что нужно для солнечной батареи чтобы она работала

Как установить солнечные батареи для дома?

В связи с постоянным повышением тарифов на энергоносители и стимуляцией зеленой энергетики в ряде государств, для обывателей стал актуальным вопрос организации собственной солнечной электростанции. Для чего многими владельцами частных территорий и квартир осуществляется установка солнечных батарей для дома. Но далеко не все автономные источники выдают ожидаемые от них результаты, а некоторые вообще не функционируют. Поэтому далее мы рассмотрим основные нюансы использования солнечных батарей и детальный алгоритм установки, что позволит вам добиться максимального эффекта.

Что следует учесть на этапе проектирования?

Перед тем как установить автономную электростанцию, важно выбрать наиболее подходящее место для установки солнечных панелей, их тип и назначение. В соответствии с этими критериями определите параметры солнечных батарей и комплектующего оборудования. Если вы собираетесь использовать домашнюю электростанцию для выработки электроэнергии номиналом в 220 В, то вам понадобятся такие элементы:

Несмотря на важность каждого элемента домашнего генератора свободной энергии, особое внимание следует уделить выбору фотоэлектрического модуля, так как от этого будет зависеть и продуктивность, и качество работы всей системы.

Выбор солнечной батареи

В качестве источника электроэнергии сегодня популярны три типа солнечных батарей:

Выбор места и способа установки

Оптимальная генерация электрического тока обеспечивается при условии попадания достаточного количества солнечного света на поверхность панели, поэтому близлежащие постройки и деревья не должны ее затенять. То же касается и способа размещения их друг относительно друга – верхние или боковые панели не должны закрывать собой соседние. Оптимальная выработка электроэнергии достигается при перпендикулярном попадании лучей на фотоэлектрический преобразователь, что тоже должно учитываться при выборе места.

Наиболее часто для установки солнечных батарей используются:

Помимо открытого пространства, не забывайте, что выбранная конструкция должна выдерживать и вес солнечной батареи. Это особенно актуально для строящихся или модернизируемых зданий, дабы та же крыша не провалилась под весом домашней электростанции, солнечного коллектора и прочего крышевого оборудования. По отношению к сторонам света ее устанавливают с юга. Расположенные на земле, обязательно приподымаются над поверхностью грунта не менее чем на полметра.

Заметьте, скопление на солнечном модуле пыли, снега, листьев, продуктов жизнедеятельности животных и насекомых существенно снижает эффективность их работы. Поэтому место установки должно предусматривать возможность ухода и периодического технического обслуживания.

Этапы установки солнечных батарей

После того, как вы заготовили все необходимое для домашней электростанции, подобрали место и составили схему расположения панелей, переходите непосредственно к установке. Для этого:

В зависимости от места установки их можно изготавливать и собирать отдельно от монтажной площадки, но размеры должны учитывать габариты панелей заранее. Между крышей и батареей обязательно оставляйте воздушный зазор для вентиляции.

Если вы приобрели готовые панели, в которых ничего спаивать не нужно, сразу переходите к монтажу.

Если вы собираете их из модулей, изготовьте основание из диэлектрического материала с отверстиями для вентиляции, установите клеевую основу и закройте герметичной прозрачной крышкой.

Следует отметить, что положение солнца летом и зимой кардинально отличается, поэтому весьма эффективно выполнять регулировку угла наклона. Для этого можно предусмотреть соответствующий подвижный механизм в каркасе или опорном кронштейне.

Источник

Установка солнечных батарей: что нужно знать новичкам

что нужно для солнечной батареи чтобы она работала. Смотреть фото что нужно для солнечной батареи чтобы она работала. Смотреть картинку что нужно для солнечной батареи чтобы она работала. Картинка про что нужно для солнечной батареи чтобы она работала. Фото что нужно для солнечной батареи чтобы она работала

Использование энергии солнца давно успешно применяется человечеством: от примитивного нагревания воды до супер современных солнечных электростанций и автономных зарядных устройств для гаджетов. Скоро зима, самое время попробовать воспользоваться альтернативным источником энергии и начать экономить! А снег? Спросите Вы. Так вот, устанавливать солнечные батареи для дома выгодно и эффективно именно зимой или ранней весной. Заинтригованы?

Дело в том, что ясные морозные дни способствуют увеличению коэффициента полезного действия солнечных элементов. К тому же, снег дополнительно отражает около 80 % солнечного света. Итак, при грамотной установке солнечных панелей, в снежное время года, они отдают максимальный ток. В таком случае можно обойтись минимальной мощностью. А с увеличением продолжительности светового дня, может случиться так, что этой мощности Вам достаточно.

Комбинированный подход

На случай, если в Вашем жилище комбинированное использование энергии. То есть, кроме альтернативного варианта, задействовано привычное топливо, например, газ, то впору задуматься о качественном учете расходуемого газа. Можно, конечно, воспользоваться услугами компаний, где осуществляется продажа счетчиков газа с магнитом. Однако, проще установить дополнительный модуль солнечных батарей и не только экономить на электроэнергии, но и использовать, и даже сохранять, энергию солнца совершенно бесплатно.

Солнечные батареи для дома: типичные ошибки новичков

При установке систем альтернативных источников энергии впервые, многие обращаются в компании по установке солнечных батарей. Если Вы новичок в этом вопросе, то прочтите, пожалуйста, статью до конца. И постарайтесь, научиться на чужих ошибках.

Ошибка первая: жадность

Самой распространенной ошибкой новичков при установке альтернативного источника энергии является желание заполучить систему определенной мощности. Ну, к примеру: чтобы хватило и на телевизор, и на холодильник и еще много на что. В этом случае, Вы заплатите не менее 150 тысяч рублей только за саму гелиосистему. Не забудьте прибавить оплату за монтаж. А прослужит такая установка не более года.

Оказывается, не стоит жадничать и торопиться. Так как система модульная, то без особых проблем можно добавлять солнечные батареи и аккумуляторы по мере необходимости и по мере роста Ваших потребностей, а не по желанию продавца. Нет никакой нужды одномоментно платить за солнечную систему максимально необходимой мощности.

Целесообразно купить солнечную батарею минимально-требуемой мощности в феврале или ранней весной. Опробовать и проверить систему на деле, набраться опыта по рациональному использованию. А уже осенью добавить необходимое количество модулей, увеличив площадь солнечных батарей (желательно эту возможность заранее предусмотреть!). Причем, выполнить работу по монтажу можно будет и самостоятельно. Тем более, что Вы уже видели как это делается. К слову, в осенне-зимний период возможны существенные скидки. Между прочим, солнечные батареи на 12 вольт легко помещаются на заднем сидении легкового автомобиля.

Ошибка вторая: неправильный выбор рабочего напряжения солнечной батареи

При установке солнечных батарей, следует грамотно подобрать рабочее напряжение и соответствующие аккумуляторы. Так, установив солнечные батареи на 24 или 48 вольт Вы испытаете ряд неудобств:

Ошибка третья: надежды на инверторы

Еще одна распространенная ошибка новичков, устанавливающих солнечные батареи для дома: запитать все через инвертор, то есть одна сеть с напряжением 220 вольт. Но поскольку кпд инверторов, в реальной жизни всего 75-80%, то лучше предусмотреть гибридную проводку: 12В и 220В. Кстати, ее можно запустить в одном кабеле. И теперь, все что может работать от 12В, пусть запитывается от 12В на здоровье (а это: освещение, телевизор, спутник и многое другое). Такое решение сократит потери энергии более чем на 30 %. Тем самым снизит мощность солнечных батарей и емкость АКБ.

И помните: включайте инвертор, только для работы с оборудованием, которому не подходит 12В. Однако, даже шуруповерт спокойно может работать от 12В.

Ошибка четвертая: выбор АКБ

Впервые устанавливая солнечные батареи для дома стоит остерегаться, когда Вам «впихивают» всевозможные модели аккумуляторов глубокого разряда. Таких не существует, за исключением щелочных, которые устанавливали раньше на тепловозы и электрокары. Особо следует отметить гелевые аккумуляторы. Мало того, что стоят они недешево, но с учетом следующих факторов, их не следует применять в принципе, а именно:

Устанавливая солнечные батареи для дома, используйте обычные недорогие, проверенные временем модели аккумуляторов. Подойдут даже б/у стартерные аккумуляторы, снятые с автомобиля. Такие устройства безотказно проработают еще лет 5-7. Поскольку здесь более комфортные условия, чем под капотом авто: нет перегрева (100 градусов в летний зной), огромных значений стартерных токов и вибрации. Благодаря статичности со дна аккумуляторов не поднимается шлам, нарушающий режим работы АКБ.

Ошибка пятая: неверная установка солнечных батарей

Солнечные батареи для дома будут работать эффективно, если грамотно и правильно их установить. Существует ряд нюансов, не соблюдая которые никогда не получится сэкономить на использовании альтернативной энергии:

Вместо заключения

Итак, решив установить солнечные батареи для дома и воспользоваться услугами соответствующих компаний, поинтересуйтесь у них информацией о выполненных проектах. Поверьте, у мало-мальски профессиональных организаций обязательно есть такие. Не соглашайтесь на отговорки: «Не удобно!», или «Нет под рукой…» Не поленитесь, свяжитесь с бывшими заказчиками и проанализируйте услышанное, а лучше увиденное. (Довольный клиент, как правило, легко делится хорошим результатом!). Помните, прежде чем расстаться с приличной суммой денег, стоит узнать как можно больше о тех, кому Вы ее планируете заплатить.

Источник

Принцип работы солнечной батареи, что такое солнечная батарея

История создания

Так исторически сложилось, что солнечные батареи – это уже вторая попытка человечества обуздать безграничную энергию Солнца и заставить ее работать себе на благо. Первыми появились солнечные коллекторы (солнечные термальные электростанции), в которых электричество вырабатывает нагретая до температуры кипения под сконцентрированными солнечными лучами вода.

что нужно для солнечной батареи чтобы она работала. Смотреть фото что нужно для солнечной батареи чтобы она работала. Смотреть картинку что нужно для солнечной батареи чтобы она работала. Картинка про что нужно для солнечной батареи чтобы она работала. Фото что нужно для солнечной батареи чтобы она работала
Солнечная термальная электростанция в испанском городе Севилья

Солнечные же батареи производят непосредственно электричество, что намного эффективнее. При прямой трансформации теряется значительно меньше энергии, чем при многоступенчатой, как у коллекторов (концентрация солнечных лучей, нагрев воды и выделение пара, вращение паровой турбины и только в конце выработка электричества генератором).

Современные солнечные батареи состоят из цепи фотоэлементов – полупроводниковых устройств, преобразующих солнечную энергию напрямую в электрический ток. Процесс преобразования энергии солнца в электрической ток называется фотоэлектрическим эффектом.

Данное явление открыл французский физик Александр Эдмон Беккерель в середине XIX века. Первый же действующий фотоэлемент спустя полвека создал русский ученый Александр Столетов. А уже в двадцатом столетии фотоэлектрический эффект количественно описал не требующий представления Альберт Эйнштейн.

что нужно для солнечной батареи чтобы она работала. Смотреть фото что нужно для солнечной батареи чтобы она работала. Смотреть картинку что нужно для солнечной батареи чтобы она работала. Картинка про что нужно для солнечной батареи чтобы она работала. Фото что нужно для солнечной батареи чтобы она работала
Беккерель, Столетов и Эйнштейн – именно этому «трио» ученых мы обязаны созданием солнечных батарей

Как работает технология

Принцип действия солнечных батарей основан на возможности взаимодействия солнечного света (а это электромагнитное излучение) с веществом. При этом взаимодействии энергия фотонов (световых частиц) передается электронам вещества, то есть, энергия света преобразуется в постоянный электрический ток.

Явление было открыто еще в 19 веке, и получило название фотоэлектрического эффекта (фотоэффекта). Для его возникновения и поддержания необходимы фотоэлектрические преобразователи (фотоэлементы), полупроводники по способу функционирования.

Полупроводник – материал с избытком или недостатком электронов. В полупроводниковом элементе имеется два слоя с разной проводимостью. Слой с лишними электронами играет роль катода, слой с недостатком электронов – анода. В большинстве современных изделий роль полупроводников выполняют кремниевые пластины, обладающие необходимыми полупроводниковыми свойствами.

Отдельные фотоэлементы имеют слишком малую мощность, чтобы питать электроприбор. Поэтому их объединяют в электрическую цепь, которая формирует то, что называют солнечной батареей (или панелью). Устройство имеет следующее строение:

Плюсы и минусы

Энергия солнца относится к альтернативным, возобновляемым источникам, ее использование считается прогрессивным способом энергопотребления. Ее преимущества описывают следующим образом:

Люди, скептически относящиеся к установке солнечных батарей, оперируют следующими фактами:

Виды солнечных батарей

В настоящее время солнечные батареи представлены несколькими вариантами в зависимости от типа их устройства, и от материала, из которого изготовлен фотоэлектрический слой.

I. Классификация по типу их устройства:

II. В зависимости от материала, из которого изготовлен фотоэлектрический слой выделяют:

1. Солнечные батареи, фотоэлемент которых выполнен из кремния. Они в свою очередь бывают монокристаллическими, поликристаллическими и аморфными. Монокристаллические панели достаточно дорогой вариант, но они отличаются высокой мощностью.

Поликристаллические дешевле, чем монокристаллические панели. Такие панели медленней теряют свою эффективность с увеличением сроков службы, а так же при нагревании.

Аморфные представлены в основном тонкопленочными панелями. Такое устройство солнечной батареи позволяет генерировать солнечный свет, даже в плохих погодных условиях;

2. Солнечные батареи, фотоэлемент которых выполнен из теллурида кадмия;

3. Солнечные батареи, фотоэлемент которых выполнен из селена;

4. Солнечные батареи, фотоэлемент которых выполнен из полимерных материалов;

5. Из органических соединений;

6. Из арсенида галлия;

7. Из нескольких материалов одновременно.

Основные типы, которые получили распространение, это многопереходные кремниевые фотоэлементы.

Фотоэлементы, выполненные из кремния, отличаются высокой чувствительностью к нагреванию, компактностью, надежностью и высоким уровнем КПД (коэффициента полезного действия).

Другие материалы не получили широкого распространения в связи с большой стоимостью.

Разновидности

По способу функционирования солнечные системы делятся на два типа:

Технологии производства и устройства солнечной батареи отличаются, главным образом, методом нанесения кремния. Большинство систем используют модули следующих типов:

Также возможна установка следующих устройств:

Устройство солнечной батареи

Для того, чтобы солнечная батарея была способна преобразовывать свет солнца в ток, необходимы следующие элементы:

Виды кристаллов фотоэлементов

Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

что нужно для солнечной батареи чтобы она работала. Смотреть фото что нужно для солнечной батареи чтобы она работала. Смотреть картинку что нужно для солнечной батареи чтобы она работала. Картинка про что нужно для солнечной батареи чтобы она работала. Фото что нужно для солнечной батареи чтобы она работала
Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут

Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

Галерея изображенийФото из Солнечные электростанции для автономного электроснабжения собирают из солнечных панелей, составной частью которых является полупроводниковый фотоэлементПо способу производства и непосредственно связанной с ним эффективности фотоэлементы делят на моно- и поликристаллические видыМонокристаллические варианты производятся из цельного кристалла, выращенного в лабораторных условиях. Они темнее, внешне выглядят как прямоугольник со скошенными угламиФотоэлементы из монокристаллического кремния генерируют энергию с КПД в 20-22%. По стоимости они дороже поликристаллическихДля устройства автономной электростанции можно приобрести как отдельные фотоэлементы для самостоятельной сборки, так и батареи в собранном и подготовленном к монтажу видеПоликристаллические фотоэлементы изготавливаются из кремния, полученного путем расплава и дальнейшего отвердевания. Внешне это прямоугольники с четкими геометрическими формами, цвет у них светлее и синее, производительность меньше — до 18%Собирают солнечные батареи из фотоэлементов обоих типов по общим правилам. В готовом к установке модуле должно быть 36 или 72 штукСборка как моно-, так и поликристаллических фотоэлементов производится пайкой с лицевой и тыльной стороны. Соединяют их последовательноГелио-электростанция на загородном участкеСолнечные монокристаллические батареиВнешний вид солнечных батарей на монокристаллахМонокристаллическая единица солнечной батареиПоставка готовой к монтажу солнечной батареиПоликристаллический фотоэлемент для солнечной батареиГелио-батарея из поликристаллических фотоэлементовИзготовление солнечной батареи своими руками

У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

что нужно для солнечной батареи чтобы она работала. Смотреть фото что нужно для солнечной батареи чтобы она работала. Смотреть картинку что нужно для солнечной батареи чтобы она работала. Картинка про что нужно для солнечной батареи чтобы она работала. Фото что нужно для солнечной батареи чтобы она работала
В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам

Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

Настоящим прорывов в области использования солнечной энергии стала разработка гибких панелей с аморфным фотоэлектрическим кремнием:

Галерея изображенийФото из В изготовлении гибких солнечных батарей кремний слоями напыляется на полимерную пленку или металлическую фольгу. Правда их КПД в два раза ниже, чем у кристаллическихИзобретение гибких солнечных панелей существенно расширило сферу использования. К тому же они прочнее и легче поли- и монокристаллических элементовВ продаже появились портативные зарядные устройства, выполненные на основе гибкой батареи. Устройство снабжено аккумулятором для накопления зарядаГибкие модели солнечных батарей лишены основного недостатка кристаллических фотоэлементов — хрупкости. Их без опасений можно брать в походы, дальние путешествия, морские прогулкиГибкий вариант солнечной батареиНаклейка гибкого фотоэлемента на жалюзиЗарядка для мобильников на гибкой батарееУстойчивая к механическим воздействиям панель

Принцип работы солнечной панели

При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

что нужно для солнечной батареи чтобы она работала. Смотреть фото что нужно для солнечной батареи чтобы она работала. Смотреть картинку что нужно для солнечной батареи чтобы она работала. Картинка про что нужно для солнечной батареи чтобы она работала. Фото что нужно для солнечной батареи чтобы она работала
Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами

Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

что нужно для солнечной батареи чтобы она работала. Смотреть фото что нужно для солнечной батареи чтобы она работала. Смотреть картинку что нужно для солнечной батареи чтобы она работала. Картинка про что нужно для солнечной батареи чтобы она работала. Фото что нужно для солнечной батареи чтобы она работала
Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока

При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 °С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

Эффективность фотоэлементов и модулей

Фотоэлементы и модули делятся в зависимости от типа и бывают: монокристалические, поликристалические, аморфные (гибкие, пленочные).

В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд.

В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4×4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %, а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали использующий линзы Френеля фотоэлемент с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 %. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46 %.

В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца.

Также, в 2018 году, с открытием флексо-фотовольтаического эффекта, обнаружена возможность увеличения КПД фотоэлементов. За счёт продления жизни горячих носителей (электронов) теоретический предел их эффективности поднялся с 34 сразу до 66 процентов.

В 2019 году российские учёные из Сколковского института науки и технологий (Сколтеха), Института неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (СО РАН) и Института проблем химической физики РАН получили принципиально новый полупроводниковый материал для солнечных батарей, лишённый большинства недостатков материалов, применяемых сегодня. Группа российских исследователей опубликовала в журнале Journal of Materials Chemistry A [en] результаты работы по применению для солнечных батарей нового разработанного ими полупроводникового материала — комплексного полимерного йодида висмута ( <[Bi3I10]>и <[BiI4]>), структурно подобного минералу перовкситу (природному титанату кальция), который показал рекордный коэффициент преобразования света в электроэнергию. Та же группа учёных создала второй аналогичный полупроводник на основе комплексного бромида сурьмы с перовкситоподобной структурой.

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях [неавторитетный источник?]

Тип Коэффициент фотоэлектрического преобразования, %
Кремниевые24,7
Si (кристаллический)
Si (поликристаллический)
Si (тонкопленочная передача)
Si (тонкопленочный субмодуль)10,4
III-V
GaAs (кристаллический)25,1
GaAs (тонкопленочный)24,5
GaAs (поликристаллический)18,2
InP (кристаллический)21,9
Тонкие плёнки халькогенидов
CIGS (фотоэлемент)19,9
CIGS (субмодуль)16,6
CdTe (фотоэлемент)16,5
Аморфный/Нанокристаллический кремний
Si (аморфный)9,5
Si (нанокристаллический)10,1
Фотохимические
На базе органических красителей10,4
На базе органических красителей (субмодуль)7,9
Органические
Органический полимер5,15
Многослойные
GaInP/GaAs/Ge32,0
GaInP/GaAs30,3
GaAs/CIS (тонкопленочный)25,8
a-Si/mc-Si (тонкий субмодуль)11,7

Эффективность батарей гелиосистемы

Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

Эффективность солнечных панелей зависит от:

Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

что нужно для солнечной батареи чтобы она работала. Смотреть фото что нужно для солнечной батареи чтобы она работала. Смотреть картинку что нужно для солнечной батареи чтобы она работала. Картинка про что нужно для солнечной батареи чтобы она работала. Фото что нужно для солнечной батареи чтобы она работала
Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно

Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться контроллером управления, который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

Солнце батарею из фотоэлементов в идеале должно освещать равномерно. Если один из ее участков оказывается затемненным, то неосвещенные ФЭП превращаются в паразитную нагрузку. Они не только в подобной ситуации не генерируют энергию, но еще и забирают ее у работающих элементов.

Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

Схема электропитания дома от солнца

Система солнечного электроснабжения включает:

Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

что нужно для солнечной батареи чтобы она работала. Смотреть фото что нужно для солнечной батареи чтобы она работала. Смотреть картинку что нужно для солнечной батареи чтобы она работала. Картинка про что нужно для солнечной батареи чтобы она работала. Фото что нужно для солнечной батареи чтобы она работала
Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы

Для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый нужен инвертор. Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

Тонкости, важные для выбора

Чтобы оборудование оказалось максимально эффективным, рекомендуют определиться со следующими вопросами:

Крупнейшие производители

Лидерами глобального производства солнечных батарей являются компании Suntech, Yingli, Trina Solar, First Solar и Sharp Solar. Первые три представляют Китай, четвертая – США, а пятая, как нетрудно догадаться, является подразделением японской корпорации Sharp.

что нужно для солнечной батареи чтобы она работала. Смотреть фото что нужно для солнечной батареи чтобы она работала. Смотреть картинку что нужно для солнечной батареи чтобы она работала. Картинка про что нужно для солнечной батареи чтобы она работала. Фото что нужно для солнечной батареи чтобы она работала
Гольфкар на солнечных батареях – бесшумное и экологически чистое средство передвижения

Американская компания First Solar не только производит солнечные батареи, но и принимает непосредственное участие в проектировании и строительстве солнечных электростанций. Мощнейшая в мире СЭС Агуа-Калиенте, которая находится в штате Аризона, США – дело рук инженеров First Solar.

Крупнейшую же украинскую СЭС «Перово» строила и снабжала солнечными панелями австрийская компания Activ Solar.

Китайская же компания Suntech прославилась тем, что готовила к летней Олимпиаде-2008 футбольный стадион под названием «Птичье гнездо» в Пекине. Вырабатываемая на протяжении дня с помощью солнечных батарей электроэнергия аккумулируется, а затем используется для освещения стадиона, полива травы на футбольном поле и работы телекоммуникационного оборудования.

что нужно для солнечной батареи чтобы она работала. Смотреть фото что нужно для солнечной батареи чтобы она работала. Смотреть картинку что нужно для солнечной батареи чтобы она работала. Картинка про что нужно для солнечной батареи чтобы она работала. Фото что нужно для солнечной батареи чтобы она работала
Национальный стадион в Пекине густо усеян солнечными батареями производства Suntech

Нагрузки и энергопотребление

Принудить энергию солнца работать на себя непросто и дорого. Первый шаг — определить для своего хозяйства оптимальную пиковую нагрузку и рациональное среднесуточное энергопотребление. Первый параметр определяют в киловаттах, а второй — в киловатт-часах.

Пик нагрузки приходится на тот момент, когда возникает необходимость включить одновременно несколько единиц домашней техники. Для вычисления мощности, каждую из них суммируют, учитывая высокие пусковые характеристики отдельных ее частей. Владея сведениями о максимуме потребляемой мощности, можно исключить те электроприборы, одновременная работа которых не так уж необходима. От этого показателя зависит выбор мощностных характеристик элементов электростанции, а следовательно, и стоимость ее в целом. Если мощность электроприбора и время, в течение которого он функционирует на протяжении суток, перемножить, узнаем потребность его в электроэнергии на сутки.

Путем сложения суточного электропотребления каждой единицы домашней техники вычисляют общую среднесуточную потребность в электроэнергии. Только при таком подходе можно расходовать солнечное электричество рационально. Полученные итоговые значения нужны и для вычисления емкости аккумуляторов. Стоимость этой важной единицы системы также зависит от итогов вычислений.

Расчет электрических показателей

Для начала все домашние электроприборы следует занести в таблицу. В ней должно быть 30 граф, а количество строк равно числу приборов. В первую колонку вносят порядковый номер, во вторую — название электрического прибора, в третью — потребляемую мощность. Следующие столбцы, вплоть до 27 — расписанные по часам сутки, начиная с 0 часов и заканчивая 24. Здесь же через дробь в десятичном виде указывают время работы прибора (числитель) и его потребляемая мощность (знаменатель).

Так будет легко подсчитать часовые нагрузки. В колонке под номером 28 записывают суммарное время, на протяжении которого работала техника в течение суток. В следующую колонку вносят потребление электричества конкретным электроприбором.

Определяют его путем умножения времени на индивидуальную мощность, потребляемую прибором. В 30 колонке — примечания и промежуточные подсчеты.

По данной таблице, вы сможете рассчитать общую потребляемую мощность всех приборов для вашего частного дома или дачи

Оптимизация полученных значений

Приборы, которые не относятся к разряду самых необходимых, выгодней питать от генератора. Когда гелиостанция — резервный вариант, то при временном отсутствии централизованной подачи электропитания, также лучше не использовать энергоемкую технику до момента, пока ситуация не нормализуется.

Солнечная электростанция будет работать стабильно в безаварийном режиме, если нагрузки выровнять по максимуму, исключить возможность резких временных провалов электропотребления. Опираясь на эти критерии, можно выбрать для своей солнечной установки экономичные варианты составляющих ее модулей. Полнее раскрыть всю картину поможет график.

На нем четко можно проследить неравномерность потребления электроэнергии и сделать так, чтобы пиковые нагрузки приходились на период, когда солнце наиболее активно.

На данном графике вы сможете отследить как неравномерно энергопотребление: нам нужно – сдвинуть максимумы на время наибольшей активности солнца и снизить потребление электроэнергии в сутки, особенно ночью.

Оптимизировать нерациональный график энергопотребления можно на базе спецификации, снизив как суточное потребление, так и среднесуточную почасовую нагрузку. Возможно, нет смысла покупать более мощные и дорогие солнечные модули, а разумней смириться с небольшими временными неудобствами.

Выводы

Еще два десятилетия назад диковинкой казались микрокалькуляторы с фотоэлементами, что позволяло не менять в них «батарейку-таблетку» годами. Сейчас же мобильные телефоны со встроенной в заднюю крышку солнечной панелью никого не удивляют. А ведь это мелочь в сравнении с автомобилями и самолетами (пусть и беспилотными), которые научились передвигаться при помощи одной лишь солнечной энергии.

Будущее солнечных батарей видится точно таким же светлым, как само солнце. Хочется верить, что именно солнечные батареи позволят наконец-то вылечить смартфоны и планшеты от «розеткозависимости».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *