что нужно кроме соединительных проводов для создания колебательного контура
Колебательный LC контур: принцип действия, расчет, определение
Сегодня нас интересует простейший колебательный контур, его принцип работы и применение.
За полезной информацией по другим темам переходите на наш телеграм-канал.
Колебания – процесс, повторяющийся во времени, характеризуется изменением параметров системы около точки равновесия.
По определению колебательный контур (или LC-контур) – это электрическая цепь, в которой происходят свободные электромагнитные колебания.
Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.
Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.
Принцип действия колебательного контура
Давайте рассмотрим пример, когда сначала мы заряжаем конденсатор и замыкаем цепь. После этого в цепи начинает течь синусоидальный электрический ток. Конденсатор разряжается через катушку. В катушке при протекании через нее тока возникает ЭДС самоиндукции, направленная в сторону, противоположную току конденсатора.
Разрядившись окончательно, конденсатор благодаря энергии ЭДС катушки, которая в этот момент будет максимальна, начнет заряжаться вновь, но только в обратной полярности.
Колебания, которые происходят в контуре – свободные затухающие колебания. То есть без дополнительной подачи энергии колебания в любом реальном колебательном контуре рано или поздно прекратятся, как и любые колебания в природе.
Это обусловлено тем, что контур состоит из реальных материалов (конденсатор, катушка, провода), обладающих таким свойством, как электрическое сопротивление, и потери энергии в реальном колебательном контуре неизбежны. В противном случае это нехитрое устройство могло бы стать вечным двигателем, существование которого, как известно, невозможно.
Еще одна важная характеристика LC-контура – добротность Q. Добротность определяет амплитуду резонанса и показывает, во сколько раз запасы энергии в контуре превышают потери энергии за один период колебаний. Чем выше добротность системы, тем медленнее будут затухать колебания.
Резонанс LC-контура
Электромагнитные колебания в LC-контуре происходят с определенной частотой, которая называется резонансной Подробнее про резонанс – в нашей отдельной статье. Частоту колебаний можно менять, варьируя такие параметры контура, как емкость конденсатора C, индуктивность катушки L, сопротивление резистора R (для LCR-контура).
Как рассчитать резонансную частоту колебательного контура? Очень просто! Приведем окончательную формулу:
Применение колебательного контура
Колебательный контур широко применяется на практике. На его основе строятся частотные фильтры, без него не обходится ни один радиоприемник или генератор сигналов определенной частоты.
Если вы не знаете, как подступиться к расчету LC-контура или на это совершенно нет времени, обратитесь в профессиональный студенческий сервис. Качественная и быстрая помощь в решении любых задач не заставит себя ждать!
Колебательный контур
Идеальный конденсатор и катушка. Как происходят колебания, куда движутся электроны, когда нарастает и исчезает магнитное поле катушки.
Безусловно, реальный колебательный контур всегда включает в себя не только емкость С и индуктивность L, но еще и соединительные провода, непременно обладающие активным сопротивлением R, но давайте оставим сопротивление за рамками данной статьи, о нем вы сможете узнать в разделе о добротности колебательной системы. Итак, рассматриваем идеальный колебательный контур, и начнем с конденсатора.
Что это значит? Это значит, что мы переместим, при помощи источника сторонних сил, некоторую порцию отрицательного заряда Q0 (состоящего из электронов), с верхней обкладки конденсатора — на нижнюю его обкладку. В итоге, на нижней обкладке конденсатора возникнет избыток отрицательного заряда, а на верхней — недостаток именно этого количества отрицательного заряда, а значит — избыток положительного. Ведь сначала то конденсатор был не заряжен, а значит заряда одинакового знака на обеих его обкладках было точно поровну.
Итак, конденсатор зарядился, верхняя обкладка зарядилась положительно (так как там недостает электронов) относительно нижней, а нижняя — отрицательно относительно верхней. В целом, для других объектов, конденсатор электрически нейтрален, однако внутри его диэлектрика существует электрическое поле, посредством которого противоположные заряды на противоположных обкладках взаимодействуют между собой, а именно — стремятся друг к другу притянуться, но диэлектрик, в силу своей природы, не дает этому произойти. В этот момент энергия конденсатора максимальна и равна ECm.
Теперь возьмем идеальную катушку индуктивности. Путь она изготовлена из такого проводника, который вовсе не обладает электрическим сопротивлением, то есть имеет идеальную способность пропускать электрический заряд, не препятствуя ему. Соединим катушку параллельно с только что заряженным конденсатором.
Электроны с нижней обкладки рванулись через провод катушки — к верхней обкладке конденсатора (можно сказать, что одновременно с этим положительный заряд устремился к нижней обкладке), но не могут мгновенно туда проскочить.
Почему? Потому что катушка обладает индуктивностью, а движущиеся через нее электроны — это уже ток, а раз ток — значит вокруг него должно быть магнитное поле. И вот, чем больше электронов входит в катушку — тем большим током они становятся, и тем большее магнитное поле вокруг катушки возникает.
Когда все электроны с нижней обкладки конденсатора окажутся внутри катушки — ток в ней будет максимальным Im, магнитное поле вокруг нее будет наибольшим, какое только способно создать это количество движущегося заряда будучи в ее проводе. В этот момент конденсатор полностью разряжен, энергия электрического поля в диэлектрике между его обкладками равно нулю EC0, но вся эта энергия сейчас заключена в магнитном поле катушки ELm.
А дальше магнитное поле катушки начинает уменьшаться, ведь его ничему поддержать, так как других электронов в катушку не втекает и не вытекает, тока нет, и исчезающее вокруг катушки магнитное поле порождает в ее проводе вихревое электрическое поле, которое толкает электроны дальше — к верхней обкладке конденсатора, куда они так стремились. И в тот момент, когда все электроны оказались на верхней обкладке конденсатора, магнитное поле катушки стало равно нулю EL0. А конденсатор теперь заряжен противоположно по отношению к тому, как был заряжен в самом начале.
Что называется колебательным контуром
Обновлено: 15 Июня 2021
Типичным примером свободных колебаний являются пружинные механизмы или математический маятник. Однако в результате многочисленных опытов удалось настроить подобные системы не только в механических установках, но и в электрических цепях. К таким цепям относится колебательный контур.
Что такое колебательный контур, из каких элементов состоит
Колебательный контур является простейшей системой, для которой характерно образование свободных электромагнитны колебаний.
Колебательный контур представляет собой электрическую сеть. В состав замкнутого контура входят следующие компоненты:
В цепи образуются свободные затухающие колебания электромагнитного характера. В зависимости от силы сопротивления резистора определяется скорость затухания колебаний.
Идеальным колебательным контуром называют колебательный контур с полным отсутствием электрического сопротивления. Для такой системы характерны незатухающие свободные электромагнитные колебания.
Области применения резонансных контуров достаточно широки. Они необходимы для изготовления полосовых и режекторных фильтров в усилителях, радиоприемниках и устройствах автоматики.
Колебательные контуры являются компонентами блоков измерения частоты, которые устанавливаются на самолетах марки Ил-62М, Ил-76 и Ту-154М. С их помощью контролируется постоянная частота напряжения на генераторе при изменениях количества оборотов двигателя.
Виды колебательных контуров
Последовательным колебательным контуром называют цепь, в состав которой входит катушка индуктивности и конденсатор, соединенные последовательно. Идеальный последовательный колебательный контур характеризуется несколькими величинами:
На рисунке изображен идеальный последовательный контур.
В отличие от вышеуказанного идеального колебательного контура реальный последовательный контур обладает сопротивлением потерь катушки и конденсатора. Сумма величин этих сопротивлений обозначается буквой R.
Характеристиками параллельного идеального колебательного контура, как и в первом случае, являются индуктивность и емкость. На рисунке представлена схема такой цепи.
В реальном колебательном контуре катушка за счет наличия проводниковой намотки обладает неким сопротивлением потерь, как и конденсатор. Емкостные потери небольшие, что позволяет не учитывать их во многих расчетах.
Закон сохранения энергии в колебательном контуре, формула
\(W = WC(t) + WL(t) = const\)
В этом случае наблюдается нулевое значение энергии магнитного поля в катушке индуктивности, то есть ток равен нулю.
Для того чтобы весь объем электрической энергии трансформировался в энергию магнитного поля, необходимо иметь в контуре ток \(I\) максимального значения. Данное отношение описывается формулой:
Тогда энергия электрического поля и заряд на конденсаторе будут равны нулю.
При таких условиях можно вывести следующее соотношение:
Период колебаний, от чего зависит
Определить периодичность свободных колебаний в условиях колебательного контура можно с помощью формулы Томпсона. Уравнение выглядит следующим образом:
Явление резонанса тока в колебательном контуре
Электромагнитные колебания в колебательном контуре характеризует определенная частота. Данная величина называется резонансом.
Частота колебаний зависит от нескольких параметров колебательного контура:
Формула для расчета частоты колебаний выглядит следующим образом:
Преобразование разных типов энергии с помощью колебательного контура нашло применение в разных областях электротехники и механики. Подобные дисциплины изучают студенты высших и профессиональных учебных заведений, чтобы потом применять их для реализации разнообразных инженерных проектов. Оперативную и компетентную помощь в процессе обучения можно получить на портале Феникс.Хелп.
Колебательный контур принцип работы
Из чего он состоит?
Колебательный контур состоит из катушки и конденсатора. В нём может присутствовать резистор (элемент с переменным сопротивлением).
Катушка колебательного контура создаёт колебания только при наличии запасённого заряда. При прохождении через неё тока она накапливает заряд, который затем отдаёт в цепь, если напряжение падает.
Провода катушки обычно имеют очень маленькое сопротивление, которое всегда остаётся постоянным. В цепи колебательного контура очень часто происходит изменение напряжения и силы тока. Это изменение подчиняется определённым математическим законам:
Другим неотъемлемым компонентом контура является электрический конденсатор. Это элемент, состоящий из двух обкладок, которые разделены между собой диэлектриком. При этом толщина слоя между обкладками меньше их размеров. Такая конструкция позволяет накапливать на диэлектрике электрический заряд, который потом можно отдать в цепь.
Отличие конденсатора от аккумулятора в том, что в нём не происходит превращения веществ под действием электрического тока, а происходит непосредственное накопление заряда в электрическом поле. Таким образом, с помощью конденсатора можно накопить достаточно большой заряд, отдавать который можно весь сразу. При этом сила тока в цепи сильно возрастает.
Также колебательный контур состоит из ещё одного элемента: резистора. Этот элемент обладает сопротивлением и предназначен для контролирования силы тока и напряжения в цепи. Если при постоянном напряжении увеличивать сопротивление резистора, то сила тока будет уменьшаться по закону Ома:
Катушка индуктивности
Давайте подробнее рассмотрим все тонкости работы катушки индуктивности и лучше поймём её функцию в колебательном контуре. Как мы уже говорили, сопротивление этого элемента стремится к нулю. Таким образом, при подключении к цепи постоянного тока произошло бы короткое замыкание. Однако если подключать катушку в цепь переменного тока, она работает исправно. Это позволяет сделать вывод о том, что элемент оказывает сопротивление переменному току.
Но почему это происходит и как возникает сопротивление при переменном токе? Для ответа на этот вопрос нам нужно обратиться к такому явлению, как самоиндукция. При прохождении тока по катушке в ней возникает электродвижущая сила (ЭДС), которая создаёт препятствие изменению тока. Величина этой силы зависит от двух факторов: индуктивности катушки и производной силы тока по времени. Математически эта зависимость выражается через уравнение:
Сила постоянного тока со временем не изменяется, поэтому сопротивления при его воздействии не возникает.
Но при переменном токе все его параметры постоянно изменяются по синусоидальному или косинусоидальному закону, вследствие чего возникает ЭДС, препятствующая этим изменениям. Такое сопротивление называют индукционным и вычисляют по формуле:
Что такое индуктивность?
Коэффициент индуктивности зависит от многих факторов: от геометрии соленоида, от магнитных характеристик сердечника и от количества мотков проволоки. Ещё одно свойство этого показателя в том, что он всегда положителен, потому что переменные, от которых она зависит, не могут быть отрицательными.
Индуктивность также можно определить как свойство проводника с током накапливать энергию в магнитном поле. Она измеряется в Генри (названа в честь американского учёного Джозефа Генри).
Кроме соленоида колебательный контур состоит из конденсатора, о котором пойдёт речь далее.
Электрический конденсатор
Ёмкость колебательного контура определяется ёмкостью электрического конденсатора. О его внешнем виде было написано выше. Теперь разберём физику процессов, которые протекают в нём.
Так как обкладки конденсатора сделаны из проводника, то по ним может течь электрический ток. Однако между двумя пластинами есть препятствие: диэлектрик (им может быть воздух, дерево или другой материал с высоким сопротивлением. Благодаря тому что заряд не может перейти от одного конца провода к другому, происходит накопление его на обкладках конденсатора. Тем самым возрастает мощность магнитного и электрического полей вокруг него. Таким образом, при прекращении поступления заряда вся электроэнергия, скопившаяся на обкладках, начинает передаваться в цепь.
Каждый конденсатор имеет номинальное напряжение, оптимальное для его работы. Если долго эксплуатировать этот элемент при напряжении выше номинального, срок его службы значительно сокращается. Конденсатор колебательного контура постоянно подвержен влиянию токов, и поэтому при его выборе следует быть предельно внимательным.
Кроме обычных конденсаторов, о которых шла речь, есть также ионисторы. Это более сложный элемент: его можно описать как нечто среднее между аккумулятором и конденсатором. Как правило, диэлектриком в ионисторе служат органические вещества, между которыми находится электролит. Вместе они создают двойной электрический слой, который и позволяет накапливать в этой конструкции в разы больше энергии, чем в традиционном конденсаторе.
Что такое ёмкость конденсатора?
Ёмкость конденсатора представляет собой отношение заряда конденсатора к напряжению, под которым он находится. Посчитать эту величину можно очень просто с помощью математической формулы:
Зависимость ёмкости конденсатора от расстояния между обкладками объясняется явлением электростатической индукции: чем меньше расстояние между пластинами, тем сильнее они влияют друг на друга (по закону Кулона), тем больше заряд обкладок и меньше напряжение. А при уменьшении напряжения увеличивается значение ёмкости, так как её также можно описать следующей формулой:
Резистор
Сопротивление этого элемента зависит также от температуры, поэтому следует быть внимательным к его работе в цепи, так как при прохождении тока он нагревается.
Сопротивление резистора измеряется в Омах, а его значение можно вычислить по формуле:
Как связать параметры контура?
Теперь мы вплотную подошли к физике работы колебательного контура. Со временем заряд на обкладках конденсатора изменяется согласно дифференциальному уравнению второго порядка.
Если решить это уравнение, из него следует несколько интересных формул, описывающих процессы, протекающие в контуре. Например, циклическую частоту можно выразить через ёмкость и индуктивность.
Добротность
Добротность контура вычисляется по формуле:
Что такое идеальный колебательный контур
Для лучшего понимания процессов в этой системе физики придумали так называемый идеальный колебательный контур. Это математическая модель, представляющая цепь как систему с нулевым сопротивлением. В ней возникают незатухающие гармонические колебания. Такая модель позволяет получить формулы приближённого вычисления параметров контура.
Такие упрощения существенно ускоряют расчёты и позволяют оценить характеристики цепи с заданными показателями.
Как это работает?
Весь цикл работы колебательного контура можно разделить на две части.
Цикл повторяется до тех пор, пока на конденсаторе будет заряд. В идеальном колебательном контуре этот процесс происходит бесконечно, а в реальном неизбежны потери энергии из-за различных факторов: нагрева, который происходит из-за существования сопротивления в цепи (джоулевое тепло), и тому подобное.
Варианты конструкции контура
Кроме простых цепей «катушка-конденсатор» и «катушка-резистор-конденсатор», существуют и другие варианты, использующие в качестве основы колебательный контур. Это, например, параллельный контур, который отличается тем, что существует как элемент электрической цепи (потому как, существуй он отдельно, то являлся бы последовательной цепью, о которой и шла речь в статье).
Также существуют и другие виды конструкции, включающие разные электротехнические компоненты. Например, можно подключать в сеть транзистор, который будет размыкать и замыкать цепь с частотой, равной частотой колебаний в контуре. Таким образом, в системе установятся незатухающие колебания.
Где применяется колебательный контур?
Катушка индуктивности сама по себе может использоваться как элемент трасформатора: две катушки с разным числом обмоток могут передавать с помощью электромагнитного поля свой заряд. Но так как характеристики соленоидов различаются, то и показатели тока в двух цепях, к которым подключены эти две индуктивности, будут различаться. Таким образом можно преобразовывать ток с напряжением в 220 вольт в ток с напряжением в 12 вольт.
Параллельный колебательный контур
В прошлой статье мы с вами рассмотрели последовательный колебательный контур, так как все участвующие в нем радиоэлементы соединялись последовательно. В этой же статье мы рассмотрим параллельный колебательный контур, в котором катушка и конденсатор соединяются параллельно.
Параллельный колебательный контур
Идеальный колебательный контур
На схеме идеальный колебательный контур выглядит вот так:
Реальный колебательный контур
В реальности у нас катушка обладает приличным сопротивлением потерь, так как намотана из провода, да и конденсатор тоже имеет некоторое сопротивление потерь. Потери в емкости очень малы и ими обычно пренебрегают. Поэтому оставим только одно сопротивление потерь катушки R. Тогда схема реального колебательного контура примет вот такой вид:
R — это сопротивление потерь контура, Ом
L — индуктивность, Генри
Принцип работы параллельного колебательного контура
Давайте подцепим к генератору частоты реальный параллельный колебательный контур
Что будет, если мы подадим на контур ток с частотой в ноль Герц, то есть постоянный ток? Он спокойно побежит через катушку и будет ограничиваться лишь сопротивлением потерь R самой катушки. Через конденсатор ток не побежит, потому что конденсатор не пропускает постоянный ток. Об это я писал еще в статье конденсатор в цепи постоянного и переменного тока.
Давайте тогда будем добавлять частоту. Итак, с увеличением частоты у нас конденсатор и катушка начнут оказывать реактивное сопротивление электрическому току.
Реактивное сопротивление катушки выражается по формуле
а конденсатора по формуле
Более подробно про это можно прочитать в этой статье.
Если плавно увеличивать частоту, то можно понять из формул, что в самом начале при плавном увеличении частоты конденсатор будет оказывать бОльшее сопротивление, чем катушка индуктивности. На какой-то частоте реактивные сопротивления катушки XL и конденсатора XC уравняются. Если далее увеличивать частоту, то уже катушка уже будет оказывать большее сопротивление, чем конденсатор.
Резонанс параллельного колебательного контура
Очень интересное свойство параллельного колебательного контура заключается в том, что при ХL = ХС у нас колебательный контур войдет в резонанс. При резонансе колебательный контур начнет оказывать большее сопротивление переменному электрическому току. Еще часто это сопротивление называют резонансным сопротивлением контура и оно выражается формулой:
Rрез — это сопротивление контура на резонансной частоте
C — собственно сама емкость конденсатора
R — сопротивление потерь катушки
Формула резонанса
Для параллельного колебательного контура также работает формула Томсона для резонансной частоты как и для последовательного колебательного контура:
F — это резонансная частота контура, Герцы
L — индуктивность катушки, Генри
С — емкость конденсатора, Фарады
Как найти резонанс параллельного колебательного контура на практике
Ладно, ближе к делу. Берем паяльник в руки и спаиваем катушку и конденсатор параллельно. Катушка на 22 мкГн, а конденсатор на 1000пФ.
Итак, реальная схема этого контура будет вот такая:
Для того, чтобы все показать наглядно и понятно, давайте добавим к контуру последовательно резистор на 1 КОм и соберем вот такую схему:
На генераторе мы будет менять частоту, а с клемм X1 и X2 мы будем снимать напряжение и смотреть его на осциллографе.
Нетрудно догадаться, что у нас сопротивление параллельного колебательного контура будет зависеть от частоты генератора, так как в этом колебательном контуре мы видим два радиоэлемента, чьи реактивные сопротивления напрямую зависит от частоты, поэтому заменим колебательный контур эквивалентным сопротивлением контура Rкон.
Упрощенная схема будет выглядеть вот так:
Интересно, на что похожа эта схема? Не на делитель ли напряжения? Именно! Итак, вспоминаем правило делителя напряжения: на меньшем сопротивлении падает меньшее напряжение, на бОльшем сопротивлении падает бОльшее напряжение. Какой вывод можно сделать применительно к нашему колебательному контуру? Да все просто: на резонансной частоте сопротивление Rкон будет максимальным, вследствие чего у нас на этом сопротивлении «упадет» бОльшее напряжение.
Начинаем наш опыт. Поднимаем частоту на генераторе, начиная с самых маленьких частот.
Как вы видите, на колебательном контуре «падает» малое напряжение, значит, по правилу делителя напряжения, можно сказать, что сейчас у контура малое сопротивление Rкон
Добавляем частоту. 11,4 Килогерца
Как вы видите, напряжение на контуре поднялось. Это значит, что сопротивление колебательного контура увеличилось.
Добавляем еще частоту. 50 Килогерц
Заметьте, напряжение на контуре повысилось еще больше. Значит его сопротивление еще больше увеличилось.
Обратите внимание на цену деления одного квадратика по вертикали, по сравнению с прошлым опытом. Там было 20мВ на один квадратик, а сейчас уже 500 мВ на один квадратик. Напряжение выросло, так как сопротивление колебательного контура стало еще больше.
И вот я поймал такую частоту, на которой получилось максимальное напряжение на колебательном контуре. Обратите внимание на цену деления по вертикали. Она равняется двум Вольтам.
Дальнейшее увеличение частоты приводит к тому, что напряжение начинает падать:
Снова добавляем частоту и видим, что напряжение стало еще меньше:
Что происходит на резонансной частоте в параллельном колебательном контуре
Давайте более подробно рассмотрим эту осциллограмму, когда у нас было максимальное напряжение с контура.
Что здесь у нас произошло?
Так как на этой частоте был всплеск напряжения, следовательно, на этой частоте параллельный колебательный контур имел самое высокое сопротивление Rкон. На этой частоте ХL = ХС. Потом с ростом частоты сопротивление контура снова упало. Это и есть то самое резонансное сопротивление контура, которое выражается формулой:
Резонанс токов
Итак, давайте допустим, мы вогнали наш колебательный контур в резонанс:
Чему будет равняться резонансный ток Iрез ? Считаем по закону Ома:
Но самый прикол в том, что у нас при резонансе в контуре появляется свой собственный контурный ток Iкон , который не выходит за пределы контура и остается только в самом контуре! Так как с математикой у меня туго, поэтому я не буду приводить различные математические выкладки с производными и комплексными числами и объяснять откуда берется контурный ток при резонансе. Именно поэтому резонанс параллельного колебательного контура называется резонансом токов.
Добротность параллельного колебательного контура
Кстати, этот контурный ток будет намного больше, чем ток, который проходит через контур. И знаете во сколько раз? Правильно, в Q раз. Q — это и есть добротность! В параллельном колебательном контуре она показывает во сколько раз сила тока в контуре Iкон больше сила тока в общей цепи Iрез
Если сюда еще прилепить сопротивление потерь, то формула примет вот такой вид:
R — сопротивление потерь на катушке, Ом
Применение параллельного колебательного контура
Параллельный колебательный контур применяется в радиоприемном оборудовании, где надо выделить частоту какой-либо станции. Также с помощью колебательного контура можно построить различные резонансные фильтры.