высвобождение атф при готовке рыбы что это
Высвобождение атф при готовке рыбы что это
Несколько следующих статей данного раздела сайта посвящены обменным процессам в организме, под которыми подразумеваются химические реакции, обеспечивающие процессы жизнедеятельности клеток. При этом в данной книге не ставится цель подробно представить биохимические процессы и все возникающие при этом реакции клеток, поскольку это находится в компетенции такого предмета, как биохимия. В данных статьях по физиологии на сайте предполагается дать:
(1) обзорные представления об основных биохимических процессах в клетках;
(2) анализ реализации влияний этих процессов, особенно в отношении их участия в поддержании гомеостатических параметров организма.
а) Высвобождение энергии из пищевых продуктов. Концепция свободной энергии. Большинство химических реакций, осуществляющихся в клетках, связаны с извлечением энергии, необходимой для различных физиологических систем в клетках, из пищевых продуктов. Так, энергия необходима для поддержания мышечной активности, секреторных процессов в железах, формирования мембранных потенциалов в мышечных и нервных волокнах, синтеза веществ в клегках, всасывания веществ в желудочно-кишечном тракте и многих других функций.
1. Сопряженные реакции. Все источники энергии, содержащиеся в продуктах питания (белки, жиры и углеводы), должны окисляться в клетках; в ходе этих процессов высвобождается большое количество энергии. Те же продукты, окисляясь вне организма, т.е. сжигаясь, также высвобождают энергию, но в этом случае она выделяется сразу в виде тепла. Энергия, необходимая для осуществления физиологических процессов в клетках, не является тепловой, это другая форма энергии, которая необходима для передвижения в случае мышечного сокращения или концентрирования растворов в случае секреторных процессов в железах и других функций. Для обеспечения организма такими видами энергии химические реакции должны «сопрягаться» с деятельностью систем, ответственных за обеспе чение механизмов превращения энергии в нужные для организма формы.
Осуществление процессов сопряжения является функцией специальных клеточных ферментов и систем, работа которых излагается в следующих статьях.
2. Свободная энергия. Количество энергии, высвобождающейся при полном окислении питательных веществ, называют свободной энергией окисления пищи и чаще всего обозначают символом G. Свободная энергия обычно выражается количеством калорий на моль окисляемого субстрата. Например, количество свободной энергии, выделяющейся при полном окислении 1 моля (180 г) глюкозы, составляет 686000 калории.
б) Роль аденозинтрифосфата в обменных процессах. Аденозннтрифосфат — главное связующее звено между процессами использования и продуцирования энергии в организме (для облегчения понимания просим вас изучить рисунок ниже).
Пo этой причине АТФ является источником энергии, который образуется и расходуется непрерывно.
Энергия, высвобождающаяся при окислении углеводов, жиров и белков, необходима для превращения АДФ в АТФ, который, в свою очередь, используется в различных процессах в организме для:
(1) активного транспорта молекул через клеточные мембраны;
(2) сокращения мышц и осуществления работы мышц;
(3) синтеза различных гормонов, создания клеточных мембран и формирования прочих основных субстанций в организме;
(4) проведения нервных импульсов;
(5) клеточного деления и роста;
(6) других процессов, необходимых для поддержания и продолжения жизни.
АТФ — нестойкое химическое соединение, которое присутствует во всех клетках. Химическая структура этого соединения показана на рисунке ниже.
Химическая структура аденозинтрифосфата (АТФ)
АТФ состоит из аденозина, рибозы и трех фосфатных радикалов. Последние два остатка фосфорной кислоты связаны с остальной молекулой с помощью макроэргических связей, которые обозначают символом
Количество свободной энергии, заключенной в каждой из этих связей, составляет 7300 калорий на 1 моль АТФ в обычных условиях и почти 12000 калорий в температурных и концентрационных условиях, которые сопровождают эту молекулу в организме. В условиях организма количество энергии, которое высвобождается благодаря каждой из этих двух связей, составляет 12000 калорий. После отщепления одного из фосфатных радикалов от молекулы АТФ соединение превращается в АДФ; после отщепления еще одной — в аденозинмонофосфат. Взаимные превращения этих веществ выглядят следующим образом:
АТФ присутствует в цитоплазме и нуклеоплазме всех клеток, и все физиологические механизмы, требующие энергии для своего обеспечения, получают ее непосредственно из АТФ (или других макроэргических соединений, например, гуанозинмонофосфата). В свою очередь, питательные вещества, постепенно окисляясь, выделяют энергию, используемую для образования новых молекул АТФ, что сохраняет обеспечение организма энергией. Все механизмы превращения энергии осуществляются путем реакций сопряжения.
Основная цель этих статей по физиологии на сайте — показать, как энергия, заключенная в углеводах, преобразуется в клетках в энергию АТФ. В норме 90% всех углеводов, а иногда даже больше, используются в организме с этой целью.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Практическая философия умерщвления рыб и Ike- Jime
Чем меньше стресса испытает рыба до и во время убийства, тем лучше будет качество мяса. Для наглядного изображения- см. Прикрепленную фотографию, демонстрирующую разрушение тканей во время стресса.
Украдено без разрешения D. Bahuaud, T. Mørkøre, T.-K. Østbye, E. Veiseth-Kent, M.S. Thomassen, R. Ofstad. Muscle structure responses and lysosomal cathepsins B and L in farmed Atlantic salmon (Salmo salar L.) pre- and post-rigor fillets exposed to short and long-term crowding stress, Food Chemistry, Volume 118, Issue 3, 1 February 2010 (see references)
В сравнении с красным мяcoм и птицей, рыба более нежная. И важно сохранить ее структуру. Так что в отличие от мяса, где распад белка идет нам на пользу, делая его нежнее, все, что разрушает структуру рыбы не идет ей на пользу. Стресс является одной из причин.
Стресс перед или во время убоя, от тесноты в сетях или от открытого воздуха, а также длительный стресс от содержания в неправильной аквасистеме влечет за собой фактический износ тканей. В следствие распада глюкозы в мышцах образуется молочная кислота(и падает уровень кислотности). Это в свою очередь влечет за собой увеличение числа мышечных ферментов, которые разрушают белки. Одно исследование даже утверждает, что стресс повышает количество этих ферментов, делая их более эффективными. Также стресс ведет к появлению в крови большего числа «стрессовых соединений», которые также ведут к разрушению структуры мышц.
Кроме этого, в тканях уставшей рыбы содержится меньшее количество АТФ (аденозинотрифосфата). Это- универсальный источник энергии для всех биохимических процессов. В момент смерти животного его мышцы остаются гибкими до тех пор, пока получают АТФ(синтезируется при помощи глюкозы). После того, как запас АТФ исчерпан, мышцы напрягаются и не ослабевают- наступает процесс окоченения. У рыб этот процесс может настолько сильно сократить мышцы, что вызовет разрыв соединительных тканей. Окоченение уставшей рыбы с низким уровнем АТФ происходит быстрее. В конце-концов окоченение проходит, когда разрываются связи между мышечными волокнами.
Даже если вы обезглавите рыбу, мышцы все равно будут выполнять свои функции под воздействием вегетативной нервной системы, которая продолжает работать, даже если мозг отсутствует. Спинной мозг продолжает посылать сигналы мышцам, те с свою очередь расходуют АТФ и в этом случае окоченение наступает быстрее, чем если бы мы уничтожили спинной мозг. Это можно сделать, если вставить тонкую проволоку вдоль верхней части позвоночника.
Особое значение это имеет для тунца- эти рыбы могут регулировать температуру свое тела, в отличие от большинства хладнокровных рыб. Многие профессиональные рыбаки говорят о том, что вегетативная нервная система все еще регулирует температуру дела даже после смерти. Так что если вы не разрушите спинной мозг она будет нагреваться и терять АТФ- что дважды неприятно.
Правильное убийство рыбы начинается до непосредственного действия.
Расслабленная рыба лучше, чем не расслабленная. Одно исследование показывает, что рыба выловленная в океане, которая затем была помещена в резервуар и только затем убита, была лучшего качества чем те, что остались в сетях и умерли от удушья. Есть техника еще лучше — взять отдохнувшую рыбу и усыпить ее с помощью анестезии. Самая распространенная- это изоевгенол, входящий в состав гвоздичного масла. Потребительская версия этого продукта называется Aqui-S.
В течение долгого времени его свойства исследовали по всему миру и использовали в Новой Зеландии и Австралии. В домашних условиях вы можете использовать смесь гвоздичного масла и ликера чтобы усыпить рыбу. Практически каждое исследование влияния анестезии на рыбу показывало улучшение качества и, к тому же, эта техника более гуманна.
На мой взгляд лучшей техникой будет вогнать спицу в мозг в мягкое место над глазом. Это быстрая, легкоосвояемая техника.
Выпуск крови имеет важное значение для внешнего вида и вкуса рыбы. Некоторые исследования показывают, что соединения в крови размягчают мышцы (что не есть хорошо). В японской технике разрезание спинного мозга и двух главных артерий влечет за собой кровотечение. Также разрезаются артерии в хвосте. Затем рыба помещается в подсоленую воду. В больших рыбах, таких как тунец, не существует практики разрывания спинного мозга, надрезы делаются рядом с грудными плавниками.
Чем больше я думаю об обычной японской технике, тем больше у меня сомнений в том, что она лучшая. Они перерезают все артерии и вены спереди и сзади, полностью удаляя сердце из системы кровообращения. Не достаточного ли только жаберного кровотечения, при котором кровь не возвращается в сердце?
Разрушение спинного мозга происходит при введении иглы через позвоночник. Вы все делаете правильно, если рыба начинает дергаться. Нет? Значит вы ошиблись. Введите иглу только один раз-не дергайте ее по спинному каналу, чтобы сохранить АТФ. При обращении с мелкой рыбой у вас есть два пути- спереди или сзади. В случае обезглавливания(или частичного обезглавливания) проще сделать это спереди. Для рыбы, которую вы не можете обезглавить, вводите иглу со стороны хвоста. Постарайтесь полностью не отрубить хвост или голову(в зависимости от типа)- их можно использовать в качестве упора.
Для умерщвления больших рыб, таких как тунец, принято вставлять иглу через голову в спинной мозг(Метод Танигучи). Вы делаете небольшую дырку между глаз и вставляете проволоку в позвоночник. Если рыбак убивает рыбу, используя этот метод, он оставляет проволоку, чтобы показать, что тунец убит правильно. Теоретически, полость мозга образует воронку, которая сама направляет иглу в позвоночнике. Я пробовал этот метод на голове голубого тунца, но он не увенчался успехом. Игла выходила через мышцы.
Потрошение, разделка и готовка- до и после окоченения.
Все исследования указывают на важность немедленного потрошения. Нет ничего хорошего в том, чтобы оставлять кишки как можно дольше.
Снятие филе- совсем другая история. Если вы разделываете рыбу перед окоченением, то мышцы будут не так повреждены(из-за отсутствия скелета), но филе будет меньше и плотнее.
Я предпочитаю есть рыбу после того, как спадет трупное окоченение. Перед окоченением они почти хрустящие, если приготовлены как сашими. Если вам это по душе- то Ике- Джими и введение иглы- оптимальная техника, потому что увеличивает время, в течение которого рыба может быть приготовлена и подана до момента наступления окоченения.
Что касается меня и всех, кто предпочитает рыбу после окоченения, то эта техника не подходит, потому что отсрочивает наступление окоченения. Однако, когда оно все же наступает, мясо лучше, чем рыба, убитая по западной технике.
Определенные виды рыбы хороши через день, некоторые через два и даже больше. Для сашими преимущества Ике Джими очевидны. Чем больше вы готовите рыбу, тем менее заметны преимущества
Что все вышенаписанное может значить для вас?
Да вообще немного. Разумеется, если только вы не поставщик или не профессиональный рыбак. Но мы все должны знать о хорошей практике.
И напоследок- видео с рынка в Токио
Как понять, «накачана» рыба полифосфатами или нет?
Содержание
Полифосфаты – вещества, которые при введении в состав продуктов питания (в частности, рыбы и рыбного филе) способствуют удержанию в них влаги и предотвращают ее потерю при последующей дефростации (размораживании). На практике это свойство полифосфатов используется производителями рыбы для увеличения ее веса (такое увеличение может достигать 50–60%). В мышечную ткань рыбы игольчатым инъектором равномерно вводится определенное количество водного раствора полифосфатов, затем рыбу или филе рыбное замораживают. В результате мышечная ткань рыбы набухает.
В небольших количествах полифосфаты для здоровья человека не опасны, о чем свидетельствуют существующие нормы содержания этих веществ в рыбе.
В случае, если рыба, рыбное филе инъектированы раствором полифосфатов, то эти продукты при тепловой обработке теряют вес из-за потери влаги. При этом если содержание полифосфатов в продукте превышает разрешенные нормы, принятые Регламентом ТР ТС 029/2012 «Требования безопасности пищевых добавок, ароматизаторов и технологических вспомогательных средств», то эта продукция не является безопасной.
В рыбном филе, необработанном, мороженном нормируется содержание полифосфатов (Е452 ) (добавленные фосфаты по отдельности или в комбинации в пересчете на Р2О5) на уровне 5 г/кг добавленного или 10 г/кг общего (добавленного + естественного) фосфата. Исследования показывают, что в основном в продукции не превышается норматив по добавленным фосфатам, однако, недобросовестные производители могут использовать эту добавку неоправданно больше, чем нужно по технологии.
Понять, есть ли в рыбном филе или рыбе полифосфаты, довольно просто. Достаточно внимательно осмотреть продукт. Если видите, что у рыбы (филе) после разморозки неестественный, слишком выраженный глянцевый блеск, можете быть уверены, что рыба была обработана полифосфатами.
Существует еще один способ проверки. Разморозьте рыбу. При надавливании ощущаются вкрапления льда? Видите, что мясо рыбы стало рыхлым? К сожалению, и в этом случае можно констатировать, что содержание полифосфатов в рыбе превышено. При приготовлении такой рыбы вы заметите, что она ужаривается и сереет. Кроме этого, вкус продукта становится хуже.
Совет: не размораживайте рыбу слишком долго, достаточно выдержать ее при комнатной температуре 30 минут или оставить на ночь в холодильнике при температуре 2–5 градуса.
Результаты проведенного Роскачеством исследования филе минтая смотрите ЗДЕСЬ
Высвобождение атф при готовке рыбы что это
а) Аденозинтрифосфат действует как «энергетическая валюта» в процессе метаболизма. В предшествующих статьях по физиологии на сайте мы указывали (просим вас пользоваться формой поиска выше), что углеводы, жиры и белки могут использоваться клетками для синтеза большого количества аденозинтрифосфата, который является источником энергии практически для всех клеточных функций. По этой причине АТФ можно считать «энергетической валютой» процессов метаболизма клеток, которые могут осуществляться только посредством АТФ (или схожего вещества, отличающегося от АТФ нуклеотидом, — гуанозинтрнфосфага). Информация о свойствах АТФ приведена в главе 2.
Особенностью АТФ, делающей его чрезвычайно важным в процессах энергообеспечения, является выделение большого количества свободной энергии (около 7300 калории, или 7,3 Ккал на 1 моль в стандартных условиях, или более 12000 калорий в физиологических условиях), приходящейся на каждую из двух макроэргических фосфатных связей. Количество энергии, выделяемой при распаде каждой макроэргической связи АТФ, достаточно для обеспечения каждого этапа любой химической реакции, которая осуществляется в организме. Некоторые химические реакции, для которых требуется энергия АТФ, используют всего лишь несколько сотен калорий из наличных 12000, а остальная энергия рассеивается в виде тепла.
б) АТФ образуется при окислении углеводов, жиров и белков. В предшествующих статьях по физиологии на сайте мы указывали (просим вас пользоваться формой поиска выше) о преобразовании энергии, присутствующей в питательных веществах, в энергию АТФ. Если говорить кратко, то АТФ образуется при следующих условиях.
1. Окисление углеводов, главным образом глюкозы, и окисление других Сахаров, но в меньшем количестве, например окисление фруктозы; эти процессы наблюдаются в цитоплазме клеток при анаэробных процессах гликолиза и в митохондриях при аэробном окислении в цикле лимонной кислоты (цикле Кребса).
2. Окисление жирных кислот в митохондриях клеток при бета-окислении.
3. Окисление белков, которые предварительно должны гидролизоваться до аминокислот с последующим расщеплением аминокислот до промежуточных продуктов цикла лимонной кислоты и затем — до ацетил-КоА и углекислого газа.
Энергия АТФ используется для синтеза глюкозы из молочной кислоты и синтеза жирных кислот из ацетил-КоА. Кроме того, энергия расходуется для образования холестерола, фосфолипидов, гормонов и других веществ организма. Даже мочевина, экскретируемая почками, требует энергии АТФ для ее образования из аммиака. Помня о чрезвычайной токсичности аммиака, можно понять значимость и ценность этой реакции, поддерживающей концентрацию аммиака в организме на очень низком уровне.
г) АТФ обеспечивает энергией мышечное сокращение. Мышечное сокращение невозможно без энергии АТФ. Миозин — один из важных контрактиль-ных белков мышечного волокна — ведет себя как фермент, вызывающий расщепление АТФ до АДФ, высвобождая энергию, необходимую для мышечного сокращения. При отсутствии мышечного сокращения обычно расщепляется очень небольшое количество АТФ, но этот уровень расхода АТФ может увеличиваться почти в 150 раз (по сравнению с покоем) в течение короткого периода максимальной активности (механизм, с помощью которого энергия АТФ используется для обеспечения мышечного сокращения).
д) АТФ обеспечивает энергией активный транспорт через мембраны. Активный транспорт большинства электролитов и веществ, таких как глюкоза, аминокислоты и ацетоуксусная кислота, может осуществляться против электрохимического градиента, даже если естественная диффузия должна осуществляться по электрохимическому градиенту. Противодействие ему требует затрат энергии, которую обеспечивает АТФ.
е) АТР обеспечивает энергией процессы секреции. По тем же правилам, что и всасывание веществ против градиента концентрации, осуществляются процессы секреции в железах, поскольку для концентрирования веществ также необходима энергия.
ж) АТФ обеспечивает энергией проведение возбуждения по нервам. Энергия, используемая для проведения нервного импульса, является производной потенциальной энергии, запасенной в виде разницы концентраций ионов по обе стороны мембраны нервного волокна. Так, высокая концентрация ионов калия внутри волокна и низкая концентрация снаружи представляют собой разновидность способа запасания энергии. Высокая концентрация ионов натрия на наружной поверхности мембраны и низкая концентрация внутри представляют другой пример способа запасания энергии. Энергия, необходимая для проведения каждого потенциала действия вдоль мембраны волокна, является производной запасенной энергии, когда небольшое количество калия выходит из клетки, а поток ионов натрия устремляется в клетку.
Однако система активного транспорта, обеспечиваемая энергией АТФ, возвращает переместившиеся ионы в исходное положение относительно мембраны волокна.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
— Вернуться в оглавление раздела «Физиология человека.»
Высвобождение атф при готовке рыбы что это
Мясо птицы содержит экстрактивных веществ больше, чем мясо животных, и оно быстрее «приедается». Мясо дичи содержит так много экстрактивных веществ, что из него не готовят бульоны, а потребляют в жареном виде.
Эти примеры приведены для понимания роли экстрактивных веществ в формировании вкусовых и ароматических характеристик продукции, ее сохраняемости.
Все экстрактивные вещества рыбы можно классифицировать на несколько групп по принадлежности к определенным классам органических соединений и по пищевой ценности: летучие азотистые основания, аммониевые основания, фосфорсодержащие вещества, свободные аминокислоты и пептиды, разные вещества.
Специфической особенностью экстрактивных соединений рыбы являются летучие азотистые основания. К ним относятся аммиак (NH3) и ди-, триметиламины (ДМА, ТМА) – NH(CH3)2 и N(CH3)3. Аммиак образуется при распаде мочевины (NH2)2CO. Триметиламин (ТМА) может образоваться путем замещения в молекуле NH 3 атома водорода метильной группой по схеме:
NH3 → H2CH 3 → NH(CH3)2 → N(CH3)3
монометиламин диметиламин триметиламин
или из физиологически неактивного триметиламиноксида (ТМАО):
NO (CH3)3 → N(CH3)3.
Количественное содержание летучих оснований определяется при оценке свежести охлажденной, мороженой рыбы наряду с определением наличия H2S и NH3. При определении этого показателя из общего количества летучих азотистых оснований выделяют содержание ТМА как наиболее токсичного компонента. В свежей, только что уснувшей рыбе содержание летучих оснований – 15–17 мг%, в том числе ТМА до 2,5 мг% – у морской рыбы – и до 0,5 мг% – у пресноводной. Следует однако заметить, что количество летучих оснований (ЛО) для рыб разных видов строго индивидуально. Накопление этих веществ в мясе вызывает появление неприятного запаха.
Триметиламиноксид (ТМАО) – NO (CH3)3 – относится к группе аммониевых оснований. В морской рыбе его содержание выше (до 470 мг% в треске), чем в рыбе пресноводных водоемов (5—92 мг% – окуне, леще, щуке), в мясе акул – до 900 мг%. Считают, что это соединение нетоксичное. Но при его распаде в процессе хранения рыбных продуктов или во время тепловой обработки появляется специфический рыбный запах. Ржавление внутренней поверхности консервных банок вызывается наличием ТМАО.
К фосфорсодержащим экстрактивным соединениям относятся креатинфосфат (КРФ), аденозинмонофосфат (АМФ), аденозин—дифосфат (АДФ), аденозинтрифосфат (АТФ), которые играют важную роль в посмертных изменениях рыб. При распаде АТФ (рис. 3) образуются и другие вещества, влияющие на вкус, аромат рыбы.
Рис. 3. Схема распада АТФ
Накопление гипоксантина улучшает вкус рыбного бульона (ухи). При распаде белков образуются свободные аминокислоты, которые также влияют на органолептические показатели рыбных продуктов. К ним можно отнести, гистидин, аргинин, креатин. Гистидин в больших количествах присутствует в мясе пресноводных рыб. В процессе порчи мяса рыбы гистидин декарбоксилируется с образованием гистамина – токсичного вещества, вызывающего пищевые отравления. Аргинин для ракообразных и моллюсков, креатин для рыб являются физиологически важными компонентами мышц. Креатин может переходить в креатинин, придающий горький вкус рыбе при потере свежести.
Карнозин и ансерин являются природными дипептидами, т. е. соединениями, состоящими из двух аминокислот, не вступающих в химические связи с другими аминокислотами. Ансерин обнаружен в мясе морских рыб, карнозин – в мясе трески, осетра.
К разным экстрактивным веществам мяса рыбы можно отнести мочевину, содержание которой в мясе акул достигает 2000 мг%, осетровых – до 550 мг%; в мясе прочих видов рыб присутствуют следы. Мочевина (NH2)2 CO является продуктом синтеза аммиака. Из двух молекул аммиака образуется одна молекула мочевины, так предотвращается отравление живого организма. Высокое содержание мочевины в мясе отдельных видов акул делает невозможным его использование в пищу после тепловой обработки без предварительного отмачивания сырья. Для устранения аммиачного запаха мяса акул его измельчают, промывают и вырабатывают фар—шевые изделия, подвергая различной тепловой обработке. Если мясо акул обрабатывать копчением, то промывка, отмачивание сырья исключается из технологического процесса.
Углеводы в мускулатуре рыбы превышают 1 %, представлены в основном гликогеном (животным крахмалом). При распаде гликогена (гидролизе или фосфоролизе) образуются глюкоза, пировиноградная и молочная кислоты. Гликоген участвует в процессах созревания рыбы при посмертных изменениях, посоле, вялении. Чем больше гликогена, тем полнее процесс созревания, тем ароматнее, вкуснее готовая продукция.
Глюкоза – продукт распада гликогена, как редуцирующий моносахар она может вступать в реакции с аминокислотами – продуктами гидролиза белков, с образованием сложных химических комплексов – меланоидинов. Это обычно наблюдается в процессе термической обработки рыбы: при варке ухи, сушке, вялении рыбы. Меланоидины придают темноватый цвет поверхности продукта (при контакте с кислородам), приятный аромат и сладковатый вкус бульонам из рыбы. Поэтому простые углеводы относят к экстрактивным соединениям рыбы.
Минеральные вещества мяса рыбы очень разнообразны по составу, но по количеству составляют лишь в пределах 1,2–1,5 %. Особенно богатый минеральный состав имеет океаническая рыба, так как в морской воде содержатся практически все известные нам минеральные вещества. Рыба избирательно накапливает в своем теле и органах минеральные вещества из среды обитания. Преобладающие минеральные вещества рыбы: макроэлементы – натрий, калий, хлор, кальций, фосфор, магний, сера, микроэле—менты, йод, медь, железо, марганец, бром, алюминий, фтор; ультрамикроэлементы: цинк, кобальт, стронций, уран.
Минеральные вещества представлены ионами, солями в составе белков, витаминов, ферментов, гормонов. Сложные белки (протеиды) в своем составе имеют фосфор, железо, кальций, магний, калий, натрий, серу и др. Сложные ферменты в составе простетической группы содержат микроэлементы (медь, железо, марганец и др.), что резко активизирует их биохимическую деятельность. Многие витамины, особенно группы B, гормоны также включают микро—и ультрамикроэлементы.
Морская рыба особенно богата йодом. Мясу рыб семейства тресковых присущ йодистый привкус, ценимый гастрономами. Люди, постоянно питающиеся морской рыбой, не имеют заболеваний щитовидной железы.
Видовой вкус и аромат рыбы во многом выражен минеральным составом. Некоторые виды рыб невысокой потребительской ценности дают прекрасные, ароматные бульоны за счет перехода в них минеральных веществ, само же их мясо мало привлекательно после варки. При варке голов, костной ткани в бульон переходит минеральных веществ больше, чем при варке мышечной ткани. Поэтому экстрактивные, наваристые бульоны получаются при варке необезглавленной потрошеной рыбы.
Витамины содержатся в различных частях и органах рыб. Жирорастворимые витамины (А, Д, К) преобладают в тех частях и органах, где накапливаются жиры. Это прежде всего печень. Из печени трески, акул вырабатывают рыбий жир (медицинский) с большим содержанием витаминов. В рыбьем жире содержатся эссенциальные жирные кислоты (линолевая, линоленовая, арахидоновая), которые в комплексе образуют витамин F. Полагают, что этот витамин является профилактическим средством против онкологических заболеваний, снижает уровень холестерина в печени и обеспечивает эластичность кровеносных сосудов.
Из водорастворимых витаминов отмечено достаточное содержание в мышечной ткани витаминов B1 (тиамин) и B2 (рибофлавин). Внутренние органы рыб содержат витамин B 12, являющийся кроветворным катализатором, отсутствие которого может привести к злокачественной анемии.
Ферменты рыб играют исключительно важную роль в процессах, происходящих в посмертный период во всех тканях и органах рыб, также при различных способах переработки рыбного сырья, особенно при посоле, вялении, холодном копчении, производстве пресервов.
В органах и тканях рыб содержатся ферменты всех шести классов по систематической номенклатуре комиссии по ферментам Международного биохимического союза от 1961 года: оксидоредуктазы (окислительно—восстановительные), трансферазы (ферменты переноса), гидролазы (ферменты расщепления с участием воды), лиазы (ферменты расщепления без участия воды), изомеразы (ферменты превращений), лигазы (ферменты синтеза).
Наибольшее значение в формировании потребительских свойств рыбной продукции имеют окислительно—восстановительные и гидролитические ферменты.
Процессы созревания рыбы после гибели (от удушья), а также биохимические процессы созревания соленой и вяленой рыбы протекают с участием прежде всего ферментов этих классов. Окислительно—восстановительные ферменты – самый многочисленный класс, насчитывающий более 220 наименований они подразделяются на несколько групп. Первая группа – дегидрогеназы, осуществляющие роль переносчиков водорода. Дегидрогеназы являются двухкомпо—нентными системами, активной частью (коферментами) которых являются НАД (никотинамид—аденин—динуклео—тид) и НАДФ (никотинамид—аденин—динуклеотид—фосфат). В процессе начального созревания рыбы изменениям подвергаются углеводы. При молочнокислом брожении НАД водород (восстановленный водород кофермент дегидрогена—зы) восстанавливает пировиноградную кислоту в молочную. Образующаяся молочная кислота создает кислую среду, неблагоприятную для развития гнилостных микробиологических процессов, белки мышц набухают, застывают, и наступает стадия посмертного окоченения у свежеуснувшей рыбы, что свидетельствует о безупречной свежести рыбы.
На последующих стадиях созревания рыбы на первый план выступают гидролитические ферменты: протеолитические (протеазы), катализирующие расщепление белков и пептидов; эстеразы (липазы), вызывающие гидролиз эфиров кар—боновых кислот (жиров); амилолитические (амилазы), гидролизирующие глюкозные связи крахмала, декстринов; фосфатазы, гидролизирующие сложные эфиры фосфорной кислоты (глюкозо–1–фосфат и др.).
Гидролазы особенно активны в подкисленной среде. Поэтому после образования молочной кислоты активность гидролитических ферментов повышается. Протеолитические ферменты (трипсин, пепсин, катепсин и др.) вызывают распад белковой молекулы по схеме:
белки → пептоны → полипептиды → трипептиды → дипептиды → аминокислоты
Аминокислоты являются конечным структурным элементом ферментативного распада белков. Чем больше образуется продуктов распада белков, особенно низкомолекулярных (дипептидов, аминокислот), тем ярче вкус и аромат продукта. В производственной практике процесс созревания рыбы охлажденной, мороженой, соленой, вяленой определяют по количеству образовавшихся аминокислот (по содержанию аминоаммиачного азота). Считают, что 30 % аминоаммиач—ного азота (от общего азота, входящего в состав как белков, так и небелкового) характеризуют продукцию как вполне созревшую и свежую. Дальнейшее увеличение этого показателя свидетельствует о перезревании рыбы и последующей порче.
При дальнейшем хранении рыбы низкомолекулярные продукты распада белка (прежде всего, аминокислоты) становятся объектом питания микроорганизмов. При этом в зависимости от вида микроорганизмов аминокислоты могут распадаться с образованием различных конечных продуктов метаболизма по схеме представленном на рисунке 4.
Накапливающиеся вещества обладают ядовитыми свойствами и придают рыбе неприятный запах. Протеолитические ферменты осуществляют гидролиз белков значительно активнее, чем подобные ферменты наземных животных, поэтому процесс созревания рыбы протекает значительно быстрее, чем мяса убойных животных. Причем действие протеаз рыб протекает в довольно широком диапазоне рН: от кислой среды (рН 3,5–4,5), где активность максимальная, до щелочной (рН 8), где активность составляет 5–10 % активности при рН 3,5–4,5. При естественной для рыбы рН 6,6–7,0, активность ферментов в 310 раз ниже, чем при рН 3,5–4,5.
Значительные колебания в уровне активности мышечных протеаз (пептидгидролаз) отмечены в зависимости от размера рыбы и сезона вылова.
Хлористый натрий (NaCl) даже при концентрации 3 % вызывает частичную инактивацию ферментов, при 5 %-ной концентрации обеспечивается ингибрирующий эффект, а 10 %