаара может ошибаться, а у нас тут 7-8 знаков. Хороший пример цифры 4. Если верхняя граница номера сливается с цифрой 4, то совсем не сложно увидеть цифру 7. Что кстати и произошло в данном примере. Но с другой стороны, несмотря на ошибку в детектировании, верхняя граница найденных прямоугольников действительно совпадает с верхней границей автомобильного номера.
Найти боковые границы номера
Тоже ничего хитрого — абсолютно также, как и нижнюю. Единственное отличие, что часто яркость градиента первого или последнего знака в номере может превышать яркость градиента вертикальной границы номера, поэтому выбирается не максимум, а первый градиент, превышающий порог. Аналогично с нижней границей необходимо перебрать несколько гипотез по наклону, т. к. из-за перспективы перпендикулярность вертикальной и горизонтальной границы совсем не гарантирована.
Итак, вот хорошо обрезанный номер:
да! особенно приятно вставить кадр с отвратительным номером, который был успешно распознан.
Печалит лишь одно — к этому этапу от 5% до 15% номеров могут отрезаться неправильно. Например, так:
(кстати это кто-то нам отправил желтый номер такси, насколько я понял — формат не штатный)
Все это нужно было, чтобы все это делалось лишь для оптимизации вычислений, т. к. перебрать все возможные положение, масштабы и наклоны знаков при их поиске — очень затратно вычислительно.
Разделить строку на знаки
К сожалению, из-за перспективы и не стандартной ширины всех знаком, приходится как-то выделять символы в уже обрезанном номере. Тут снова выручит гистограмма по яркости, но уже вдоль оси X:
Единственное, что в дальнейшем стоит исследовать две гипотезы: символы начинаются сразу или один максимум гистограммы стоит пропустить. Это связано с тем, что на некоторых номерах отверстие под винт или головка винта автомобильного номера могут различаться, как отдельный знак, а могут быть и вовсе незаметны.
Изображение до сих пор не бинаризовано, будем использовать всю информацию, что есть.
Здесь печатные символы, значит подойдет взвешенная ковариация для сравнения изображений с примером:
Образцы для сравнения и веса при ковариации:
Конечно, нельзя просто сравнить область, выделенную с помощью горизонтальной гистограммы, с образцами. Приходится делать несколько гипотез по смещению и по масштабу.
Количество гипотез по положению по оси X = 4
Количество гипотез по положению по оси Y = 4
Количество гипотез по масштабу = 3
Таким образом, для каждой области при сравнении с одним знаком необходимо рассчитать 4х4х3 ковариации.
Первым делом найдем 3 большие цифры. Это 3 х 10 х 4 х 4 х 3 = 1440 сравнений.
Затем слева одну букву и справа еще две. Букв для сравнения 12. Тогда количество сравнений 3x12x4x4x3 = 1728
Когда у нас есть 6 символов, то все справа от них — регион.
В регионе могут быть 2 цифры или 3 цифры — это нужно учесть. Разбивать регион гистограммным способом уже бессмысленно из-за того, что качество изображения может быть слишком низкое. Поэтому просто поочередно находим цифры слева направо. Начинаем с левого верхнего угла, необходимо несколько гипотез по оси X, оси Y и масштабу. Находим наилучшее совпадение. Смещаемся на заданную величину вправо, снова ищем. Третий символ будем искать слева от первого и справа от второго, если мера похожести третьего символа больше пороговой, то нам повезло — номер региона состоит из трех цифр.
Выводы
Практика применения алгоритма (второго описанного в статье) в очередной раз подтвердила прописную истину при решении задач распознавания: нужна действительно презентативная база при создании алгоритмов. Мы нацеливались на грязные и потертые номера, т.к. тестовая база снималась зимой. И действительно часто довольно плохие номера удавалось узнавать, но чистых номеров в обучающей выборке почти не было.
Вскрылась и другая сторона медали: мало что так раздражает пользователя, как ситуация, когда автоматическая система не решает совсем примитивную задачу. «Ну что тут может не читаться?!» А то, что автоматическая система не смогла узнать грязный или потертый номера, — это ожидаемо.
Откровенно говоря, это наш первый опыт разработки системы распознавания для массового потребителя. И о таких «мелочах», как о пользователях, стоит учиться думать. Сейчас к нам присоединился специалист, разработавший аналогичную «Recognitor» программу под iOs. В UI у пользователя появилась возможность увидеть, что сейчас отправляется на сервер, выбрать какой из выделенных Хааром номеров нужный, есть возможность выделить необходимую область в уже «застывшем» кадре. И пользоваться этим уже удобнее. Автоматическое распознавание становится не дурацкой функцией, без которой нельзя ничего сделать, а просто помощником.
Продумывать систему, в которой автоматическое распознавание изображения будет гармонично и удобно пользователю, — оказалось задачей ничуть не проще, чем создавать эти алгоритмы распознавания.
И, конечно, надеюсь, что статья будет полезна.
Первая статья цикла — общий обзор технологий
Вторая статья — Наш сервер
Третья статья — Протокол обращения к нашему серверу
Распознавание автономеров: ТОП-4 лучших сервисов
Согласно последнему отчету исследовательской московской компании IHS Markit, мировые доходы от продаж интеллектуальных технологий по распознаванию автономеров увеличатся до 800 млн. долларов к 2022 году. А в среднем данный показатель будет расти на 16,5% в год. Благодаря расширению способностей видеоаналитики данные устройства будут сочетаться с концепцией «безопасного умного города» уже в ближайшем будущем. В России система распознавания автономера внедряется постепенно, но мы видим, как с каждым годом оборот технологий увеличивается.
Зачем нужно распознавание автомобильных номеров?
Для создания системы распознавания автомобильных номеров потребуется качественное видео оборудование и программное обеспечение с необходимыми настройками съемки и аналитики. Такие программы используются для решения многих задач, где нужно зафиксировать автомобили:
Также многие разработчики программного обеспечения учитывают разнообразие автономеров в стране, включая иностранные форматы. Поэтому некоторые системы способны определять, из какого государства приехало транспортное средство и делать соответствующие пометки в записях.
Законодательство РФ
В России нет единого законодательного акта, принятого в отношении видеонаблюдения. Основополагающим моментом будет сфера применения систем наблюдения. В частности, расскажу об основных правилах монтажа камер для распознавания автономеров:
ТОП-4 лучших сервисов и ПО для идентификации номера
Программы для идентификации государственного номера авто должна выполнять следующие функции:
В 2020 году рынок программного обеспечения для выполнения вышеуказанных функций расширился. Мы приведем в пример 4 лучших сервиса:
1. Сервис Faceter.
Интеллектуальные возможности программы позволяют установить систему во дворах и парковках для поддержания порядка, безопасности и решения спорных ситуаций.
Благодаря облачной системе хранения данных потребуется лишь несколько IP-видеокамер и обычный телефон/планшет в качестве монитора. Подробнее о процедуре подключения системы можно прочесть в наших статьях: « 4 шага, как подключить камеру видеонаблюдения к телефону » и « Превращаем старый смартфон в камеру наблюдения ».
Цена за использование облачного сервиса Faceter: сеть интернет + выбранный тарифный план (от 290 рублей в месяц).
2. HikVision.
Система безопасности от крупной мировой компании. Функцию распознавания номеров поддерживают все камеры четвертой серии HikVision. Владелец использует только камеру, с которой подключается через браузер.
Особенность системы заключается в том, что данные о проезде машин не сохраняются в базе данных. Весь организм безопасности работает в режиме реального времени.
3. Axis.
Разработчики смогли создать приложение, которое устанавливается в IP-видеокамеру. То есть вся система по распознаванию номеров взаимодействует с устройством напрямую.
4. НомерОк.
Программно-аппаратный комплекс предназначен конкретно для идентификации номеров автомобилей. Установленная программа распознает до 98% регистрационных знаков.
Цена за системы HikVision, Axis и НомерОк складывается из многих факторов: цена камер, ПО, дополнительного оборудования и др. Поэтому назвать конкретную стоимость услуг проблематично.