что больше пройденный путь или модуль перемещения
Путь и перемещение тела
С понятием пути вы уже неоднократно сталкивались. Познакомимся теперь с новым для вас понятием – перемещением, которое более информативно и полезно в физике, чем понятие пути.
Допустим, из пункта А в пункт В на другом берегу реки нужно переправить груз. Это можно сделать на автомобиле через мост, на катере по реке или на вертолёте. В каждом из этих случаев путь, пройденный грузом, будет разным, но перемещение будет неизменным: из точки А в точку В.
Перемещением называют вектор, проведённый из начального положения тела в его конечное положение. Вектор перемещения показывает расстояние, на которое переместилось тело, и направление перемещения. Обратите внимание, что направление перемещения и направление движения – два разных понятия. Поясним это.
Рассмотрим, например, траекторию движения автомобиля от пункта А до середины моста. Обозначим промежуточные точки – В1, В2, В3 (см. рисунок). Вы видите, что на отрезке АВ1 автомобиль ехал на северо-восток (первая синяя стрелка), на отрезке В1В2 – на юго-восток (вторая синяя стрелка), а на отрезке В2В3 – на север (третья синяя стрелка). Итак, в момент проезда моста (точки В3) направление движения характеризовалось синим вектором В2В3, а направление перемещения – красным вектором АВ3.
Итак, перемещение тела – векторная величина, то есть имеющая пространственное направление и числовое значение (модуль). В отличие от перемещения, путь – скалярная величина, то есть имеющая только числовое значение (и не имеющая пространственного направления). Путь обозначают символом l, перемещение обозначают символом (важно: со стрелочкой). Символом s без стрелочки обозначают модуль перемещения. Примечание: изображение любого вектора на чертеже (в виде стрелки) или упоминание его в тексте (в виде слова) делает необязательным наличие стрелочки над обозначением.
Почему в физике не ограничились понятием пути, а ввели более сложное (векторное) понятие перемещения? Зная модуль и направление перемещения, всегда можно сказать, где будет находиться тело (по отношению к своему начальному положению). Зная путь, положение тела определить нельзя. Например, зная лишь, что турист прошёл путь 7 км, мы ничего не можем сказать о том, где он сейчас находится.
Задача. В походе по равнине турист прошёл на север 3 км, затем повернул на восток и прошел ещё 4 км. На каком расстоянии от начальной точки маршрута он оказался? Начертите его перемещение.
Решение 1 – с измерениями линейкой и транспортиром.
Перемещение – это вектор, соединяющий начальное и конечное положения тела. Начертим его на клетчатой бумаге в масштабе: 1 км – 1 см (чертёж справа). Измерив линейкой модуль построенного вектора, получим: 5 см. Согласно выбранному нами масштабу, модуль перемещения туриста равен 5 км. Но напомним: знать вектор – значит знать его модуль и направление. Поэтому, применив транспортир, определим: направление перемещения туриста составляет 53° с направлением на север (проверьте сами).
Решение 2 – без использования линейки и транспортира.
Поскольку угол между перемещениями туриста на север и на восток составляет 90°, применим теорему Пифагора и найдём длину гипотенузы, так как она одновременно является и модулем перемещения туриста:
Как видите, это значение совпадает с полученным в первом решении. Теперь определим угол α между перемещением (гипотенузой) и направлением на север (прилежащим катетом треугольника):
Итак, задача решена двумя способами с совпадающими ответами.
Перемещение и пройденный путь. Скорость РПД
Урок 4. Физика 10 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Перемещение и пройденный путь. Скорость РПД»
В прошлый раз мы затронули тему перемещения и скоростей. Остановимся на этом более подробно. Итак, что же такое перемещение тела. Перемещением называется направленный отрезок, проведённый из начального положения тела в его конечное положение.
Поэтому, перемещение — это векторная величина. Действительно, для того, чтобы сказать, как переместилось тело, нам необходимо знать не только расстояние от начальной точки, но и направление, в котором тело переместилось.
Напомним, что положение тела в любой момент времени можно задать с помощью радиус-вектора. Таким образом, перемещение — это изменение радиус-вектора.
Перемещение обозначается латинской буквой , но мы также можем обозначить его как . Необходимо отметить, что перемещение — это не то же самое, что пройденный путь. Пройденный путь — это скалярная величина, которая обозначает расстояние, пройденное телом, в процессе перемещения.
Например, расхаживая по комнате из стороны в сторону, вы можете пройти в общей сложности около ста метров, но ваше перемещение едва ли составит более двух метров. Траектория тела может быть сколь угодно сложной, и именно она будет определять пройденный путь. Перемещение же представляет собой направленный отрезок, соединяющий начальную и конечную точки. А если тело в процессе движения вернулось в исходную точку, то его перемещение будет равно нулю. Пройденный путь не может быть равен нулю, если тело совершало какое-либо движение.
Возьмём для примера движение тела по ломаной линии. Каждый отрезок ломаной линии имеет длину 1 м. Тогда, пройденный путь будет равен 4 м, а модуль перемещения будет чуть больше двух метров.
Поскольку кратчайшим расстоянием между двумя точками является прямая линия, можно с уверенностью сказать, что модуль перемещения не может быть больше пройденного пути. Не трудно догадаться, что если тело двигается строго по прямой, то модуль перемещения будет равен пройденному пути.
Как вы знаете, довольно важной характеристикой любого движения является скорость. Сегодня мы поговорим о скорости равномерного прямолинейного движения. Это самый простой вид движения: тело двигается только по прямой и проходит одинаковый путь за равные промежутки времени. Вы уже знакомы с таким видом движения: например, если автомобиль проходит 100 км за час, то за 2 часа он пройдёт 200 км, а за 3 ч — 300 км.
Но, следует понимать, что необходимо задать и направление скорости. На прошлом уроке мы уже убедились, что выбор системы отсчёта имеет решающее значение, а в разных системах отсчета скорости могут быть направлены по-разному.
Скоростью равномерного прямолинейного движения называется величина, равная отношению перемещения к промежутку времени, в течение которого это перемещение произошло:
Скорость является векторной величиной.
Вектор скорости направлен так же, как и вектор перемещения. Это вполне логично: куда тело перемещается, туда и направлена его скорость. Нетрудно догадаться, что если мы поделим модуль перемещения на промежуток времени, за который произошло перемещение, то мы получим модуль скорости:
Эта величина будет говорить нам о том, какое расстояние проходит тело за единицу времени.
Примеры решения задачи.
Задача. Точка является начальной точкой тела с координатами (10;6), а точка является конечной точкой тела с координатами (15;3). Найдите скорость перемещения, если в точке , а в точке , .
Кинематика. Перемещение и путь.
Перемещением в механике называют вектор (направленный отрезок прямой), соединяющий начальное и последующее положения тела.
Понятие вектора перемещения вводится для решения задачи кинематики – определить положение тела в пространстве в данный момент времени, если известно его начальное положение.
Допустим, точка М движется по криволинейной траектории и в некоторые моменты времени t1 и t2 оказывается в точках М1 и М2 соответственно. Вектор соединяет эти два положения и является вектором перемещения. Если точку М1 задать радиус-вектором , а точка М2 – радиус-вектором , то вектор перемещения будет равен разности этих двух векторов:
Путь – это длина участка траектории, пройденного телом за данный промежуток времени. В общем случае модуль вектора перемещения не равен длине пути, пройденного телом за некоторый промежуток времени, поскольку траектория может быть криволинейной, а тело может менять направление движения.
Модуль вектора перемещения и путь могут быть равны только при прямолинейном движении в одном направлении. При изменении направления прямолинейного движения модуль вектора перемещения будет меньше пути.
При криволинейном движении модуль вектора перемещения тоже меньше пути, поскольку хорда всегда меньше дуги, которую она стягивает.
Путь и перемещение – чем отличается, формулы
Важнейшими понятиями кинематики являются понятия пути и перемещения. Рассмотрим их подробнее, а также узнаем, чем отличается путь от перемещения.
Траектория пути
Кинематика изучает движение тел безотносительно причин этого движения. Главной задачей кинематики является математическое описание положения тела в принятой системе отсчета и изменение этого положения со временем.
Положение тела в системе отсчета задается одной или несколькими координатами (в зависимости от числа измерений) и временем.
Рис. 1. Координаты тела в пространстве.
Если тело движется, то в разные моменты времени координаты тела будут различны. Умножая скорость тела на время движения, можно найти длину пройденного пути:
Однако, даже зная точку, где находилось тело в нулевой момент времени, мы далеко не всегда можем определить, в какой точке тело будет находиться в другой произвольный момент времени.
Дело в том, что с помощью приведенной формулы можно найти длину пройденного пути. А сам путь при этом может иметь любую, сколь угодно сложную форму. Линия, вдоль которой перемещается тело, вовсе необязательно будет прямой, она может быть и окружностью, и ломанной, и более сложной фигурой, состоящих из многих частей.
Линия, вдоль которой двигалось тело на рассматриваемом участке времени, называется траекторией пути или просто траекторией.
Перемещение
Чтобы всегда знать, в какой точке находится тело в заданный момент времени, необходимо знать не длину пройденного пути, а другую кинематическую характеристику – перемещение.
Перемещение – это вектор, соединяющий начальное положение тела с его конечным положением.
Зная начальную точку в нулевой момент времени и перемещение за некоторое время, можно всегда найти координату тела в конце пути.
Рис. 2. Путь и перемещение.
Сходство и различие.
Путь и перемещение – это не одно и то же. Если движение происходит на плоскости или в пространстве и криволинейно, то длина траектории всегда будет больше модуля перемещения. Происходит этот потому, что вектор является прямой, то есть, кратчайшим расстоянием между двумя точками. Криволинейная траектория же прямой не является.
Более того, перемещение может быть равно нулю, несмотря на то, что путь будет иметь большую длину. Например, планеты, двигаясь по окружностям, проходят за каждый оборот большой путь, однако, перемещение при этом никогда не превышает диаметра орбиты, и может быть равно нулю, если планета делает полный оборот.
Рис. 3. Орбиты планет.
Однако, и перемещение и траектория пути служат одной и той же цели – описанию движения. Обе этих величины измеряются в единицах длины, к обоим могут быть применены формулы движения.
Но, если траектория описывает весь путь, пройденный телом, то перемещение акцентирует внимание на разнице положения тела между первым и последним моментами движения. Поэтому большинство формул в кинематике, в которые входит время, работают именно с перемещением.
Единственный случай, когда путь и перемещение равны – это случай прямолинейного движения, при условии, что скорость движения не меняла знак.
Что мы узнали?
Траектория пути – это линия, вдоль которой перемещалось тело во время своего движения. Перемещение – это вектор, направленный из точки начала движения в точку конца движения. Длина пути всегда равна или больше, чем длина перемещения.
«Перемещение. Траектория. Путь» (9-й класс)
Разделы: Физика
Класс: 9
Демонстрации: Определение перемещения и пройденного пути.
1. Актуализация знаний.
– Здравствуйте, ребята! Садитесь! Сегодня мы с вами продолжим изучать тему “Законы взаимодействия и движения тел” и на уроке познакомимся с тремя новыми понятиями (терминами), касающихся этой темы. А пока проверим выполнение вами домашнего задания у данному уроку.
2. Проверка домашнего задания.
Перед уроком один учащийся выписывает на доске решение следующего домашнего задания:
Двум учащимся раздаются карточки с индивидуальными заданиями, которые выполняются во время устной проверки упр. 1 стр. 9 учебника. [1]
1. Какую систему координат(одномерную, двухмерную, трехмерную) следует выбрать для определения положения тел:
а) трактор в поле;
б) вертолет в небе;
в) поезд
г) шахматная фигура на доске.
2. Дано выражение: S = υ0 · t + (а · t 2 ) / 2, выразите: а, υ0
1. Какую систему координат (одномерную, двухмерную, трехмерную) следует выбрать для определения положения таких тел:
а) люстра в комнате;
б) лифт;
в) подводная лодка;
г) самолет на взлетной полосе.
3. Изучение нового теоретического материала.
С изменениями координат тела связана величина, вводимая для описания движения, – ПЕРЕМЕЩЕНИЕ.
Перемещением тела (материальной точки) называется вектор, соединяющий начальное положение тела с его последующим положением.
Перемещение принято обозначать буквой . В СИ перемещение измеряется в метрах (м).
[ ] – [ м ] – метр.
Перемещение – величина векторная, т.е. кроме числового значения имеет еще и направление. Векторную величину изображают в виде отрезка, который начинается в некоторой точке и заканчивается острием, указывающим направление. Такой отрезок-стрелка называется вектором.
– вектор, проведенный из точки М в М1
Знать вектор перемещения – значит, знать его направление и модуль. Модуль вектора – это скаляр, т.е. численное значение. Зная начальное положение и вектор перемещения тела, можно определить, где находится тело.
В процессе движения материальная точка занимает различные положения в пространстве относительно выбранной системы отсчета. При этом движущаяся точка “описывает” в пространстве какую-то линию. Иногда эта линия видна, – например, высоко летящий самолет может оставлять за собой след в небе. Более знакомый пример – след куска мела на доске.
Воображаемая линия в пространстве, по которой движется тело называется ТРАЕКТОРИЕЙ движения тела.
Траектория движения тела – это непрерывная линия, которую описывает движущееся тело (рассматриваемое как материальная точка) по отношению к выбранной системе отсчета.
Движение, при котором все точки тела движутся по одинаковым траекториям, называется поступательным.
Очень часто траектория – невидимая линия. Траектория движущейся точки может быть прямой или кривой линией. Соответственно форме траектории движение бывает прямолинейным и криволинейным.
Длина траектории – это ПУТЬ. Путь является скалярной величиной и обозначается буквой l. Путь увеличивается, если тело движется. И остается неизменным, если тело покоится. Таким образом, путь не может уменьшаться с течением времени.
Модуль перемещения и путь могут совпадать по значению, только в том случае, если тело движется вдоль прямой в одном направлении.
Чем же отличается путь от перемещения? Эти два понятия часто смешивают, хотя на самом деле они очень сильно отличаются друг от друга. Рассмотрим эти отличия: (Приложение 3) (раздаются в виде карточек каждому ученику)
Путь | Перемещение | |
Определение | Длина траектории, описываемой телом за определенное время | Вектор, соединяющий начальное положение тела с его последующим положением |
Обозначение | l [ м ] | S [м ] |
Характер физических величин | Скалярная, т.е. определяется только числовым значением | Векторная, т.е. определяется числовым значением (модулем) и направлением |
Необходимость введения | Зная начальное положение тела и путь l, пройденный за промежуток времени t, нельзя определить положение тела в заданный момент времени t | Зная начальное положение тела и S за промежуток времени t, однозначно определяется положение тела в заданный момент времени t |
l = S в случае прямолинейного движения без возвратов |
4. Демонстрация опыта (учащиеся выполняют самостоятельно на своих местах за партами, учитель вместе с учащимися выполняет демонстрацию этого опыта)
5. Упражнения и вопросы для повторения.
Повторение понятий урока:
– перемещение;
– траектория;
– путь.
7. Домашнее задание.
§ 2 учебника [1], вопросы после параграфа, упражнение 2 (стр.12) учебника [1], повторить выполнение опыта урока дома.
1. Перышкин А.В., Гутник Е.М. Физика. 9 кл.: учеб.для общеобразоват.учреждений – 9-е изд., стереотип. – М.: Дрофа, 2005.