что больше синус или косинус
Тригонометрия простыми словами
Официальное объяснение тригонометрии вы можете почитать в учебниках или на других интернет сайтах, а в этой статье мы хотим объяснить суть тригонометрии «на пальцах».
Для удобства работы с тригонометрическими функциями был придуман тригонометрический круг, который представляет собой окружность с единичным радиусом (r = 1).
Тогда проекции радиуса на оси X и Y (OB и OA’) равны катетам построенного треугольника ОАВ, которые в свою очередь равны значениям синуса и косинуса данного угла.
Тангенс и котангенс получаются соответстсвенно из треугольников OCD и OC’D’, построенных подобно исходному треугольнику OAB.
Для упрощения обучения тригонометрическим функциям в школе используют только некоторые удобные углы в 0°, 30°, 45°, 60° и 90°.
Значения тригонометрических функций повторяются каждые 90° и в некоторых случаях меняя знак на отрицательный.
Достаточно запомнить значения некоторых важных углов и понять принцип повтора значений для бОльших углов.
Значения тригонометрических функций
для первой четверти круга (0° – 90°)
Принцип повтора знаков тригонометрических функций
Угол может быть как положительный, так и отрицательный. Отрицательный угол считается угол, откладываемый в противоположную сторону.
В виду того, что полная окружность составляет 360°, значения тригонометрических функций углов, описывающих одинаковое положение радиуса, РАВНЫ.
Для лучшего понимания и запоминания значений тригонометрических функций воспользуйтесь динамическим макетом тригонометрического круга ниже. Нажимая кнопки «+» и «–» значения угла будут увеличиваться или уменьшаться соответственно.
Тригонометрический круг
Углы в радианах
Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций.
Геометрия. Урок 1. Тригонометрия
Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Тригонометрия в прямоугольном треугольнике
Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.
Синус угла – отношение противолежащего катета к гипотенузе.
sin α = Противолежащий катет гипотенуза
Косинус угла – отношение прилежащего катета к гипотенузе.
cos α = Прилежащий катет гипотенуза
Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).
tg α = Противолежащий катет Прилежащий катет
Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).
ctg α = Прилежащий катет Противолежащий катет
tg ∠ A = sin ∠ A cos ∠ A = C B A C
ctg ∠ A = cos ∠ A sin ∠ A = A C C B
tg ∠ B = sin ∠ B cos ∠ B = A C C B
ctg ∠ B = cos ∠ B sin ∠ B = C B A C
Тригонометрия: Тригонометрический круг
Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.
Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.
Рассмотрим прямоугольный треугольник A O B :
cos α = O B O A = O B 1 = O B
sin α = A B O A = A B 1 = A B
Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).
Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :
Ещё одно замечание.
Синус тупого угла – положительная величина, а косинус – отрицательная.
Основное тригонометрическое тождество
sin 2 α + cos 2 α = 1
Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :
A B 2 + O B 2 = O A 2
sin 2 α + cos 2 α = R 2
sin 2 α + cos 2 α = 1
Тригонометрия: Таблица значений тригонометрических функций
Тригонометрия: градусы и радианы
Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!
Тригонометрия: Формулы приведения
Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,
можно заметить, что:
sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °
sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °
sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °
sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °
cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °
cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °
cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °
cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °
Рассмотрим тупой угол β :
Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:
sin ( 180 ° − α ) = sin α
cos ( 180 ° − α ) = − cos α
tg ( 180 ° − α ) = − tg α
ctg ( 180 ° − α ) = − ctg α
Тригонометрия: Теорема синусов
В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.
a sin ∠ A = b sin ∠ B = c sin ∠ C
Тригонометрия: Расширенная теорема синусов
Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R
Тригонометрия: Теорема косинусов
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A
b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B
c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с тригонометрией.
Тригонометрия: Тригонометрические уравнения
Это тема 10-11 классов.
Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!
Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы
Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.
Синус, косинус, тангенс и котангенс. Определения
Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.
Определения тригонометрических функций
Данные определения даны для острого угла прямоугольного треугольника!
В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.
Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.
Угол поворота
В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.
Синус (sin) угла поворота
При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.
Числа
Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?
Синус, косинус, тангенс, котангенс числа
Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.
Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.
Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.
Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.
Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.
Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.
Тригонометрические функции углового и числового аргумента
Основные функции тригонометрии
Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.
Связь определений sin, cos, tg и ctg из геометрии и тригонометрии
Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.
В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.
sin α = A 1 H O A 1 = y 1 = y
Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.
Таблица синусов и косинусов углов от 0 до 360 градусов
Таблица синусов и косинусов может пригодится учащимся, студентам и инженерам для произведения тригонометрических расчетов. Она позволяет найти синус и косинус любого целого угла от 0 до 360 градусов.
Пользоваться таблицей очень просто — найдите нужный угол и в той же строке увидите синус и косинус этого угла. Для примера возьмем угол, равный 30 градусам. Найдя его в таблице мы увидим, что Cos(30) = 0,866025404, а Sin(30) = 0,5.
Угол (градусы) | Косинус (Cos) | Синус (Sin) |
---|---|---|
0° | 1 | 0 |
1° | 0,999847695 | 0,017452406 |
2° | 0,999390827 | 0,034899497 |
3° | 0,998629535 | 0,052335956 |
4° | 0,99756405 | 0,069756474 |
5° | 0,996194698 | 0,087155743 |
6° | 0,994521895 | 0,104528463 |
7° | 0,992546152 | 0,121869343 |
8° | 0,990268069 | 0,139173101 |
9° | 0,987688341 | 0,156434465 |
10° | 0,984807753 | 0,173648178 |
11° | 0,981627183 | 0,190808995 |
12° | 0,978147601 | 0,207911691 |
13° | 0,974370065 | 0,224951054 |
14° | 0,970295726 | 0,241921896 |
15° | 0,965925826 | 0,258819045 |
16° | 0,961261696 | 0,275637356 |
17° | 0,956304756 | 0,292371705 |
18° | 0,951056516 | 0,309016994 |
19° | 0,945518576 | 0,325568154 |
20° | 0,939692621 | 0,342020143 |
21° | 0,933580426 | 0,35836795 |
22° | 0,927183855 | 0,374606593 |
23° | 0,920504853 | 0,390731128 |
24° | 0,913545458 | 0,406736643 |
25° | 0,906307787 | 0,422618262 |
26° | 0,898794046 | 0,438371147 |
27° | 0,891006524 | 0,4539905 |
28° | 0,882947593 | 0,469471563 |
29° | 0,874619707 | 0,48480962 |
30° | 0,866025404 | 0,5 |
31° | 0,857167301 | 0,515038075 |
32° | 0,848048096 | 0,529919264 |
33° | 0,838670568 | 0,544639035 |
34° | 0,829037573 | 0,559192903 |
35° | 0,819152044 | 0,573576436 |
36° | 0,809016994 | 0,587785252 |
37° | 0,79863551 | 0,601815023 |
38° | 0,788010754 | 0,615661475 |
39° | 0,777145961 | 0,629320391 |
40° | 0,766044443 | 0,64278761 |
41° | 0,75470958 | 0,656059029 |
42° | 0,743144825 | 0,669130606 |
43° | 0,731353702 | 0,68199836 |
44° | 0,7193398 | 0,69465837 |
45° | 0,707106781 | 0,707106781 |
46° | 0,69465837 | 0,7193398 |
47° | 0,68199836 | 0,731353702 |
48° | 0,669130606 | 0,743144825 |
49° | 0,656059029 | 0,75470958 |
50° | 0,64278761 | 0,766044443 |
51° | 0,629320391 | 0,777145961 |
52° | 0,615661475 | 0,788010754 |
53° | 0,601815023 | 0,79863551 |
54° | 0,587785252 | 0,809016994 |
55° | 0,573576436 | 0,819152044 |
56° | 0,559192903 | 0,829037573 |
57° | 0,544639035 | 0,838670568 |
58° | 0,529919264 | 0,848048096 |
59° | 0,515038075 | 0,857167301 |
60° | 0,5 | 0,866025404 |
61° | 0,48480962 | 0,874619707 |
62° | 0,469471563 | 0,882947593 |
63° | 0,4539905 | 0,891006524 |
64° | 0,438371147 | 0,898794046 |
65° | 0,422618262 | 0,906307787 |
66° | 0,406736643 | 0,913545458 |
67° | 0,390731128 | 0,920504853 |
68° | 0,374606593 | 0,927183855 |
69° | 0,35836795 | 0,933580426 |
70° | 0,342020143 | 0,939692621 |
71° | 0,325568154 | 0,945518576 |
72° | 0,309016994 | 0,951056516 |
73° | 0,292371705 | 0,956304756 |
74° | 0,275637356 | 0,961261696 |
75° | 0,258819045 | 0,965925826 |
76° | 0,241921896 | 0,970295726 |
77° | 0,224951054 | 0,974370065 |
78° | 0,207911691 | 0,978147601 |
79° | 0,190808995 | 0,981627183 |
80° | 0,173648178 | 0,984807753 |
81° | 0,156434465 | 0,987688341 |
82° | 0,139173101 | 0,990268069 |
83° | 0,121869343 | 0,992546152 |
84° | 0,104528463 | 0,994521895 |
85° | 0,087155743 | 0,996194698 |
86° | 0,069756474 | 0,99756405 |
87° | 0,052335956 | 0,998629535 |
88° | 0,034899497 | 0,999390827 |
89° | 0,017452406 | 0,999847695 |
90° | 0 | 1 |
91° | -0,017452406 | 0,999847695 |
92° | -0,034899497 | 0,999390827 |
93° | -0,052335956 | 0,998629535 |
94° | -0,069756474 | 0,99756405 |
95° | -0,087155743 | 0,996194698 |
96° | -0,104528463 | 0,994521895 |
97° | -0,121869343 | 0,992546152 |
98° | -0,139173101 | 0,990268069 |
99° | -0,156434465 | 0,987688341 |
100° | -0,173648178 | 0,984807753 |
101° | -0,190808995 | 0,981627183 |
102° | -0,207911691 | 0,978147601 |
103° | -0,224951054 | 0,974370065 |
104° | -0,241921896 | 0,970295726 |
105° | -0,258819045 | 0,965925826 |
106° | -0,275637356 | 0,961261696 |
107° | -0,292371705 | 0,956304756 |
108° | -0,309016994 | 0,951056516 |
109° | -0,325568154 | 0,945518576 |
110° | -0,342020143 | 0,939692621 |
111° | -0,35836795 | 0,933580426 |
112° | -0,374606593 | 0,927183855 |
113° | -0,390731128 | 0,920504853 |
114° | -0,406736643 | 0,913545458 |
115° | -0,422618262 | 0,906307787 |
116° | -0,438371147 | 0,898794046 |
117° | -0,4539905 | 0,891006524 |
118° | -0,469471563 | 0,882947593 |
119° | -0,48480962 | 0,874619707 |
120° | -0,5 | 0,866025404 |
121° | -0,515038075 | 0,857167301 |
122° | -0,529919264 | 0,848048096 |
123° | -0,544639035 | 0,838670568 |
124° | -0,559192903 | 0,829037573 |
125° | -0,573576436 | 0,819152044 |
126° | -0,587785252 | 0,809016994 |
127° | -0,601815023 | 0,79863551 |
128° | -0,615661475 | 0,788010754 |
129° | -0,629320391 | 0,777145961 |
130° | -0,64278761 | 0,766044443 |
131° | -0,656059029 | 0,75470958 |
132° | -0,669130606 | 0,743144825 |
133° | -0,68199836 | 0,731353702 |
134° | -0,69465837 | 0,7193398 |
135° | -0,707106781 | 0,707106781 |
136° | -0,7193398 | 0,69465837 |
137° | -0,731353702 | 0,68199836 |
138° | -0,743144825 | 0,669130606 |
139° | -0,75470958 | 0,656059029 |
140° | -0,766044443 | 0,64278761 |
141° | -0,777145961 | 0,629320391 |
142° | -0,788010754 | 0,615661475 |
143° | -0,79863551 | 0,601815023 |
144° | -0,809016994 | 0,587785252 |
145° | -0,819152044 | 0,573576436 |
146° | -0,829037573 | 0,559192903 |
147° | -0,838670568 | 0,544639035 |
148° | -0,848048096 | 0,529919264 |
149° | -0,857167301 | 0,515038075 |
150° | -0,866025404 | 0,5 |
151° | -0,874619707 | 0,48480962 |
152° | -0,882947593 | 0,469471563 |
153° | -0,891006524 | 0,4539905 |
154° | -0,898794046 | 0,438371147 |
155° | -0,906307787 | 0,422618262 |
156° | -0,913545458 | 0,406736643 |
157° | -0,920504853 | 0,390731128 |
158° | -0,927183855 | 0,374606593 |
159° | -0,933580426 | 0,35836795 |
160° | -0,939692621 | 0,342020143 |
161° | -0,945518576 | 0,325568154 |
162° | -0,951056516 | 0,309016994 |
163° | -0,956304756 | 0,292371705 |
164° | -0,961261696 | 0,275637356 |
165° | -0,965925826 | 0,258819045 |
166° | -0,970295726 | 0,241921896 |
167° | -0,974370065 | 0,224951054 |
168° | -0,978147601 | 0,207911691 |
169° | -0,981627183 | 0,190808995 |
170° | -0,984807753 | 0,173648178 |
171° | -0,987688341 | 0,156434465 |
172° | -0,990268069 | 0,139173101 |
173° | -0,992546152 | 0,121869343 |
174° | -0,994521895 | 0,104528463 |
175° | -0,996194698 | 0,087155743 |
176° | -0,99756405 | 0,069756474 |
177° | -0,998629535 | 0,052335956 |
178° | -0,999390827 | 0,034899497 |
179° | -0,999847695 | 0,017452406 |
180° | -1 | 1,22515E-16 |
181° | -0,999847695 | -0,017452406 |
182° | -0,999390827 | -0,034899497 |
183° | -0,998629535 | -0,052335956 |
184° | -0,99756405 | -0,069756474 |
185° | -0,996194698 | -0,087155743 |
186° | -0,994521895 | -0,104528463 |
187° | -0,992546152 | -0,121869343 |
188° | -0,990268069 | -0,139173101 |
189° | -0,987688341 | -0,156434465 |
190° | -0,984807753 | -0,173648178 |
191° | -0,981627183 | -0,190808995 |
192° | -0,978147601 | -0,207911691 |
193° | -0,974370065 | -0,224951054 |
194° | -0,970295726 | -0,241921896 |
195° | -0,965925826 | -0,258819045 |
196° | -0,961261696 | -0,275637356 |
197° | -0,956304756 | -0,292371705 |
198° | -0,951056516 | -0,309016994 |
199° | -0,945518576 | -0,325568154 |
200° | -0,939692621 | -0,342020143 |
201° | -0,933580426 | -0,35836795 |
202° | -0,927183855 | -0,374606593 |
203° | -0,920504853 | -0,390731128 |
204° | -0,913545458 | -0,406736643 |
205° | -0,906307787 | -0,422618262 |
206° | -0,898794046 | -0,438371147 |
207° | -0,891006524 | -0,4539905 |
208° | -0,882947593 | -0,469471563 |
209° | -0,874619707 | -0,48480962 |
210° | -0,866025404 | -0,5 |
211° | -0,857167301 | -0,515038075 |
212° | -0,848048096 | -0,529919264 |
213° | -0,838670568 | -0,544639035 |
214° | -0,829037573 | -0,559192903 |
215° | -0,819152044 | -0,573576436 |
216° | -0,809016994 | -0,587785252 |
217° | -0,79863551 | -0,601815023 |
218° | -0,788010754 | -0,615661475 |
219° | -0,777145961 | -0,629320391 |
220° | -0,766044443 | -0,64278761 |
221° | -0,75470958 | -0,656059029 |
222° | -0,743144825 | -0,669130606 |
223° | -0,731353702 | -0,68199836 |
224° | -0,7193398 | -0,69465837 |
225° | -0,707106781 | -0,707106781 |
226° | -0,69465837 | -0,7193398 |
227° | -0,68199836 | -0,731353702 |
228° | -0,669130606 | -0,743144825 |
229° | -0,656059029 | -0,75470958 |
230° | -0,64278761 | -0,766044443 |
231° | -0,629320391 | -0,777145961 |
232° | -0,615661475 | -0,788010754 |
233° | -0,601815023 | -0,79863551 |
234° | -0,587785252 | -0,809016994 |
235° | -0,573576436 | -0,819152044 |
236° | -0,559192903 | -0,829037573 |
237° | -0,544639035 | -0,838670568 |
238° | -0,529919264 | -0,848048096 |
239° | -0,515038075 | -0,857167301 |
240° | -0,5 | -0,866025404 |
241° | -0,48480962 | -0,874619707 |
242° | -0,469471563 | -0,882947593 |
243° | -0,4539905 | -0,891006524 |
244° | -0,438371147 | -0,898794046 |
245° | -0,422618262 | -0,906307787 |
246° | -0,406736643 | -0,913545458 |
247° | -0,390731128 | -0,920504853 |
248° | -0,374606593 | -0,927183855 |
249° | -0,35836795 | -0,933580426 |
250° | -0,342020143 | -0,939692621 |
251° | -0,325568154 | -0,945518576 |
252° | -0,309016994 | -0,951056516 |
253° | -0,292371705 | -0,956304756 |
254° | -0,275637356 | -0,961261696 |
255° | -0,258819045 | -0,965925826 |
256° | -0,241921896 | -0,970295726 |
257° | -0,224951054 | -0,974370065 |
258° | -0,207911691 | -0,978147601 |
259° | -0,190808995 | -0,981627183 |
260° | -0,173648178 | -0,984807753 |
261° | -0,156434465 | -0,987688341 |
262° | -0,139173101 | -0,990268069 |
263° | -0,121869343 | -0,992546152 |
264° | -0,104528463 | -0,994521895 |
265° | -0,087155743 | -0,996194698 |
266° | -0,069756474 | -0,99756405 |
267° | -0,052335956 | -0,998629535 |
268° | -0,034899497 | -0,999390827 |
269° | -0,017452406 | -0,999847695 |
270° | -1,83772E-16 | -1 |
271° | 0,017452406 | -0,999847695 |
272° | 0,034899497 | -0,999390827 |
273° | 0,052335956 | -0,998629535 |
274° | 0,069756474 | -0,99756405 |
275° | 0,087155743 | -0,996194698 |
276° | 0,104528463 | -0,994521895 |
277° | 0,121869343 | -0,992546152 |
278° | 0,139173101 | -0,990268069 |
279° | 0,156434465 | -0,987688341 |
280° | 0,173648178 | -0,984807753 |
281° | 0,190808995 | -0,981627183 |
282° | 0,207911691 | -0,978147601 |
283° | 0,224951054 | -0,974370065 |
284° | 0,241921896 | -0,970295726 |
285° | 0,258819045 | -0,965925826 |
286° | 0,275637356 | -0,961261696 |
287° | 0,292371705 | -0,956304756 |
288° | 0,309016994 | -0,951056516 |
289° | 0,325568154 | -0,945518576 |
290° | 0,342020143 | -0,939692621 |
291° | 0,35836795 | -0,933580426 |
292° | 0,374606593 | -0,927183855 |
293° | 0,390731128 | -0,920504853 |
294° | 0,406736643 | -0,913545458 |
295° | 0,422618262 | -0,906307787 |
296° | 0,438371147 | -0,898794046 |
297° | 0,4539905 | -0,891006524 |
298° | 0,469471563 | -0,882947593 |
299° | 0,48480962 | -0,874619707 |
300° | 0,5 | -0,866025404 |
301° | 0,515038075 | -0,857167301 |
302° | 0,529919264 | -0,848048096 |
303° | 0,544639035 | -0,838670568 |
304° | 0,559192903 | -0,829037573 |
305° | 0,573576436 | -0,819152044 |
306° | 0,587785252 | -0,809016994 |
307° | 0,601815023 | -0,79863551 |
308° | 0,615661475 | -0,788010754 |
309° | 0,629320391 | -0,777145961 |
310° | 0,64278761 | -0,766044443 |
311° | 0,656059029 | -0,75470958 |
312° | 0,669130606 | -0,743144825 |
313° | 0,68199836 | -0,731353702 |
314° | 0,69465837 | -0,7193398 |
315° | 0,707106781 | -0,707106781 |
316° | 0,7193398 | -0,69465837 |
317° | 0,731353702 | -0,68199836 |
318° | 0,743144825 | -0,669130606 |
319° | 0,75470958 | -0,656059029 |
320° | 0,766044443 | -0,64278761 |
321° | 0,777145961 | -0,629320391 |
322° | 0,788010754 | -0,615661475 |
323° | 0,79863551 | -0,601815023 |
324° | 0,809016994 | -0,587785252 |
325° | 0,819152044 | -0,573576436 |
326° | 0,829037573 | -0,559192903 |
327° | 0,838670568 | -0,544639035 |
328° | 0,848048096 | -0,529919264 |
329° | 0,857167301 | -0,515038075 |
330° | 0,866025404 | -0,5 |
331° | 0,874619707 | -0,48480962 |
332° | 0,882947593 | -0,469471563 |
333° | 0,891006524 | -0,4539905 |
334° | 0,898794046 | -0,438371147 |
335° | 0,906307787 | -0,422618262 |
336° | 0,913545458 | -0,406736643 |
337° | 0,920504853 | -0,390731128 |
338° | 0,927183855 | -0,374606593 |
339° | 0,933580426 | -0,35836795 |
340° | 0,939692621 | -0,342020143 |
341° | 0,945518576 | -0,325568154 |
342° | 0,951056516 | -0,309016994 |
343° | 0,956304756 | -0,292371705 |
344° | 0,961261696 | -0,275637356 |
345° | 0,965925826 | -0,258819045 |
346° | 0,970295726 | -0,241921896 |
347° | 0,974370065 | -0,224951054 |
348° | 0,978147601 | -0,207911691 |
349° | 0,981627183 | -0,190808995 |
350° | 0,984807753 | -0,173648178 |
351° | 0,987688341 | -0,156434465 |
352° | 0,990268069 | -0,139173101 |
353° | 0,992546152 | -0,121869343 |
354° | 0,994521895 | -0,104528463 |
355° | 0,996194698 | -0,087155743 |
356° | 0,99756405 | -0,069756474 |
357° | 0,998629535 | -0,052335956 |
358° | 0,999390827 | -0,034899497 |
359° | 0,999847695 | -0,017452406 |
360° | 1 | 0 |
Часто используемые значения косинуса
Косинус 0 градусов = 1
Косинус 30 градусов = 0,866025404 = <\frac <\sqrt<3>><2>>
Косинус 45 градусов = 0,707106781 = <\frac <\sqrt<2>><2>>
Косинус 60 градусов = 0,5 = <\frac <1><2>>
Косинус 90 градусов = 0