вспомогательная силовая установка самолета что это такое
ВСУ в современных самолетах: принцип работы
Вспомогательная силовая установка или ВСУ в самолете — это устройство для снабжения энергией данного воздушного ТС. В качестве источника здесь выступают один или несколько моторов. Впервые авиалайнер, оборудованный турбинно-газовым движком с системой ВСУ, сконструировали в 1963 (Boeing 727). Он курсировал по маленьким аэропортам без потребности в наземном оборудовании.
Назначение
ВСУ применяются в самой разной технике (например, используются в самоходной «зенитке» ЗСУ-23-4). То есть развитие технологии связано не только с самолетостроением, но и с производством таких транспортных средств, как танки, машины военного назначения, паровозы и пр. Однако наибольшее распространение установки получили именно в авиастроении (на лайнерах и вертолетах). Причем чаще всего их ставят в воздушных ТС пассажирских и транспортных типов.
Кроме поддержки главных двигателей, ВСУ также используют для вырабатывания электричества во время наземных работ, для поддержания нужного уровня давления гидросистем, а также для кондиционеров. Ведь не каждое аэродромное техобслуживание обладает нужным для этого оборудованием.
Компрессоры ВСУ применяют и при воздушном снабжении рабочих механизмов в процессе стоянки — когда пассажиры занимают места в салоне, в авиалайнере уже включен свет и работают кондиционеры. На стоянке дополнительная силовая машина может работать как турбостартер, приводящий в действие гидронасосы и генераторные составляющие. Такая схема присуща самолетам СУ-27, оборудованным движками АЛ-31Ф, либо для МИГ-29, с установленными РД-33.
То есть главные задачи ВСУ:
Запуск двигателей
Мощности СУ используют при пуске двигателей. На новых самолетах ВСУ работает в качестве газотурбинных мини-двигателей, их еще называют турбовальными. При этом незадействованная турбина такого механизма функционирует для поддержания всех доступных устройств лайнера. Нужно сказать, что типы моторов могут различаться по способу функционирования — от турбовальных, дизельных и бензиновых до паровых агрегатов.
Для пуска с помощью СУ, мощности направляются на раскручивание ротора. От ВСУ к движку тянутся воздуховоды (с внешней стороны лайнера видны специальные люки для движения воздуха). Пилот при пуске отключает ВСУ от кондиционеров в салоне и направляет воздух к мотору. В результате воздушные массы стимулируют раскрутку турбин до требуемых оборотов, после чего поджигается смесь камеры сгорания, и движок запускается.
Альтернативный вариант: пуск главного мотора напрямую от генератора СУ. Генератор при этом функционирует в форсированных режимах. Таким способом запускается авиалайнер ИЛ-18 или, например, АН-12.
Функция подстраховки
ВСУ в самолете используют в качестве альтернативного источника энергии для наиболее важных систем, а значит, для большей безопасности пассажиров. Если во время полета выходят из строя генераторы либо другие энергетические агрегаты, ВСУ запускается в аварийном режиме: борт снабжается энергией вплоть до посадки самолета.
Устройство
ВСУ оборудована специальным генератором и компрессором — первый питает электрическую составляющую самолета, второй применяется для пуска движков и для работы кондиционеров. В левой нижней части расположен воздухозаборник, отверстие которого при отключении прикрывается специальной створкой. Справа выведена насадка для дренажа. Если происходит утечка топливных либо масляных жидкостей, лишняя консистенция сливается через насадку. Вверху и правее расположено отверстие выхода охлаждающего воздуха для воздушно-масляных радиаторов. Включается ВСУ при помощи электрического стартера.
Агрегат установлен в стальном огнеупорном корпусе — для защиты лайнера в случае возгорания. На новых машинах ВСУ находится в хвостовом отсеке. Если же это воздушное средство транспортного типа — в корпусе главной стойки шасси. Рассмотрим полный перечень мест, где может располагаться ВСУ:
В таблице указаны характеристики СУ отечественного производства.
Тип | Масса, кг | Схема | Генератор | Забор воздуха | Расход топлива кг/ч | Предельная рабочая высота | Максимальные обороты в минуту | В какой модели установлена |
ТА-6Б | — | 3о — 1о | ГС-24 | Для запуска | — | 3000 | — | Ил-38, Ил-18 |
ТА-6А | 298 | 3о — 1о | ГТ40ПЧ6 и ГС-12 | Для кондиционирования | 240 | 3000 | — | Ту-154 |
АИ9-3Б | 128 | 1ц — 1о | ГТ16ПЧ8 | Для кондиционирования | 92 | 4000 | 38500 | Ан-140 |
АИ-9В | 70 | 1ц — 1о | СТГ-3 | Для запуска | 75 | 4000 | 36750 | Ми-8, Ми-24, Ми-28 |
Схема двигателя включает тип и количество ступенек компрессора и турбин; о — осевое, ц — центробежное.
Недостатки
Иногда давления для раскрутки турбин не хватает. Обычно все дело в следующем:
Для предотвращения возможных проблем, в крупных аэропортах предусмотрены наземные мобильные системы. Такие установки воздушного запуска (УВЗ) используют после двух-трех неудачных попыток пуска стандартными средствами. Экипаж сообщает о проблеме наземным службам, подъезжает УВЗ, и ее подключают к самолету через специальный воздушный тракт. После удачной попытки пуска, УВЗ отсоединяют, и следующий двигатель запускается уже от работающего мотора.
Вспомогательная силовая установка самолета
Современные авиалайнеры оснащены многочисленными приборами, без которых воздушный транспорт не смог бы нормально функционировать. Далее в статье попробуем проанализировать что такое ВСУ в самолете и для чего анализируемый элемент предназначен.
Все о ВСУ
Принцип работы устройства объясняется так: агрегат предоставляет транспортным средствам дополнительную энергию, источником которой при стандартном оснащении является двигатель. Простыми словами можно сказать, что ВСУ не приводит технический транспорт в действие, а просто дополняет энергией транспортные средства. Установкой оснащают современные авиалайнеры и вертолеты, а также морской вид транспорта и наземную специализированную технику.
Однако наиболее востребована анализируемая установка именно в сфере авиации. Ведь чтобы наземные службы могли обслуживать технику, в первую очередь требуется электроэнергия, а также необходимый уровень давления в системах, предназначенных для кондиционирования и для активации работы двигателей авиалайнеров.
Не каждый аэровокзал в состоянии обеспечить воздушный транспорт всем необходимым, не имея для этого необходимого оснащения. При таких обстоятельствах решить возникшую проблему помогает именно силовой агрегат вспомогательного значения.
ВСУ воздушного транспорта
ВСУ в самолете – это небольшой двигатель (как турбовальный, так и газотурбинный). Он оснащен турбиной, которая вырабатывает полезную энергию, что в свою очередь активирует действие всех необходимых для работы полезных агрегатов, предоставляющих летательному аппарату дополнительную электроэнергию.
Вспомогательная силовая установка самолета оснащена еще одной довольно важной функцией. Если во время полета выйдет из строя один из самых важных элементов, к примеру, генератор, установка поможет запустить его в особом режиме, включающемся при аварийной ситуации, и будет перенаправлять на борт дополнительную электроэнергию до тех пор, пока воздушный транспорт не приземлится в аэропорту. Более того, при чрезвычайных ситуациях именно ВСУ поможет запустить основной двигатель, даже если самолет будет находиться в воздушном пространстве.
К примеру, вспомогательная силовая установка самолета ТА-6А, установленная на модели Ту-154, запускает в действие генератор, предоставляющий летательной технике электроэнергию через гидронасос. Также отобранный воздух из вспомогательного агрегата используется для следующих операций:
Практически на всех современных двигателях имеется ВСУ установленная возле турбостартера.Такое расположение выбрано обоснованно, ведь турбостартер связан с генераторам и гидронасосом через специальную приводную коробку. Поэтому ВСУ при активации помогает активировать работу рассматриваемых систем, причем даже в том случае, если воздушный транспорт находится на стоянке.
ВСУ вблизи турбостартера устанавливается на всех моделях Су-34, которые были выпущены после 2011 года, а также на МИГе-29 с двигателем РД-33.
Чаще всего ВСУ устанавливают в хвосте современных авиалайнеров. После окончания монтажных работ на корпусе отчетливо остаются видны незначительные по размеру отверстия, в которые входит поток воздуха и выходит газ. На транспортных воздушных средствах силовая вспомогательная установка может быть размещена на основной стойке шасси, вблизи гондолы.
Активировав работу вспомогательного силового элемента, удается поддержать функциональность всех систем авиалайнера, даже при выключенном двигателе. Воздушный транспорт, оснащенный рассматриваемым агрегатом, намного проще приземляется в недостаточно оборудованном аэровокзале. Например, если ВПП недостаточно освещается.
Вспомогательная силовая установка самолета в значительной степени повышает автономность воздушного транспорта и помогает обслуживать летательные аппараты наземным службам с минимальными затратами.
Как ранее уже было отмечено, ВСУ устанавливается не только на летательных аппаратах, но и на наземных специализированных средствах. К примеру, незначительный по размеру агрегат устанавливается на самоходной зенитной установке, для обеспечения непрерывного доступа электроэнергии к важным специальным системам.
Проанализировав принцип работы ВСУ, можно прийти к такому выводу: вспомогательная силовая установка используется не только в авиации и не рассматривается исключительно в качестве турбовального двигателя. Ведь агрегат может быть как паровым, так и дизельным или бензиновым. Устанавливается агрегат на различных специализированных транспортных средствах и даже на паровозах, но эта тема уже иной статьи, не связанной с авиацией.
Узнать немного больше о вспомогательной силовой установке вы можете из демонстрационного видео на примере ВСУ 120. Приятного просмотра!
Вспомогательная силовая установка.
Здравствуйте!
Выходной патрубок ВСУ самолета А380.
Сегодня совсем небольшая статья об агрегате отнюдь не маленького значения. Вспомогательная силовая установка ( ВСУ ). О ней я за короткий срок уже дважды упоминал на страницах своего сайта. Но она заслуживает того, чтобы ей была посвящена отдельная, пусть и короткая статья.
Дело в том, что вспомогательная силовая установка — агрегат достаточно важный и довольно широко применяемый сегодня на транспорте. Суть его в том, что он снабжает то или иное транспортное средство необходимой энергией, источником которой в обычном режиме выступает основная силовая установка, то есть попросту двигатель (или двигатели).
Наиболее широкое распространение ВСУ получили в авиации. Особенно это актуально для пассажирских самолетов и самолетов транспортной авиации. Для их наземного обслуживания необходима электроэнергия, часто требуется давление в гидросистемах и системах кондиционирования.
Да и для запуска основных двигателей тоже нужна энергия. Далеко не всегда все это можно получить с помощью средств наземного обеспечения, ведь не все аэродромы и аэропорты одинаково развиты в этом плане.
Вот тут-то положение и спасает вспомогательная силовая установка.
ВСУ ТА-6Р для ТУ-154Б-2 и ИЛ-76.
На современных самолетах ВСУ – это миниатюрный газотурбинный двигатель. Или по другому турбовальный. На этом двигателе свободная турбина работает «на благо» :-). Вся полезная энергия, срабатываемая на ней, уходит на приведение в действие
полезных агрегатов (впрочем, как и на любом турбовальном двигателе :-)). Чаще всего это бывают генераторы, снабжающие летательный аппарат электроэнергией, могут быть гидронасосы в гидравлической системе. Кроме того воздух, который отбирается от компрессора ВСУ может использоваться для работы системы кондиционирования на стоянке, либо для раскрутки ротора основного двигателя при его запуске.
Транспортный самолет С-160 Transall.
ВСУ самолета С-160 в мотогондоле шасси.
Может также осуществляться и электрический запуск основного двигателя от генератора вспомогательной силовой установки. В этом случае этот генератор работает в особом форсированном режиме. Так, например, происходит запуск на самолетах АН-12 и ИЛ-18
ВСУ в хвостовой части А380.
Кроме того на современных лайнерах у ВСУ есть еще одна очень серьезная функция. В случае выхода из строя в полете важных энергоагрегатов (например генераторов), она может быть запущена в аварийном режиме и будет снабжать борт необходимой энергией до самой посадки. На мой взгляд – это отличная функция, крайне важная для безопасности полетов.
ВСУ в хвосте самолета ТУ-134.
ВСУ самолета Боинг- 737.
Вспомогательная силовая установка на современных лайнерах обычно устанавливается в хвостовой части. При этом достаточно хорошо видны специальные отверстия или лючки для входящего воздуха и выходящих газов. На транспортных самолетах ВСУ часто размещается в гондоле для основной стойки шасси.
Интересно, что ВСУ, как газотурбинный двигатель может устанавливаться не только на летательные аппараты. Например, на известной советской зенитной самоходной установке ЗСУ-23-4 «Ши́лка» установлен небольшой ГТД для обеспечения работы спецсистем электрооборудования.
Зенитная самоходная установка ЗСУ-23-4 «Ши́лка».
А вообще вспомогательная силовая установка – это необязательно авиация и необязательно турбовальный двигатель. Это вполне может быть дизельный, бензиновый или даже паровой агрегат и применяться он может на различных транспортных средствах от танков и специальных военных машин до паровозов и газотурбовозов. Однако это уже совсем не авиационная тема :-)…
До следующих встреч…
18 Комментариев: Вспомогательная силовая установка.
благодарю за статью и за все пояснения. при переводе с иностранного языка столкнулась с «АПУ», ооочень помогли!
Интересно, а какой расход топлива у ВСУ?
Как и где достать ВСУ. Хочу попробовать поставить на свой «Странник», глиссер трехточка. Мне бы полегче и с соответстующей тягой.
Получается ВСУ работает на земле для подачи электроэнергии и для запусков двигателей…. Подскажите пожалуйста на какой высоте работает ВСУ. И вообще когда работает ВСУ.
Большое Спасибо.Как всегда просто и понятно.
Продолжайте эту тему. Читал как мальчик из детсада.
Тему по ВСУ Вы имеете в виду? Постараюсь :-)…
А на обычном полёте (на крейсирской высоте и крейсеркой скорости) её используют?
Обычно нет. ВСУ может быть использована в полете в аварийных обстоятельствах (например отказ двигателя), как источник энергии, если конечно такой вариант предусмотрен конструкцией.
Т.е. практически без ВСУ самолёт работать не может. А как ВСУ приводит в движение вал ротора, можете объяснить?
Нет, почему же? ВСУ — это именно вспомогательный агрегат. На подавляющем большинстве летательных аппаратов он используется на земле в том случае, если нет источника аэродромного питания. Причем питание это может быть как электрическим, так и например питание сжатым воздухом и др. То есть ВСУ просто обеспечивает автономность, а также использование и проверку некоторых систем самолета без запуска двигателей.
Приведение в движение ротора двигателя обычно производится через вал-рессору. Он обычно перпендикулярен валу двигателя и располагается в одной из полых стоек в его конструкции. Нижний его конец кинематически (шестерни) соединен с валом, верхний со стартером (чаще всего через коробку приводов). Стартер — это либо электростартер (стартер-генератор) — энергия от наземного источника или ВСУ (его генератор); либо воздушный стартер — воздушная турбинка — воздух от аэродромного источника или компрессора ВСУ; либо турбостартер — это маленький турбовальный двигатель, свободная турбина которого соединена с коробкой приводов (обычно он на ней и стоит). Турбостартер работает только на запуске двигателя (или его прокрутке без запуска), сам запускается от своего электростартера (питание аэродромное или самолетные аккумуляторы).
А много самолётов с/без ВСУ?
Раньше думал, что самолёт работает от генераторов, работающих от турбин главных двигателей, а на стоянке — от аккумуляторов, как машина 🙂
А в «Секундах до катастрофы» показывали выдвижную турбинку, вращающуюся от набегающего потока при отказе всех двигателей.
Все то, о чем Вы написали есть в различных комбинациях. Генераторы приводятся от ротора двигателя и работают после их запуска соответственно. Выдвижные турбинки есть на некоторых самолетах (даже на МиГ-23 была когда-то). ВСУ стоят на больших в основном пассажирских и транспортных. Запустить ВСУ можно от наземного источника или от бортовых аккумуляторов, а потом ВСУ уже способствует запуску двигателя. Есть бортовые стартеры (не ВСУ) — турбо- или электро-, которые запускают двигатель, а сами могут запускаться от наземного источника или бортовых аккумуляторов…
RAT-ветродвигатель, служит источником минимальной энергии необходимой для самых важных элементов управления ВС. Выпускается в нештатных ситуациях (при отсутствии э/питания от двигателей, всу и аккумуляторов)
Вспомогательная силовая установка. ВСУ самолета (12 фото)
Сегодня совсем небольшая статья об агрегате отнюдь не маленького значения. Вспомогательная силовая установка (ВСУ)
Вспомогательная силовая установка на современных лайнерах обычно устанавливается в хвостовой части. При этом достаточно хорошо видны специальные отверстия или лючки для входящего воздуха и выходящих газов.
Дело в том, что вспомогательная силовая установка – агрегат достаточно важный и довольно широко применяемый сегодня на транспорте. Суть его в том, что он снабжает то или иное транспортное средство необходимой энергией, источником которой в обычном режиме выступает основная силовая установка, то есть попросту двигатель (или двигатели).
Выходной патрубок ВСУ самолета А380 :
Наиболее широкое распространение ВСУ получили в авиации. Особенно это актуально для пассажирских самолетов и самолетов транспортной авиации. Для их наземного обслуживания необходима электроэнергия, часто требуется давление в гидросистемах и системах кондиционирования.
Да и для запуска основных двигателей тоже нужна энергия. Далеко не всегда все это можно получить с помощью средств наземного обеспечения, ведь не все аэродромы и аэропорты одинаково развиты в этом плане.
Вот тут-то положение и спасает вспомогательная силовая установка.
Открытый отсек ВСУ А320 :
На современных движках у турбостартера появилась функция ВСУ.
Турбостартер через коробку приводов агрегатов связан с гидронасосами и генераторами может на стоянке приводить их в действие. Это характерно для самолетов МИГ-29 с двигателями РД-33 и для самолетов СУ-27 с двигателями АЛ-31Ф.
Все Су-34, выпускаемые с 2011 года оснащаются ВСУ :
Кроме того на современных лайнерах у ВСУ есть еще одна очень серьезная функция. В случае выхода из строя в полете важных энергоагрегатов (например генераторов), она может быть запущена в аварийном режиме и будет снабжать борт необходимой энергией до самой посадки. А в некоторых случаях, ВСУ может использоваться и для запуска основных двигателей в воздухе. На мой взгляд – это отличная функция, крайне важная для безопасности полетов.
ВСУ в хвосте самолета ТУ-134 :
На транспортных самолетах ВСУ часто размещается в гондоле для основной стойки шасси.
ВСУ самолета С-160 в мотогондоле шасси:
А вообще вспомогательная силовая установка – это необязательно авиация и необязательно турбовальный двигатель. Это вполне может быть дизельный, бензиновый или даже паровой агрегат и применяться он может на различных транспортных средствах от танков и специальных военных машин до паровозов и газотурбовозов. Однако это уже совсем не авиационная тема.
На советской зенитной самоходной установке ЗСУ-23-4 «Ши́лка» установлен небольшой ГТД для обеспечения работы спецсистем электрооборудования :
И в качестве дополнения.
«Ветряк», мощностью 15 кВА, с двухлопастным воздушным винтом (лопасти обогреваются для предотвращения их обледенения в полёте).
В нормальной ситуации он убран в специальный отсек. В случае отказа обоих генераторов в полёте, RAT выпускается, раскручивается набегающим потоком воздуха и подаёт электропитание на левую и правую бортовые шины. Весь процесс происходит автоматически, однако, имеется и рукоятка для принудительного открытия замка.
RAT позволяет спокойно продолжать полёт, вплоть до запуска ВСУ, выхода на режим и подключения её генератора к сети.
Автоматический выпуск производится при неработающем генераторе ВСУ и скорости самолета более 92,6 km/h.
АВИАЦИОННАЯ СИЛОВАЯ УСТАНОВКА
АВИАЦИОННАЯ СИЛОВАЯ УСТАНОВКА, двигатель и движитель летательного аппарата, единый комплекс устройств и агрегатов, обеспечивающих силу тяги и подъемную силу для полета и ускорения летательного аппарата. Автомобиль движется благодаря трению покоя между колесом и дорогой. Воздушная Среда не обладает трением покоя, поэтому и сила тяги, и подъемная сила летательного аппарата определяются изменением количества движения среды, в которой он движется. Любой авиационный движитель (например, винт) захватывает поток воздуха, натекающий на летательный аппарат, и отбрасывает его с увеличенной скоростью назад, что приводит к возникновению реактивной силы, направленной вперед и равной изменению количества движения в единицу времени. Кроме того, должна существовать поддерживающая сила, благодаря которой летательный аппарат не падает. Самолет поддерживают крылья, которые тоже изменяют количество движения воздуха, отбрасывая его вниз и создавая подъемную силу. При движении самолета в воздушной среде возникает сила сопротивления движению, для преодоления которой нужна сила тяги, создаваемая двигателем. Подъемная сила и сила тяги вертолета создаются вращающимися лопастями. На рис. 1 приведена схема создания этих сил летательными аппаратами.
Физические принципы создания сил летательным аппаратом.
Для создания силы тяги и подъемной силы необходимо выполнение трех условий. Во-первых, необходим источник энергии, поскольку нужно увеличить скорость, а значит, и кинетическую энергию потока воздуха. Почти во всех случаях энергию на борту самолета или вертолета получают при сжигании углеводородного топлива (или водорода) с кислородом воздуха. В качестве вспомогательной используется электрическая энергия, запасенная в аккумуляторах. Первоначальный энтузиазм, вызванный овладением атомной энергией, не привел к созданию практичного ядерного двигателя для летательного аппарата.
В-третьих, должно быть средство, которое обеспечивало бы передачу механической энергии потоку для увеличения его скорости (или количества движения). Для этого существует несколько возможностей. Энергия двигателя может передаваться воздушному винту, который ометает большую площадь потока, т.е. захватывает большой расход, и несколько увеличивает его скорость. Для привода винта используют поршневые и турбовинтовые (рис. 2) двигатели. Существуют двигатели, которые механическую энергию затрачивают на увеличение кинетической энергии горячих выхлопных газов, расширяющихся в сопле; это – турбореактивные двигатели (рис. 3).
Полезная работа двигателя – работа, затрачиваемая на движение летательного аппарата. Полезная мощность – работа, совершаемая в единицу времени, – равна произведению силы тяги на скорость летательного аппарата. Следовательно, тяговый КПД (КПД движителя) равен отношению полезной мощности к мощности двигателя. Можно показать, что этот КПД равен удвоенной скорости летательного аппарата, деленной на сумму скорости полета и скорости реактивной струи (относительно летательного аппарата). С другой стороны, тяга равна массовому расходу реактивной струи, умноженному на разность скоростей струи и аппарата. Таким образом, высокая скорость реактивной струи приводит к большой тяге на единицу расхода и к малому тяговому КПД. Это соотношение показано на рис. 4.
Воздушный винт, захватывая большой расход и сравнительно ненамного увеличивая скорость струи, обладает высоким КПД. Турбореактивный двигатель представляет другую крайность: расход в нем сравнительно невелик (поперечное сечение двигателя невелико), а скорость струи высока, поэтому он имеет невысокий КПД. Турбовентиляторные двигатели (рис. 5) похожи на турбовинтовые тем, что вентилятор ускоряет дополнительный расход рабочего тела, не проходящий через турбокомпрессор, который затем истекает через сопло. Скорость реактивной струи в турбовентиляторном двигателе ниже, чем в турбореактивном, но выше, чем в турбовинтовом; соответственно, он имеет промежуточное значение КПД. Самое широкое применение турбовентиляторные двигатели нашли в современных дозвуковых транспортных самолетах.
Типы авиационных двигателей.
Любая авиационная силовая установка должна иметь в своем составе указанные выше агрегаты, но они могут быть самыми разными в зависимости от условий эксплуатации двигателя. К ним относятся: скорость и высота полета, маневренность, дальность, взлетно-посадочные требования. Кроме этих условий, на характеристики двигателя влияют отношение тяги к расходу топлива (чаще используют величину, обратную этому отношению, – удельный расход топлива), отношение тяги к весу силовой установки, уровень шума при взлете и посадке, капитальные затраты и стоимость обслуживания, надежность. Все эти критерии необходимо рассмотреть при выборе силовой установки для конкретного применения.
Главным критерием, определяющим выбор силовой установки, является скорость полета. Скорость полета лучше всего определять числом Маха – отношением скорости полета летательного аппарата к скорости звука на заданной высоте. При M 6 называются гиперзвуковыми; при таких скоростях, вплоть до орбитальных (число Маха около 25), предполагается использовать прямоточные двигатели, в том числе со сверхзвуковым горением. В прямоточных двигателях повышение давления и температуры, необходимое для эффективной работы, достигается за счет кинетической энергии набегающего потока. Если перед зоной подачи топлива в поток он тормозится до скорости, меньшей скорости звука, то двигатель называется просто прямоточным; если же топливо впрыскивается в сверхзвуковой поток, то – прямоточным со сверхзвуковым горением. Прямоточный двигатель со сверхзвуковым горением подходит для воздушно-космических самолетов, которые должны летать при гиперзвуковых скоростях.
Тепловой двигатель.
Главным элементом всех рассмотренных выше силовых установок является тепловой двигатель, преобразующий тепловую энергию в механическую. В тепловом двигателе происходит изменение состояния рабочего тела, как правило, в результате химической реакции горения. В процессе горения повышается температура рабочего тела. В поршневых двигателях температура повышается при почти постоянном объеме и соответствующем увеличении давления; в газотурбинных двигателях температура повышается при почти постоянном давлении. В поршневом двигателе продукты сгорания расширяются в рабочем цилиндре, а в газотурбинном – в лопаточных аппаратах турбины; при этом часть выработанной турбиной энергии тратится на сжатие воздуха компрессором, а часть – на вращение винта, вентилятора или ротора вертолета. В турбореактивном двигателе турбина выполняет только ту работу, которая необходима для вращения компрессора, а основная часть энергии рабочего тела преобразуется в силу тяги в процессе расширения потока в сопле.
Поскольку термический КПД теплового двигателя увеличивается с повышением температуры и давления рабочего тела, в авиационных двигателях используют высокие степени повышения давления. В современных авиационных газотурбинных двигателях степень повышения давления достигает 25 и даже больше; в поршневых двигателях обычное значение степени сжатия 8. Если число Маха полета заметно больше единицы, во входном диффузоре происходит существенное повышение давления (примерно в 2 раза при M = 1 и почти в 20 раз при M = 3). Эффективная степень сжатия в газотурбинном двигателе равна произведению степени сжатия во входном диффузоре на степень сжатия в компрессоре, поэтому при высоких числах Маха двигатели даже с небольшой степенью сжатия компрессора имеют хороший термический КПД. Турбореактивные двигатели, рассчитанные на сверхзвуковые скорости полета, должны иметь компрессор со степенью сжатия не больше 12.
С ростом температуры сгорания повышается не только термический КПД, но и мощность, поскольку тепловая (внутренняя) энергия рабочего тела пропорциональна его температуре. Следовательно, очень желательно повышать температуру в камере сгорания, а значит, и на входе в турбину; однако эта температура ограничивается материалом турбинных лопаток, обтекаемых высокотемпературным потоком. Совершенствование авиационных материалов позволяет повысить рабочую температуру лопаток. Однако перспективнее охлаждение лопаток, что позволяет поддерживать их температуру ниже температуры горячих газов. Это достигается за счет отбора некоторого количества воздуха на выходе из компрессора и подачи его для охлаждения турбинных лопаток. Повышение рабочей температуры турбины, достигнутое за период 1950–1990 годов, приведено на рис. 7. На рис. 8 показано достигнутое улучшение экономичности двигателя.
Компрессор и турбина.
В газотурбинных двигателях процессы сжатия и расширения осуществляются лопаточными машинами. В лопаточных машинах изменение энергии потока, приводящее к его сжатию или расширению, вызвано движением лопаток, которые поворачивают поток и изменяют его скорость, в отличие от поршневых двигателей, в том числе роторного, в которых степень сжатия зависит главным образом от положения поршня.
Компрессоры авиационных двигателей довольно разнообразны. Наиболее широко применяется осевой компрессор (рис. 3), состоящий из перемежающихся рядов вращающихся (рабочих) и неподвижных (направляющих) лопаток; ряд рабочих и ряд направляющих лопаток составляют ступень компрессора. Рабочие лопатки совершают работу за счет внешней энергии и увеличивают энергию потока. В направляющем аппарате происходит торможение потока, ускоренного в рабочем колесе, и растет давление, а с ним вместе и температура. Каждая ступень компрессора последовательно увеличивает давление рабочего тела, в результате чего в многоступенчатом компрессоре достигается высокая степень повышения давления.
Турбина работает в принципе так же, как компрессор, за исключением того, что на рабочих лопатках поток совершает работу; при этом его энергия уменьшается. Мощность, вырабатываемая турбиной, частично идет на вращение компрессора, а частично – на вращение винта, вентилятора или ротора вертолета.
И в компрессоре, и в турбине действующие на лопатку силы пропорциональны плотности набегающего потока и квадрату его скорости в относительном движении. «Мощность лопатки» равна действующей на лопатку силе, умноженной на ее скорость. Итак, если скорость потока в относительном движении примерно равна окружной скорости лопатки, то мощность, передаваемая потоку или отбираемая от него, пропорциональна кубу скорости лопатки. Расход через рабочее колесо пропорционален окружной скорости лопатки, поэтому мощность на единицу массы расхода пропорциональна квадрату скорости лопатки. Относительное повышение температуры в компрессоре пропорционально квадрату числа Маха лопатки. Поэтому желательно, чтобы окружные скорости лопаток в авиационном компрессоре были околозвуковыми или сверхзвуковыми (при нормальных условиях 300 м/с или более). Такие скорости значительно выше скоростей поршня (примерно 10 м/с) в поршневом двигателе.
Высокие окружные скорости лопаточных машин приводят к большим центробежным нагрузкам во вращающихся лопатках и в диске, на котором они смонтированы; это выдвигает жесткие требования к проектированию и изготовлению лопаточных машин. Материал для турбин должен выдерживать высокие нагрузки при высоких температурах. Эти требования вместе с необходимостью малого веса и хорошей надежностью приводят к высокой стоимости газотурбинных двигателей. Появление новых прочных и легких материалов позволяет увеличить обороты компрессора и турбины и получить более высокие степени повышения давления или при данной степени повышения давления уменьшить число ступеней.
Винты, вентиляторы и воздухозаборники.
Винт воздействует на поток так же, как рабочее колесо компрессора, у него только меньше лопастей и ниже степень повышения давления; он наиболее эффективен, как указывалось выше, для небольших скоростей полета. Однако с ростом скорости полета относительная скорость концов лопастей (векторная сумма скорости полета и окружной скорости лопасти) приближается к скорости звука, что происходит задолго до достижения звуковой скорости полета. Достижение на концах лопастей скорости звука приводит к резкому увеличению местного сопротивления и уровня шума, что ограничивает скорость полета винтовых самолетов.
Турбовентиляторные и турбореактивные двигатели для приема набегающего потока оборудованы воздухозаборниками (рис. 5). Воздухозаборник позволяет уменьшить скорость набегающего потока до приемлемой для вентилятора. При взлете в воздухозаборнике происходит плавное ускорение потока, а при полете на крейсерском околозвуковом режиме – торможение до требуемого значения скорости. В итоге вентилятор вне зависимости от скорости полета работает при оптимальных условиях. По сути дела, вентилятор – просто низконапорный компрессор; такой движитель очень удобен для дозвуковых транспортных самолетов.
Стремление повысить экономичность заставляет разрабатывать новые, более совершенные типы двигателей: высокоскоростные турбовинтовые или турбовентиляторные без внешнего кольца. Двигатель второго типа имеет два противоположно вращающихся винта с очень тонкими лопастями, загнутыми назад по вращению для уменьшения эффективного числа Маха на концах лопастей и, следовательно, для снижения уровня потерь и шума, связанных с образованием местных скачков уплотнения.
При полете со сверхзвуковыми скоростями воздухозаборник должен перестроить набегающий сверхзвуковой поток в дозвуковой, поэтому конструкция воздухозаборника в этом случае становится сложнее. От сверхзвуковой до звуковой скорости поток тормозится в системе скачков уплотнения, образующихся на носовом конусе или клине, а затем в расширяющемся диффузоре происходит дальнейшее торможение потока до значения скорости на входе в компрессор.
К истории авиационных двигателей.
Уже на заре авиации было ясно, что характеристики двигателя определяют возможности полета самолета. Огромные усилия были затрачены на разработку и совершенствование силовых установок с высоким отношением мощности к весу. Первоначально пробовали применить на самолете паровые машины, но паровая машина слишком тяжела и малоэффективна для применения на летательном аппарате. Братья Райт для своего первого удачного самолета использовали поршневой двигатель с искровым зажиганием. Такие непрерывно совершенствовавшиеся двигатели применялись до конца Второй мировой войны, когда впервые в немецкой авиации появился истребитель с двумя турбореактивными двигателями. Турбореактивный двигатель был разработан независимо фон Охайном в Германии в 1939 и Ф.Уиттлом в Англии в 1941. В последующие годы газотурбинные двигатели быстро вытеснили поршневые в военной авиации: турбореактивные – на истребителях и бомбардировщиках и турбовинтовые – в транспортной авиации.
Первые пассажирские самолеты с турбореактивными двигателями появились в конце 1940-х годов (британская «Комета»); в целом самолеты оказались удачными, однако уровень шума при взлете был неприемлем. Этот фактор, а также стремление к экономии топлива привели в начале 1960-х годов к внедрению турбовентиляторных двигателей. Меньшая скорость реактивной струи позволила существенно снизить шум. Позже усовершенствованные турбовентиляторные двигатели с высокой степенью двухконтурности (рис. 5) были установлены на широкофюзеляжных самолетах, таких, как «Боинг-747», DC-10, «Локхид-1011». Турбовентиляторные двигатели тягой до 400 кН сейчас повсеместно применяются на пассажирских самолетах.
На современных высококлассных боевых самолетах стоят турбореактивные или турбовентиляторные двигатели с форсажом; впервые турбовентиляторный двигатель с форсажом был установлен на многоцелевой истребитель F-111, который должен был летать как на дозвуковых, так и на сверхзвуковых скоростях. По существу, все современные истребители и многоцелевые самолеты используют такие двигатели с разной степенью двухконтурности для разных применений. С каждым новым поколением двигателей повышаются их удельная мощность и удельный импульс.
Казанджан П.К. Теория двигателей летательных аппаратов. Киев, 1975
Скубачевский Г.С. Авиационные газотурбинные двигатели. М., 1981
Присняков В.Ф. Двигатели летательных аппаратов. Киев, 1986
Нечаев В.И., Ткачев Ф.И. Авиационные двигатели. М., 1987