в чем измеряется надежность

Что такое надёжность? Термины и определения.

в чем измеряется надежность. Смотреть фото в чем измеряется надежность. Смотреть картинку в чем измеряется надежность. Картинка про в чем измеряется надежность. Фото в чем измеряется надежность

в чем измеряется надежность. Смотреть фото в чем измеряется надежность. Смотреть картинку в чем измеряется надежность. Картинка про в чем измеряется надежность. Фото в чем измеряется надежность

Надёжность — свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.Надёжность в «широком» смысле — комплексное свойство, которое в зависимости от назначения объекта и условий его эксплуатации может включать в себя свойства безотказности, долговечности, ремонтопригодности и сохраняемости, а также определённое сочетание этих свойств.

Надёжность закладывается на этапе проектирования, реализуется при производстве и поддерживается в ходе эксплуатации.

Отказ — событие, заключающееся в полной или частичной утрате работоспособности.

Неисправность — состояние аппаратуры, при котором затрудняется её эксплуатация, но основные параметры находятся в пределах, заданных техническими условиями.

Сбой — самоустраняющийся отказ или однократный отказ, устраняемый незначительным вмешательством оператора.

Ресурс — наработка от начала эксплуатации до наступления предельного состояния.

Прочность — свойство материала сопротивляться разрушению под действием внутренних напряжений, возникающих под воздействием внешних сил.

Живучесть — свойство объекта сохранять работоспособность при отказе отдельных функциональных узлов.

Срок службы — календарная продолжительность от начала эксплуатации до наступления предельного состояния.

Долговечность — свойство объекта непрерывно сохранять работоспособность от начала эксплуатации до наступления предельного состояния, то есть такого состояния, когда объект изымается из эксплуатации.

Ремонт — комплекс мероприятий по восстановлению работоспособного или исправного состояния какого-либо объекта и/или восстановлению его ресурса.

Косметический ремонт — восстановление внешнего вида без вмешательства в конструкцию.

Текущий ремонт — ремонт с целью восстановления исправности (работоспособности), а также поддержания эксплуатационных показателей.

Восстановительный (Средний) ремонт — обычно производится с заменой частей устройства, подвергшихся износу, либо с их модификацией (наплавка, расточка, пайка и т. д.)

Капитальный ремонт — существенный ремонт основных фондов, наибольший по объёму вид планового ремонта, при котором производится разборка агрегата, замена всех изношенных деталей и узлов, повторяемый не менее чем через год (при текущем ремонте агрегат или совсем не разбирается, или разбирается частично, без замены или ремонта базовых деталей). После капитального ремонта технические параметры машины должны приблизиться к первоначальным. Часто заодно проводится и модернизация.

Плановый (планово-предупредительный) ремонт, ППР — ремонт в запланированный регламентом промежуток времени. Производится после выработки устройством ресурса, либо в случае, если работоспособность устройства после неисправности частично сохраняется, или частично восстанавливается в результате восстановительного ремонта. Позволяет заранее уведомить пользователей о прекращении функционирования, а также спланировать издержки, связанные с простоем оборудования.

Техническое обслуживание — комплекс операций или операция по поддержанию работоспособности или исправности изделия при использовании по назначению, ожидании, хранении и транспортировке. Так же как и ремонт, может включать в себя замену каких-либо частей. В отличие от ремонта, техническое обслуживание необходимо для исправных и не потерявших своих эксплуатационных качеств изделий.

Реставрация, в отличие от просто ремонта, предполагает значительную исследовательскую работу, направленную на максимальное сохранение внешнего вида, а иногда и внутреннего устройства реставрируемого объекта.

Все термины и определения взяты из технической литературы и ГОСТов, собраны в одну заметку и опубликованы с целью просвещения автовладельцев в области технической эксплуатации и теории надёжности.

Источник

Что такое надежность оборудования

Под надежностью понимается свойство объекта сохранять во времени в установленных пределах значения параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения технического обслуживания, ремонтов, хранения и транспортирования. Надежность является сложным свойством, которое в зависимости от назначения объекта и условий его применения состоит из сочетания безопасности, ремонтопригодности и сохраняемости (рисунок 1).

в чем измеряется надежность. Смотреть фото в чем измеряется надежность. Смотреть картинку в чем измеряется надежность. Картинка про в чем измеряется надежность. Фото в чем измеряется надежность

Рисунок 1 – Надёжность оборудования

Для абсолютного большинства круглогодично применяемых технических устройств при оценке их надежности наиболее важными являются три свойства: безотказность, долговечность и ремонтопригодность.

В то же время техника сезонного применения (уборочные сельскохозяйственные машины, некоторые коммунальные машины, речные суда замерзающих рек и т.д.), а также машины и оборудование для ликвидации критических ситуаций (противопожарное и спасательное оборудование), имеющие по своему назначению длительный период нахождения в режиме ожидания работы, должны оцениваться с учетом сохраняемости, т.е. показателями всех четырех свойств.

Есть наконец, целый ряд изделий (например, резинотехнические), оценивающийся главным образом сохраняемостью и долговечностью.

Перечисленные свойства надежности (безотказность, долговечность, ремонтопригодность и сохраняемость) имеют свои количественные показатели.

Так безотказность характеризуется шестью показателями, в том числе таким важным, как вероятность безотказной работы. Этот показатель широко применяется в народном хозяйстве для оценки самых различных видов технических средств: электронной аппаратуры, теплообменные аппараты систем воздушного отопления, летательных аппаратов, деталей, узлов и агрегатов, транспортных средств, нагревательных элементов. Расчет этих показателей проводят на основе государственных стандартов.

Долговечность также характеризуется шестью показателями, представляющие различные виды ресурса и срока службы. С точки зрения безопасности наибольший интерес представляет гамма-процентный ресурс — наработка, в течение которой объект не достигнет предельного состояния с вероятностью g, выраженной в процентах. Так для объектов металлургического оборудования (машины для подъема и перемещения жидких металлов, насосы и устройства для перекачивания вредных жидкостей и газов) назначают g = 95 %.

Ремонтопригодность характеризуется двумя показателями: вероятностью и средним временем восстановления работоспособного состояния.

Ряд авторов подразделяют надежность на идеальную, базовую и эксплуатационную. Идеальная надежность — это максимально возможная надежность, достигаемая путем создания совершенной конструкции объекта при абсолютном учете всех условий изготовления и эксплуатации. Базовая надежность — надежность, фактически достигаемая при конструировании, изготовлении и монтаже объекта. Эксплуатационная надежность — действительная надежность объекта в процессе его эксплуатации, обусловленная как качеством проектирования, конструирования, изготовления и монтажа объекта, так и условиями его эксплуатации, технического обслуживания и ремонта.

Основные положения надежности будут неясны без определения такого важного понятия, как резервирование.

Резервирование — это применение дополнительных средств или возможностей с целью сохранения работоспособного состояния объекта при отказе одного или нескольких его элементов.

Одной из наиболее распространенных разновидностей резервирования является дублирование — резервирование с кратностью резерва один к одному. В связи с тем, что резервирование требует значительных материальных затрат, его применяют лишь для наиболее ответственных элементов, узлов или агрегатов, отказ которых угрожает безопасности людей или влечет тяжелые экономические последствия. Так пассажирские и грузопассажирские лифты подвешиваются на несколько канатов, самолеты снабжены несколькими двигателями, имеют дублированную электропроводку, в автомобилях применяется двойная и даже тройная система тормозов. Большое распространение получило и прочностное резервирование, основанное на концепции коэффициента запаса. Считается, что понятие прочности имеет самое непосредственное отношение не только к надежности, но и к безопасности. Более того, считается, что инженерные расчеты конструкций на безопасность почти исключительно строятся на использовании коэффициента запаса прочности. Значения этого коэффициента зависят от конкретных условий. Для сосудов, работающих под давлением, он составляет от 1,5 до 3,25, а для лифтовых канатов — от 8 до 25.

При рассмотрении производственного процесса во взаимосвязи его основных элементов необходимо использовать понятие надежности в более широком смысле. При этом надежность системы в целом будет отличаться от совокупности надежности ее элементов за счет влияния различных связей.

В теории надежности доказано, что надежность устройства, состоящего из отдельных элементов, соединенных (в надежностном смысле) последовательно, равна произведению значений вероятностей безотказной работы каждого элемента.

Связь надежности и безопасности совершенно очевидна: чем надежнее система, тем она безопаснее. Более того, вероятность несчастного случая можно трактовать как «надежность системы».

В то же время безопасность и надежность являются родственными, но не тождественными понятиями. Они дополняют одно другое. Так с точки зрения потребителя оборудование может быть надежным или не надежным, а по технике безопасности — безопасным или опасным. При этом оборудование бывает безопасным и надежным (приемлемо во всех отношениях), опасным и не надежным (безоговорочно отвергается), безопасным и не надежным (чаще всего отвергается потребителем), опасным и надежным (отвергается по техники безопасности, но может быть приемлемо для потребителя, если степень опасности не слишком велика).

Требования безопасности часто выступают в качестве ограничений на ресурс и срок службы оборудования или устройства. Это происходит, когда требуемый уровень безопасности нарушается до достижения предельного состояния вследствие физического или морального старения. Ограничения из-за требований безопасности играют особенно важную роль при оценке индивидуального остаточного ресурса, под которым понимается продолжительность эксплуатации от данного момента времени до достижения предельного состояния. В качестве меры ресурса может быть выбран любой параметр, характеризующийся продолжительностью эксплуатации объекта. Для летательных аппаратов мерой ресурса служит налет в часах, для транспортных средств — пробег в километрах, для прокатных станов — масса прокатного метала в тоннах и т.д.

Наиболее универсальной единицей с точки зрения общей методологии и теории надежности является единица времени. Это обусловлено следующими обстоятельствами. Во — первых, время эксплуатации технического объекта включает и перерывы, в течение которых суммарная наработка не нарастает, а свойства материалов могут изменяться. Во — вторых, применение экономико-матеатических моделей для обоснования назначенного ресурса возможно лишь с использованием назначенного срока службы (срок службы определяется как календарная продолжительность от начала эксплуатации объекта или его возобновления после ремонта определенного вида до перехода в предельное состояние и измеряется в единицах календарного времени). В — третьих, исчисление ресурса в единицах времени позволяет ставить задачи прогнозирования в наиболее общей форме.

Начальный импульс к созданию численных методов оценки надежности был дан в связи с развитием авиационной промышленности и низким уровнем безопасности полетов на начальных этапах. Значительное число авиационных катастроф при постоянно возрастающей интенсивности воздушных ресурсов обусловило необходимость выработки критериев надежности для самолетов и требований к уровню безопасности. В частности, был проведен сравнительный анализ одного из многочисленных самолетов с точки зрения успешного завершения полетов.

Показательной с точки зрения безопасности является хронология развития теории и техники надежности. В 40-х годах основные усилия для повышения надежности были сконцентрированы на всестороннем улучшении качества, причем превалирующее значение имел экономический фактор. Для увеличения долговечности узлов и агрегатов различных видов оборудования разрабатывались улучшенные конструкции, прочные материалы, совершенные измерительные инструменты. В частности, электротехническое отделение фирмы «General Motors» (США) увеличило активный ресурс приводных двигателей локомотивов с 400 тыс. до 1,6 млн. км за счет использования улучшенной изоляции и применения усовершенствованных конических и сферических роликовых подшипников, а также проведения испытаний при высокой температуре. Был достигнут прогресс в разработке ремонтопригодных конструкций и в обеспечении предприятий оборудованием, инструментом и документацией для выполнения профилактических работ и операций по техническому обслуживанию.

Одновременно получило распространение составление и утверждение типовых графиков периодических проверок, карт контроля высокопроизводительного станочного оборудования.

В 50-е годы большое значение стали придавать вопросам обеспечения безопасности, особенно в таких перспективных отраслях, как космонавтика и атомная энергетика. Этот период является началом использования многих широко распространенных в настоящее время понятий по надежности элементов технических устройств, таких, как ожидаемая долговечность, соответствие конструкции заданным требованиям, прогнозирование показателей надежности.

В 60-е годы стала очевидной острая необходимость в новых методах обеспечения надежности и более широкое их применения. Центр внимания переместился от анализа поведения отдельных элементов различного типа (механических, электрических или гидравлических) на последствия, вызываемые отказом этих элементов в соответствующей системе. В течение первых лет эры космических полетов значительные усилия были затрачены на испытания систем и отдельных элементов. Для достижения высокой степени надежности получил развитие анализ блок-схем в качестве основных моделей. Однако с увеличением сложности блок-схем появилась необходимость в другом подходе, был предложен, а затем получил широкое распространение принцип анализа систем с помощью дерева отказов. Впервые он использовался в качестве программы для оценки надежности системы управления запуском ракет «МИНИТМЕН».

Впоследствии методика построения дерева отказов была усовершенствована и распространена на широкий круг различных технических систем. После катастрофических аварий на подземных комплексах запуска межконтинентальных баллистических ракет в США официально было введено в практику изучение безопасности систем как отдельной независимой деятельности. Министерство обороны США ввело требование по проведению анализа надежности на всех этапах разработки всех видов вооружения. Параллельно были разработаны требования по надежности, работоспособности и ремонтопригодности промышленных изделий.

В 70-е годы наиболее заметной была работа по оценке риска, связанного с эксплуатацией атомных электростанций, которая проводилась на основе анализа широкого спектра аварий. Ее основная направленность заключалась в оценке потенциальных последствий подобных аварий для населения в поисках путей обеспечения безопасности.

В последнее время проблема риска приобрела очень серьезное значение и до настоящего времени привлекает все возрастающее внимание специалистов самых различных областей знаний. Это понятие настолько присуще как безопасности, так и надежности, что термины «надежность», «опасность» и «риск» часто смешивают.

Среди технических причин несчастных случаев на производстве причины, связанные с недостаточной надежностью производственного оборудования, сооружений, устройств или их элементов, занимают особое место, поскольку чаще всего они проявляются внезапно и в связи с этим характеризуются высокими показателями тяжести травм.

Большое количество видов, используемых в промышленности, строительстве и на транспорте металлоемкого оборудования и конструкций является источником опасных производственных факторов вследствие существующей возможности аварийного выхода из строя отдельных деталей и узлов.

Основной целью анализа надежности и связанной с ней безопасности производственного оборудования и устройств является уменьшение отказов (в первую очередь травмоопасных) и связанных с ними человеческих жертв, экономических потерь и нарушений в окружающей среде.

В настоящее время существует довольно много методов анализа надежности и безопасности. Так наиболее простым и традиционным для надежности является метод структурных схем. При этом объект представляется в виде системы отдельных элементов, для которых возможно и целесообразно определить показатели надежности. Структурные схемы применяются для расчета вероятности отказов при условии, что в каждом элементе одновременно возможен только один отказ. Подобные ограничения вызвали появление других методов анализа.

Наиболее распространенным методом, получившим широкое применение в различных отраслях, является анализ с помощью дерева отказов. Данный анализ четко ориентирован на отыскание отказов и при этом выявляет такие аспекты системы, которые имеют важное значение для рассматриваемых отказов. Одновременно обеспечивается графический, наглядный материал. Наглядность дает специалисту возможность глубоко проникнуть в процесс работы системы и в тоже время позволяет сосредотачиваться на отдельных конкретных ее отказах.

Главное преимущество дерева отказов по сравнению с другими методами заключается в том, что анализ ограничивается выявлением только тех элементов системы и событий, которые приводят к данному конкретному отказу системы. В тоже время построение дерева отказов является определенным видом искусства в науке, поскольку нет аналитиков, которые бы составили два идентичных дерева отказов.

Чтобы отыскать и наглядно представить причинную взаимосвязь с помощью дерева отказов, необходимо использовать элементарные блоки, подразделяющие и связывающие большое число событий.

Таким образом, применяемые в настоящее время методы анализа надежности и безопасности оборудования и устройств, хотя и имеют определенные недостатки, все же позволяют достаточно эффективно определять причины различного рода отказов даже у сравнительно сложных систем. Последнее особенно актуально в связи с большой значимостью проблемы возникновения опасностей, обусловленных недостаточной надежностью технических объектов.

Источник

Надёжность

Надёжность — свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования. [1]

Интуитивно надёжность объектов связывают с недопустимостью отказов в работе. Это есть понимание надёжности в «узком» смысле — свойство объекта сохранять работоспособное состояние в течение некоторого времени или некоторой наработки. Иначе говоря, надёжность объекта заключается в отсутствии непредвиденных недопустимых изменений его качества в процессе эксплуатации и хранения. Надёжность тесно связана с различными сторонами процесса эксплуатации. Надёжность в «широком» смысле — комплексное свойство, которое в зависимости от назначения объекта и условий его эксплуатации может включать в себя свойства безотказности, долговечности, ремонтопригодности и сохраняемости, а также определённое сочетание этих свойств.

Для количественной оценки надёжности используют так называемые единичные показатели надёжности (характеризуют только одно свойство надёжности) и комплексные показатели надёжности (характеризуют несколько свойств надёжности).

Содержание

Основные определения

Надёжность как наука

Надёжность как наука развивается в трёх направлениях:

Теория надежности

Теория надежности является основой инженерной практики в области надежности технических изделий. Часто безотказность определяют как вероятность того, что изделие будет выполнять свои функции на определенном периоде времени при заданных условиях. Математически это можно записать следующим образом:

в чем измеряется надежность. Смотреть фото в чем измеряется надежность. Смотреть картинку в чем измеряется надежность. Картинка про в чем измеряется надежность. Фото в чем измеряется надежностьt\>=\int_^ <\infty>f(x)\, dx \ \!» border=»0″ />,

Программа обеспечения надежности

Для достижения необходимой надежности могут быть использованы различные методы и средства. Каждая система предполагает свой уровень допустимой надежности, так как последствия отказов различных систем могут значительно различаться. Так, надежность точилки для карандашей может превышать надежность пассажирского самолета, однако последствия и стоимость их отказов сложно сравнить.

Программа обеспечения надежности (ПОН) является документом, который определяет организационно-технические требования и мероприятия (задачи, методы, средства анализа и испытаний), направленные на обеспечение заданных требований к надежности, а также уточняет требования заказчика по определению и контролю надежности. Определение надежности (reliability assessment) заключается в определении численных значений показателей надежности изделия. Контроль надежности (reliability verification) состоит в проверке соответствия изделия заданным требованиям по надежности [ГОСТ 27.002-89]. Различают расчетный, расчетно-экспериментальный и экспериментальный методы определения и контроля надежности.

В расчетном методе определения надежности расчет надежности основан на использовании показателей надежности по справочным данным о надежности элементов, по данным о надежности изделий-аналогов и другой информации, имеющейся к моменту оценки надежности. Расчетно-экспериментальный метод определения надежности (Analytical-experimental reliability assessment) основан на процедуре определения показателей надежности элементов экспериментальным методом, а показателей надежности системы в целом – с использованием математической модели. Экспериментальный метод определения надежности (Experimental reliability assessment) основан на статистической обработке данных, получаемых при испытаниях или эксплуатации системы или ее составных частей и элементов.

ПОН разрабатывается на ранних стадиях проектирования и реализуется на всех этапах жизненного цикла изделия. В техническом плане основным объектом ПОН является оценивание и достижение готовности и стоимости эксплуатации (затраты на запасные части, техническое обслуживание и ремонт, транспортные услуги и т.п.). Зачастую требуется нахождение компромисса между высокой готовностью и затратами, или например, поиск максимального отношения «готовность/стоимость». В ПОН рассматриваются порядок и условия проведения испытаний на надежность, критерии их завершения и принятия решений по результатам испытаний.

Нормирование надежности

Прогнозирование и повышение надежности

Прогнозирование надежности (reliability prediction) включает в себя разработку соответствующих расчетных моделей для каждого показателя надежности системы и оценивание входных параметров этой модели в виде параметров надежности компонентов этой систем для решения конечной задачи – оценки выходных параметров надежности системы. Разработка расчетных моделей является частью общего процесса идентификации объекта, который включает в себя получение и анализ информации о критериях качества функционирования, отказов и предельных состояниях, структуре объекта, составе и взаимодействии элементов. Параметры модели надежности компонентов учитывают их уровни нагруженности, возможные режимы эксплуатации.

Прогнозирование надежности является одной из наиболее общепринятых форм анализа надежности (reliability analysis). Прогнозирование надежности используется для оценивания проектных возможностей системы, сравнения альтернативных проектных решений, определения областей потенциальных отказов и контроля процессов повышения надежности.

Прогнозирование надежности играет большую роль в инженерной практике, в том числе и при планировании мероприятий по повышению показателей надежности. Повышение надежности может быть осуществлено как при проектировании, так и при производстве объекта, а также непосредственно при его эксплуатации. Основными методами повышения надежности являются резервирование, уменьшение интенсивности отказов элементов, уменьшение среднего времени восстановления, мероприятия по совершенствованию системы технического обслуживания и ремонта.

Прогнозирование надежности позволяет также обосновать объем и номенклатуру запасных элементов.

Существуют справочники и стандарты (например, MIL-HDBK-217, Bellcore/Telcordia для электронных изделий, NSWC для механических устройств), которые позволяют сформировать данные об интенсивности отказов или средней наработки между отказами (MTBF), которые используются в качестве входных параметров математической модели надежности системы. Для создания математической модели надежности технических систем наиболее часто используются программные средства, реализующие такие технологии, как анализ видов, последствий и критичности отказов (АВПКО), структурные схемы надежности (ССН) или деревья неисправностей. Прогнозирование надежности позволяет также обосновать объем и номенклатуру запасных элементов.

Параметры системной надежности

При анализе параметров системной надежности учитывается структура системы, состав и взаимодействие входящих в нее элементов, возможность перестройки структуры и алгоритмов ее функционирования при отказах отдельных элементов.

Наиболее часто в инженерной практике рассматривают последовательное, параллельное, смешанной (последовательно- параллельное и параллельно-последовательное) соединение элементов, а также схемы типа «K из N», мостиковые соединения.

По возможности восстановления и обслуживания системы подразделяются на восстанавливаемые и невосстанавливаемые, обслуживаемы е и необслуживаемые. По режиму применения (функционирования) – на системы непрерывного, многократного (циклического) и однократного применения.

В основном в качестве параметра надежности используется среднее время до отказа (MTTF), которое может быть определено через интенсивность отказов или через число отказов на заданном отрезке времени. Интенсивность отказов математически определяется как условная плотность вероятности возникновения отказа изделия при условии, что до рассматриваемого момента времени отказ не произошел. При увеличении интенсивности отказов, среднее время до отказа уменьшается, надежность изделия падает. Обычно среднее время до отказа измеряется в часах, но также может выражаться в таких единицах как циклы и мили.

В других случаях надежность может выражаться через вероятность выполнения задачи. Например, надежность полетов гражданской авиации может быть безразмерной, или иметь размерность в процентах, как это делается в практике системной безопасности. В отдельных случаях успешным результатом системы может являться единоразовое срабатывание. Это актуально для систем, которые рассчитаны на срабатывание всего 1 раз: например, подушки безопасности в автомобиле. В этом случае задается вероятность срабатывания или, как, например, для ракет, вероятность попадания в цель. Для таких систем мерой надежности является вероятность срабатывания. Для восстанавливаемых систем может задаваться такой параметр, как среднее время восстановления (ремонта) и время проверки (тестирования).Часто параметры надежности задаются в виде соответствующих статистических доверительных интервалов.

Моделирование надежности

Моделирование надежности – это процесс прогнозирования или исследования надежности компонент или системы до ее ввода в эксплуатацию. Наиболее часто для моделирования надежности систем используются методы анализа деревьев неисправностей и структурных схем надежности. Входные параметры для моделирования надежности систем могут быть получены из разных источников, то есть из справочников, отчетов об испытаниях и эксплуатации и т.п. В любом случае, данные должны быть использованы с большой осторожностью, так как прогнозы верны только тогда, когда данные получены при тех же условиях, при которых компоненты будут применяться в системе.

Часть данных о прогнозировании может быть получена по результатам исследований двух основных видов:

Для систем, в которых точно можно определить время отказа (что не дано для систем с плавающими параметрами), может быть определена эмпирическая функция распределения времени отказа Это делается чаще всего при проведении испытаний с повышенным уровнем стресса (ускоренные испытания). Эти испытания делятся на две основные категории:

Для исследования средней части распределения, которая чаще всего определяется свойствами материалов, необходимо применять повышенные нагрузки на достаточно малом отрезке времени. В таких видах ускоренных испытаний применяются несколько степеней нагрузки. Часто эмпирическое распределение этих отказов параметризируется законом Вейбулла или лог-нормальным распределением.

Общей практикой моделирования «ранней» интенсивности отказов является использование экспоненциального распределения. Это менее сложная модель для распределения времени отказа, содержащая только один параметр – постоянную интенсивность отказов. В этом случае для в качестве критерия согласия может быть использован критерий хи-квадрат для оценки постоянства интенсивности отказов. По сравнению с уменьшающейся интенсивностью отказов это довольно пессимистическая модель и требует проведения анализа чувствительности.

Надежность на этапе проектирования

Надежность на этапе проектирования является новой дисциплиной и относится к процессу разработки надежных изделий. Этот процесс включает в себя несколько инструментов и практических рекомендаций и описывает порядок их применения, которыми должна владеть организация для обеспечения высокой надежности и ремонтопригодности разрабатываемого продукта с целью достижения высоких показателей готовности, снижения затрат и максимального срока службы продукта. Как правило, первым шагом в этом направлении является нормирование показателей надежности. Надежность должна быть «спроектирована» в системе. При проектировании системы назначаются требования к надежности верхнего уровня, затем они разделяются на определенные подсистемы разработчиками, конструкторами и инженерами по надежности, работающими вместе. Проектирование надежности начинается с разработки модели. При этом используют структурные схемы надежности или деревья неисправностей, при помощи которых представляется взаимоотношение между различными частями (компонентами) системы.

Одной из наиболее важных технологий проектирования является введение избыточности или резервирование. Резервирование – это способ обеспечения надежности изделия за счет дополнительных средств и (или) возможностей, избыточных по отношению к минимально необходимым для выполнения требуемых функций (ГОСТ 27.002). Путем введения избыточности совместно с хорошо организованным мониторингом отказов, даже системы с низкой надежностью по одному каналу могут в целом обладать высоким уровнем надежности. Однако, введение избыточности на высоком уровне в сложной системе (например, на уровне двигателя самолета) очень сложно и дорого, что ограничивает такое резервирование. На более низком уровне системы резервирование реализуется быстро и просто, например, использование дополнительного соединения болтом.

Существует много методик анализа надежности, специфических для отдельных отраслей промышленности и приложений. Наиболее общие из них следующие.

Инженерные исследования проводятся для определения оптимального баланса между надежностью и другими требованиями и ограничениями. Существенную помощь при инженерном анализе надежности могут оказать программные комплексы для расчета надежности.

Испытания на надежность

Испытания на надёжность проводятся для того, чтобы на более ранних этапах жизненного цикла изделия обнаружить потенциальные проблемы, обеспечить уверенность, что система будет отвечать заданным требованиям.

Испытания на надежность могут проводится на разных уровнях. Сложные системы могут испытываться на уровне компонент, устройств, подсистем и всей системы в целом. Например, испытания компонент на воздействие внешних факторов может выявить проблемы перед тем, как они будут обнаружены на более высоком уровне интеграции. Проведение испытаний на каждом уровне интеграции до испытания всей системы с одновременным развитием программы испытаний позволяет снизить риск неудачи такой программы. Расчет надежности производится на каждом уровне испытаний. При этом часто используются такие методы как анализ роста надежности и системы отчета и анализа отказов и корректирующих действий (FRACAS). Недостатками таких испытаний являются время и затраты. Заказчики могут пойти на некоторый риск и отказаться от испытаний на более низких уровнях.

Некоторые системы принципиально не могут подвергаться испытаниям, например, из-за чрезмерно большого числа различных тестов или жестких ограничений по времени и затратам. В таких случаях могут быть использованы ускоренные испытания, методы планирования экспериментов и моделирование.

Отметим, что сегодня все чаще и чаще применяются так называемые ускоренные испытания в динамически меняющейся среде для оценивания качества и надежности высококачественной и высоконадежной продукции, в том числе и структурно-сложных систем с учетом их старения, усталости, износа и деградации в ходе их эксплуатации. Для этого за последние двадцать лет в статистике ускоренных испытаний разработаны специальные модели ускорения жизни (см., например,Nelson (1990), Meeker and Escobar (1998), Singpurvalla (1995)), которые хорошо адаптированы для статистического анализа данных об отказах, наблюденных как при меняющихся во времени стрессах (нагрузках, ковариантах), так и при наличии деградационных процессов, которые также могут зависеть от этих стрессов.

Надежность и безопасность

Надежность в инженерной практике отличается от безопасности отношением к видам опасностей, с которыми она имеет дело. Надежность в технике главным образом связана с определением стоимостных показателей. Они относятся к тем опасностям в смысле надежности, которые могут перерасти в аварии с частичной потерей доходов для компании или заказчика. Это может произойти из-за потери по причине неготовности системы, неожиданно высоких затрат на запасные части и ремонт, перерывов в нормальной работе и т.п. Безопасность относится к тем случаям проявления опасности, которые могут привести к потенциально тяжелым авариям. Требования по безопасности функционально связаны с требованиями по надежности, но характеризуются более высокой ответственностью. Безопасность имеет дело с нежелательными опасными событиями для жизни людей и окружающей среды в том же смысле, что и надежность но не связана напрямую со стоимостными показателями и не относится к действиям по восстановлению после отказов и аварий. У безопасности другой уровень важности отказов в обществе и контроля со стороны государства. Безопасность часто контролируется государством (например, атомная промышленность, космос, оборона, железные дороги и нефтегазовый сектор).

Отказоустойчивость

Надежность может быть увеличена при использовании резервирования «2 из 2» на уровне компонент или системы, но это может привести к снижению безопасности за счет увеличения вероятности ложной тревоги (например, ложное срабатывание тормозной системы поезда). Отказоустойчивые мажоритарные системы (логика голосования «2 из 3») может увеличить как надежность, так и безопасность на системном уровне. Такие методы являются общей практикой в аэрокосмических системах, в которых требуется постоянная готовность и недопустимость опасных отказов

Оценка надежности техники при эксплуатации

После того, как система изготовлена, осуществляется мониторинг ее надежности, оцениваются и корректируются недоработки и недостатки. Мониторинг включает в себя электронное и визуальное наблюдение за критическими параметрами, выявленными на стадии проектирования при разработке дерева неисправностей. Для обеспечения заданной надежности системы данные постоянно анализируются, используя статистические методы, такие как Вейбулл-анализ и линейная регрессия. Данные о надежности и оценки параметров являются ключевыми входами для модели системной логистики.

Одним из наиболее общих методов для оценивания надежности техники при эксплуатации являются системы отчетов, анализа и коррекции действий (FRACAS). Систематический подход к оцениванию надежности, безопасности и логистики основан на отчетах об отказах и авариях, менеджменте, анализе корректирующих/предупреждающих действий.

Организация работ по надежности

Системы любой сложности разрабатываются организациями, такими как коммерческие компании или государственные учреждения. Организация работ по надежности (инжиниринг надежности) должна быть согласована со структурой компаний или учреждений. Для небольших компаний работы по надежности могут быть неформальными. С ростом сложности задач возникает необходимость формализации функций по обеспечению надежности. Так как надежность важна для заказчика, заказчик должен видеть некоторые аспекты организации этих работ.

Существует несколько типов организации работ по надежности. Менеджер проекта или главный инженер проекта может иметь в непосредственном подчинении одного или более инженеров по надежности. В более крупных организациях обычно образуется отдельное структурное подразделение, которое занимается анализом надежности, ремонтопригодности, качества, безопасности, человеческого фактора, логистикой. Так как работа по обеспечению надежности особенно важна на этапе проектирования, часто инженеры по надежности или соответствующие структуры интегрированы с проектными подразделениями.

В отдельных случаях компания создает независимую структуру, которая занимается организацией работ по надежности.

Обучение инженеров по надежности

Некоторые высшие учебные заведения подготавливают инженеров по надежности. Другой формой подготовки специалистов в области надежности могут быть аккредитованные при высших учебных заведениях или колледжах учебные программы или курсы. Инженер по надежности может иметь профессиональный диплом именно по надежности, но для большинства работодателей это не требуется. Проводятся многочисленные профессиональные конференции, реализуются отраслевые программы подготовки кадров по вопросам надежности. К международным организациям инженеров и ученых в области надежности относятся IEEE Reliability Society, American Society for Quality (ASQ) и Society of Reliability Engineers (SRE).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *