в чем измеряется вакуумное давление

Что такое вакуум и с чем его едят?

Рассмотрим для наглядности на примере, что такое вакуум и как его измеряют.

На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погода, от высоты над уровнем моря и так далее, но это мы не будем принимать во внимание, так как оно ни как не будет влиять на понятие вакуум в нашем случае. Итак, мы имеем давление на поверхности земли равное 1 атмосфере, все, что ниже 1 атмосферы и будет техническим вакуумом.

Возьмем какой нибудь сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнем откачивать из сосуда воздух, то в нем возникнет разряжение, которое и будет называться вакуумом.

в чем измеряется вакуумное давление. Смотреть фото в чем измеряется вакуумное давление. Смотреть картинку в чем измеряется вакуумное давление. Картинка про в чем измеряется вакуумное давление. Фото в чем измеряется вакуумное давление

Так как в сосуде всего одна атмосфера, то теоритически максимальный вакуум мы можем получить ноль атмосфер. Почему теоритически? Потому, что абсолютно все молекулы из сосуда выловить невозможно.

Поэтому в любом сосуде, в котором откачали воздух (газ) всегда остается какое то минимальное его количество. И это количество называется остаточным давлением, т.е. давление которое осталось в сосуде после откачки из него газов.

Существуют специальные насосы, которые могут достичь глубокого вакуума до 0,00001 Па, но все равно не до нуля.

Есть несколько вариантов измерения вакуума, которые зависят от выбора точки отсчета.

За единицу принимается атмосферное давление, т.е. все, что ниже атмосферного давления технический вакуум. Шкала вакууметра от 1,0 атм. до 0 атм.

Так шкалы могут быть в других единицах измерения, к примеру кПа, mBar и так далее, но все это аналогично шкалам в атмосферах. Но мы рекомендуем приобретать вакууметры все атки со шкалой кПа (Па), так как это соответствует международнйо системе измерения СИ.

На картинке показаны вакууметры с различными шкалами, но с одинаковым вакуумом.

в чем измеряется вакуумное давление. Смотреть фото в чем измеряется вакуумное давление. Смотреть картинку в чем измеряется вакуумное давление. Картинка про в чем измеряется вакуумное давление. Фото в чем измеряется вакуумное давление

Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.

И они очень удивляются когда узнают, что это невозможно (кстати, каждый второй из них говорит, что «вы сами ничего не знаете», «а у соседа так» и т.д. и.т.п.)

На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы).

Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.

Теперь несколько слов о том, как многие клиенты измеряют вакуум:

включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.

Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100.

После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).

В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.

Немного ликбеза: давление «P» – это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S.

По-простому – это сила, распределённая по площади поверхности.

Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S).

Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ – 25 мм (площадь поверхности 78,5 мм2).

Диаметр всасывающего отверстия у вакуумного насоса VE-2100 – 6 мм (площадь поверхности 18,8 мм2).

То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении).

Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс.

Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе).

Как посчитать силу прижима какой-либо детали к поверхности?

Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще.

Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.

Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН.

Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм.

1 атмосфера равна 1 кг/см2.

Площадь поверхности детали – 100 см2 (10см х10 см).

То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг.

Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг.

Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п.

Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.

Теперь пару слов о механических вакуумметрах.

Эти устройства показывают остаточное давление в пределах 0,05…1 атм.

То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр.

Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух.

Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым?

Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.

Вакуум у двухступенчатого насоса 0,2 Па, а у одноступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее.

Но так ли это на самом деле?

1 атм = 100000 Па = 1 кг/см2.

Значит разница в прижиме плёнки при вакууме 0,2 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).

То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.

Источник

Единицы измерения давления вакуума

Понятие вакуума

В ЗАВИСИМОСТИ ОТ ДАВЛЕНИЯ

ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ КИПЕНИЯ ВОДЫ

Цель работы: экспериментальное определение зависимости температуры кипения от давления ниже атмосферного, изучение «диаграммы p-v воды и водяного пара», знакомство с понятием вакуума.

Под вакуумом в технике понимают состояние газа, при котором его давление ниже атмосферного.

Величина вакуума в каком-либо сосуде определяется как разность между атмосферным и абсолютным давлением газа в этом сосуде.

В практике для оценки степени разрежения газов в сосуде пользуются величиной абсолютного давления, а словом «вакуум» характеризуют лишь состояние разрежения газов. Согласно основного уравнения гидростатики абсолютное давление вакуума равно:

Единицей давления в международной системе единиц СИ служит Ньютон на квадратный метр (Н/м 2 ), который назван Паскалем (Па)

В технике до настоящего времени имеют распространение внесистемные единицы давления:

1 ат = 1 кгс/ кв. см = 9,81*10 4 Па- техническая атмосфера;

1 ат = 10 мм вод. ст. =735,559 мм рт. ст.

Различают следующие состояния вакуума:

Для создания требуемой степени разрежения в экспериментальных и промышленных установках применяют вакуумные насосы, которые по назначению подразделяются на:

Вакуумные насосы по принципу действия различают на:

турбомолекулярные и специальные.

Приборы, измеряющие атмосферное давление называются барометрами,а измеряющие давление выше атмосферного – манометрами. Приборы для измерения давления газа ниже атмосферного называются вакуумметрами. По принципу действия вакуумметры делятся на приборы прямого и косвенного действия. Приборы прямого действия непосредственно реагируют на давление газа. К ним относятся:

1) жидкостные (ртутные, спиртовые) U-образные вакуумметры;

2) деформационные (механические) вакуумметры с датчиком сильфоном, мембраной или пружиной;

3) компрессионные вакуумметры, действие которых основано на законе изотермического сжатия идеального газа.

Приборы косвенного действия измеряют не само давление, а некоторую его функцию и состоят из датчика и измерительного блока. К ним относятся:

1) теплоэлектрические вакуумметры, использующие зависимость теплопроводности газа от давления. Они подразделяются на термопарные и вакуумметры сопротивления;

2) ионизационные вакуумметры, в которых используется ионизация газа. Они подразделяются на электрорязрядные, радиоизотопные и электронные ионизационные.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Единицы измерения производительности и давления вакуумных насосов

в чем измеряется вакуумное давление. Смотреть фото в чем измеряется вакуумное давление. Смотреть картинку в чем измеряется вакуумное давление. Картинка про в чем измеряется вакуумное давление. Фото в чем измеряется вакуумное давление

При подборе вакуумного насоса наши партнеры часто используют специфические единицы измерения производительности и остаточного давления насосов.

Так кому-то привычней оперировать литрами в секунду, кому-то кубическими метрами в час или минуту. Кто-то привык измерять давление в атмосферах, а кому-то привычней милливольты, Паскали или Бары.

Специалисты «СЛЭМЗ» составили таблицы основных показателей вакуумных насосов АВЗ, водокольцевых насосов ВВН, пластинчато-роторных НВР: производительность и предельное остаточное давление. Также вы найдете таблицу перевода самых популярных единиц измерения давления.

Производительность или быстродействие вакуумного насоса определяет допустимые объемы, в которых может создаваться паспортное разрежение. Неправильно подобранный по производительности агрегат будет перегреваться, разбрызгивать уплотняющую жидкость, заклинивать либо же просто работать неэффективно.

Остаточное давление принято измерять в Паскалях, Барах, миллиметрах ртутного столба и атмосферах. При работе с аналоговыми вакуумметрами используется условная шкала от нуля до «минус единицы»

Основные параметры АВЗ и НВЗ

Глубина вакуумаМодельБыстродействие
ПаскалиБарыkgf/cm 2мм. рт. ст.атмосферым 3 /часм 3 /минл/сл/мин
1,10.0000110.0000110.00830.000011АВЗ-20Д (НВЗ-20)721,2201200
6,70.0000670.0000680,050.000068АВЗ-63Д2273,783633780
6,70.0000670.0000680,050.000068АВЗ-903245,4905400
6,70.0000670.0000680,050.000068АВЗ-125Д4507,51257500
6,70.0000670.0000680,050.000068АВЗ-18064810,818010800

Производительность и остаточное давление ВВН

Единицы измерения вакуумаМодельБыстродействие
ПаскалиБарыkgf/cm 2мм. рт. ст.атмосферым 3 /часм 3 /минл/сл/мин
200000,20,22000,2ВВН1-0,75450,7512,5750
400000,40,413000,41ВВН1-1,5901,5251500
400000,40,413000,41ВВН1-31983,3553300
400000,40,413000,41ВВН1-63726,2103,36198
400000,40,413000,41ВВН1-127201220012000
400000,40,413000,41ВВН1-25150025416,624996
400000,40,413000,41ВВН2-50М300050833,349998

Быстродействие и глубина вакуумных насосов НВР

Давление вакуума вМодельБыстродействие
ПаскалиБарыkgf/cm2мм. рт. статмосферым3/часм3/минл/сл/мин
1,10.0000110.0000110.00830.0000113НВР-1Д (НВР-1,25)4,50,0751,2575
6,70.0000670.0000680,050.0000682НВР-5ДМ19,60,32675,5330
6,70.0000670.0000680,050.000068НВР-16ДМ60116,6996
6,70.0000670.0000680,050.0000682НВР-90Д901,5251500

Таблица перевода единиц измерения вакуума (давления)

Таблица соответствия единиц измерения глубины вакуума помогает быстрее переводить паспортные показатели насосов в привычные Вам единицы измерения: Паскали в Бары, Атмосферы либо кгс/см 2

Теперь вы можете подобрать вакуумный насос под специфику техпроцесса, оперируя производительностью и остаточным давлением в любых единицах измерения.

Если у вас остались вопросы, звоните — менеджеры СЛЭМЗ подробно расскажут об единицах измерения вакуума и помогут с выбором!

Источник

Методы измерения вакуума — вакуумметры

Методы измерения вакуума — вакуумметры

Наиболее важной характеристикой газовой среды в вакуумной технике является плотность или молекулярная концентрация газа. Эта величина определяет теплоперенос, сорбционно-десорбционные процессы, воздействие газа на элементы электронных приборов и другие явления. Однако традиционно состояние газа оценивается давлением. Между давлением газа p и молекулярной концентрацией п существует связь: p-V = n ■ k — T

По принципу действия вакуумметры можно свести в следующие классы:

По методу измерения вакуумметры могут быть разделены на абсолютные и относительные.

Абсолютные вакуумметры измеряют непосредственно давление газа, т.е. силу, действующую на единицу поверхности измерительного элемента. Показания абсолютных приборов не зависят от рода газа. К вакуумметрам прямого действия относятся жидкостные, компрессионные и деформационные. Эти приборы перекрывают диапазон от 10 5 до 10 ’2 Па.

Относительные вакуумметры измеряют не само давление, а используют зависимость параметров некоторых физических процессов, протекающих в вакууме, от давления. Они нуждаются в градуировке. Вакуумметры измеряют общее давление газов, присутствующих в вакуумной системе.

К вакуумметрам косвенного действия относят

ся тепловые и ионизационные, которые перекрывают диапазон измеряемых давлений от атмосферного до 10 ’ 10 Па. Большинство вакуумметров состоит из двух элементов: манометрического преобразователя сигнала давления в электрический сигнал и измерительного блока.

В производственных условиях преимущественно используются вакуумметры косвенного действия, которые практически безынерционны, охватывают широкий диапазон давлений и просты в эксплуатации.

Тепловые вакуумметры

Принцип действия термопарных вакуумметров основан на зависимости теплопроводности разреженных газов от молекулярной концентрации (или давления). Передача теплоты происходит от тонкой металлической нити к баллону, находящемуся при комнатной температуре. Металлическая нить нагревается в вакууме путем пропускания электрического тока.

Из курса молекулярной физики известно, что в плотном газе (высокое давление) теплопроводность не зависит от давления.

При понижении давления уменьшается теплопроводность газа, соответственно, возрастает температура подогревателя и увеличивается термо-э.д.с. При низких давлениях, когда средняя длина свободно пробега молекул больше среднего расстояния между нагретым телом и стенками вакуумметра ( А^ d), теплопроводность газа пропорциональна молекулярной концентрации (давлению).

Преобразователь (рис. 23) представляет собой стеклянный или металлический корпус, в котором на двух вводах смонтирован подогрева

тель, на двух других вводах крепится термопара, изготовленная из хро-мель-копеля или хромель-алюмеля. Термопара соединена с подогревателем, который нагревается током, его можно регулировать реостатом и измерять миллиамперметром. Спай термопары, нагреваемый подогревателем, является источником термо-э.д.с., значение которой показывает милливольтметр.

в чем измеряется вакуумное давление. Смотреть фото в чем измеряется вакуумное давление. Смотреть картинку в чем измеряется вакуумное давление. Картинка про в чем измеряется вакуумное давление. Фото в чем измеряется вакуумное давление

в чем измеряется вакуумное давление. Смотреть фото в чем измеряется вакуумное давление. Смотреть картинку в чем измеряется вакуумное давление. Картинка про в чем измеряется вакуумное давление. Фото в чем измеряется вакуумное давление

Точность измерения давления термопарным вакуумметром существенно зависит от правильного подбора тока накала подогревателя. Калибровка термопарной лампы (установка тока подогревателя), подбирается таким образом, чтобы стрелка милливольтметра точно совпадала с последним делением шкалы. При этих условиях согласно градуировочной кривой термопарного манометрического преобразователя можно по показаниям милливольтметра определить давление в вакуумной системе.

Измерительное уравнение теплового преобразователя можно записать так:

Из уравнения (1.19) видно, что давление является функцией двух переменных: тока накала нити 1н и температуры нити ТН.

Преимуществом тепловых преобразователей является то, что они измеряют общее давление всех газов и паров, присутствующих в ваку-

Существенным недостатком тепловых вакуумметров является изменение тока накала нити с течением времени, что требует периодической проверки тока накала. Недостатком также можно считать и их относительную инерционность, т.е. задержку отсчета во времени при быстром изменении давления. Существенное влияние на погрешность измерения тепловыми вакуумметрами оказывает колебание температуры окружающей среды.

Электронные ионизационные вакуумметры.

Принцип действия электронных преобразователей основан на ионизации газа электронами и измерении ионного тока, по величине которого судят о давлении.

Ионизация молекул газа производится электронами, эмитируемыми термокатодом и ускоряемыми электрическим полем электрода, на который подается положительный потенциал относительно катода.

в чем измеряется вакуумное давление. Смотреть фото в чем измеряется вакуумное давление. Смотреть картинку в чем измеряется вакуумное давление. Картинка про в чем измеряется вакуумное давление. Фото в чем измеряется вакуумное давление

в чем измеряется вакуумное давление. Смотреть фото в чем измеряется вакуумное давление. Смотреть картинку в чем измеряется вакуумное давление. Картинка про в чем измеряется вакуумное давление. Фото в чем измеряется вакуумное давление

1 коллектора. Таким образом, для измерения давления достаточно при заданном электронном токе измерить ионный ток и разделить на постоянную преобразователя.

Чувствительность ионизационных вакуумметров зависит от свойств газа, его температуры, электрического режима и геометрии, то есть

Часть электронов пролетает в пространство между анодной сеткой и коллектором. Так как коллектор имеет отрицательный потенциал отУдельная ионизация зависит от рода газа. Поэтому вакуумметр должен градуироваться отдельно для каждого газа.

в чем измеряется вакуумное давление. Смотреть фото в чем измеряется вакуумное давление. Смотреть картинку в чем измеряется вакуумное давление. Картинка про в чем измеряется вакуумное давление. Фото в чем измеряется вакуумное давление

Магнитные электроразрядные вакуумметры

Одним из путей, позволяющим сдвинуть границу измерения в сторону более низких давлений, может быть увеличение чувствительности манометра. Для этого необходимо, чтобы электроны проходили в пространстве ионизации по возможности большие расстояния до момента их попадания на коллектор электронов. Тогда вероятность ионизации молекул газа этими электронами значительно возрастает, что приведет к увеличению чувствительности манометра. Наиболее простым способом увеличения длины пути электронов в пространстве ионизации является использование магнитного поля, воздействующего на электроны.

Рассмотрим расположение электродов, предложенное Пеннингом. Принцип действия магнитных преобразователей основан на зависимости тока самостоятельного газового разряда в скрещенных магнитном и электрическом полях от давления. Электродные системы, обеспечивающие поддержание самостоятельного газового разряда при высоком и сверхвысоком вакууме, бывают нескольких видов.

Манометр имеет катод, которым является корпус 1, и анод в виде металлического кольца 2. Вдоль оси анода создается постоянным магнитом 3 магнитное поле с индукцией 0,05-0,2 Тл. Через балластный резистор на анод подается высокое положительное напряжение порядка 2,5-3 кВ.

Разряд поддерживается между анодом и катодами, соединенными электрически и расположенными по обе стороны от анода. Равномерное магнитное поле, параллельное оси системы, препятствует немедленному уходу на анод электронов. Из-за большой длины пути электрона сильно повышается вероятность ионизации даже при низких давлениях газа. Образующиеся в результате ионизации молекул электроны движутся, как и первичные электроны, тоже по спиральным траекториям и в конце концов после совершения актов ионизации попадают на анод. Вторичные электроны, выбиваемые из катода положительными ионами, также участвуют в поддержании разряда. Таким образом, благодаря магнитному полю и специальной конструкции электродов тлеющий разряд поддерживается даже тогда, когда средняя длина свободного пути электронов в газе во много раз превышает расстояние между анодом и катодом, что позволяет измерять низкие и сверхнизкие давления газа.

в чем измеряется вакуумное давление. Смотреть фото в чем измеряется вакуумное давление. Смотреть картинку в чем измеряется вакуумное давление. Картинка про в чем измеряется вакуумное давление. Фото в чем измеряется вакуумное давление

Недостатки: данные вакуумметры имеют меньшую точность измерения давления, нуждаются в периодической чистке.

Достоинства — простота конструкции и отсутствие горячего катода. Из-за этого вакуумметры могут быть включены при любом давлении.

Источник

Информация о вакуумных системах и компонентах: понятие вакуума, примеры использования

Общая информация: понятие вакуума и единицы измерения

Количественной характеристикой вакуума служит абсолютное давление. Основной единицей измерения давления в Международной системе (СИ) служит Паскаль (1 Па = 1Н/м 2 ). Однако, на практике встречаются и другие единицы измерения, такие как миллибары (1 мбар = 100Па) и Торры или миллиметры ртутного столба (1 мм.рт.ст. = 133,322 Па). Данные единицы не относятся к СИ, но допускаются для измерения кровяного давления.

Уровни вакуума

В зависимости от того, на сколько давление ниже атмосферного (101325 Па), могут наблюдаться различные явления, вследствие чего могут использоваться различные средства для получения и измерения такого давления. В наше время выделяют несколько уровней вакуума, каждый из которых имеет свое обозначение в соответствии с интервалами давления ниже атмосферного:

Данные уровни вакуума в зависимости от области применения разделяют на три производственные группы.

— Низкий вакуум: в основном используется там где требуется откачка большого количества воздуха. Для получения низкого вакуума используют электромеханические насосы лопастного типа, центробежного, насосы с боковым каналом, генераторы потока и т.д.

Низкий вакуум применяется, например, на фабриках шелкотрафаретной печати.

Такой уровень вакуума используется в основном при лиофилизации, металлизации и термообработке. В науке технический вакуум используется в качестве симуляции космического пространства.

Наивысшее значение вакуума на земле значительно меньше значения абсолютного вакуума, которое остается чисто теоретическим значением. Фактически, даже в космосе, несмотря на отсутствие атмосферы, имеется небольшое количество атомов.

Основным толчком к развитию вакуумных технологий послужили исследования в промышленной области. В настоящий момент существует большое количество применений в различных секторах. Вакуум используется в электролучевых трубках, лампах накаливания, ускорителях частиц, в металлургии, пищевой и аэрокосмической индустрии, в установках для контроля ядерного синтеза, в микроэлектронике, в стекольной и керамической промышленности, в науке, в промышленной роботехнике, в системах захвата с помощью вакуумных присосок и т.д.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Единицы измерения глубины вакуума