врм пульс на фитнес браслете что это
Нормальный пульс человека. Измеряем пульс с помощью фитнес браслета.
Для оценки состояния работы организма используются различные биомаркеры, а одним из основных показателей является уровень пульса. Но что может повлиять на уровень пульса? Что делать в случае, если пульс повысился или понизился? И как правильно меряется нормальный пульс? Ниже эти вопросы в подробностях будут рассмотрены.
Нормальный уровень пульса у здорового человека
Пульс — это толчкообразные колебания стенок артериальных сосудов, которые возникают в теле человека под действием сокращения сердца. В медицине уровень пульса используется в качестве биомаркера уже более 2.000 лет, а по характеру пульса можно определить состояние здоровья человека. В норме у здорового человека уровень пульса находится в определенных пределах. Таблица нормального пульса у человека по годам выглядит следующим образом:
Возраст человека | Нормальный пульс у здорового человека в состоянии покоя |
до 3 месяцев | 100-150 уд/мин |
3-6 месяцев | 90-120 уд/мин |
от 6 месяцев до 10 лет | 75-130 уд/мин |
от 11 до 20 лет | 60-110 уд/мин |
от 21 до 30 лет | 60-90 уд/мин |
от 31 до 40 лет | 65-80 уд/мин |
от 41 до 50 лет | 65-90 уд/мин |
более 51 года | 60-90 уд/мин |
Если у человека имеется стойкое отклонение от нормы, то это может указывать на наличие скрытого заболевания. Чаще всего патологических пульс наблюдается при хронических болезнях сердца, почек, печени и нервной системы. При этом обратите внимание, что существует ряд факторов, которые могут временно повышать уровень пульса, но при этом человека можно со всей уверенностью назвать здоровым. Основные случаи:
Вышеперечисленные факторы могут на короткое время повышать или понижать пульс, что плохо сказывается на качестве диагностики. Поэтому рекомендуется замерять пульс несколько раз с определенным временным перерывом — это снизит влияние сторонних факторов, что позволит повысить качество диагностики в целом.
Способы измерения пульса
Измерить уровень пульса можно различными способами, однако чаще всего для этого используются 3 техники — ручное измерение пульса, применение тонометра и применение специального фитнес-браслета. Каждый из этих способов измерения имеет свои особенности. Ниже мы рассмотрим способы измерения и коснемся их преимуществ и недостатков.
Ручной замер пульса
Самым древним и простым методом измерения пульса является ручной замер. Выглядит он следующим образом:
Ручной замер является достаточно надежным методом; еще одним его плюсом является то, что для проведения измерений вам не понадобится покупать какое-либо оборудование. Однако этот метод подойдет только тем людям, которые могут хорошо концентрировать свое внимание (в домашних условиях не всегда получается хорошо сконцентрироваться, например, из-за соседей или других членов семьи, которые могут издавать отвлекающие шумы).
Тонометр
Еще одним методом измерения пульса является использование специальных тонометров. Алгоритм проведения замеров выглядит так:
Использование тонометра заметно повышает точность измерений. Однако для покупки тонометра придется потратить определенное количество денег, а сам тонометр со временем портится и приходит в негодность (может испортиться манжета, может выйти из строя электронная схема и так далее).
Фитнес-браслет
Также широкое распространение получили оптические фитнес-браслеты, которые позволяют очень точно определить уровень пульса практически в любой момент времени. Умный браслет с измерением пульса и давления работает следующим образом:
Применение фитнес-браслета имеет массу преимуществ — очень точные результаты, есть возможность контролировать пульс в любой момент времени, есть возможность сохранения информации и так далее. Однако нужно учитывать, что фитнес-браслет необходимо периодически подзаряжать, поскольку для его функционирования требуется электроэнергия. Также частое применение фитнес-браслет неудобно тем, что человек может случайно ударить его о какой-либо предмет, что выведет его из строя.
Отклонения от нормы
При некоторых заболеваниях уровень пульса может отклониться от нормы. Основные моменты:
После стабилизации пульса рекомендуется обратиться к врачу, чтобы он выписал надежные лекарства. Принимать препараты нужно согласно лечебному плану, а самостоятельно прекращать прием лекарств запрещено. Также стоит не забывать, что самолечение может принести гораздо больше вреда, чем пользы, поэтому самому лечить повышенный или пониженный пульс в домашних условиях не рекомендуется (лекарствами или продуктами можно временно стабилизировать пульс — но после этого нужно отправиться в больницу).
Фитнес-браслеты и часы не измеряют вариабельность сердечного ритма! Неужели всё это — обман?
Для непосвященного человека, заголовок статьи может показаться совсем неинтересным и вовсе неважным. Что вообще такое вариабельность сердечного ритма? Почему всё — обман? И какое отношение к этому показателю имеют все фитнес-трекеры?
На самом деле, даже если вы ни разу не слышали о вариабельности сердечного ритма (ВСР), то скорее всего, используете одну или несколько функций на своем фитнес-трекере, основанных именно на вариабельности.
Если среди всех смарт-часов и фитнес-браслетов, которые мы обозревали на dR, вариабельность непосредственно отображается только на Apple Watch, то у других производителей на основе этого показателя работают такие популярные функции, как:
Как видите, вариабельность сердечного ритма — это один из ключевых показателей, от которого зависят многие полезные фитнес-функции. И в дальнейшем их будет становиться только больше, так как основным источником вариабельности сердечного ритма является автономная нервная система. А эта система отвечает за функционирование всего организма.
Но я всё чаще встречаю в интернете, особенно на форумах, популярную точку зрения или даже авторитетное заявление о том, что ни один фитнес-трекер физически не способен измерять вариабельность сердечного ритма. Соответственно, все эти функции — не более чем баловство.
Так ли это на самом деле? Если вариабельность можно измерить только на электрокардиограмме, значит, производители часов и браслетов обманывают нас, подсовывая совершенно бесполезные функции?
Надеюсь, эта статья даст исчерпывающие ответы на эти вопросы.
Что такое вариабельность сердечного ритма?
Для того чтобы кровь могла циркулировать по всему организму, нам нужен «насос», который бы непрерывно толкал ее по сосудам. И таким насосом является сердце.
Думаю, каждый из нас видел, как интересно оно сокращается. Сжатие происходит в строго определенной последовательности в разных частях:
Вначале сердце должно «втянуть» кровь из вен в одну из своих пустых камер (правую), затем вытолкнуть ее в легкие для очистки от углекислого газа и обогащения кислородом, после чего из легких протолкнуть в другую камеру (левую), а уже оттуда — вытолкнуть в артерии, чтобы она прошла по всему организму и снова через вены попала в правую камеру.
Когда такой цикл завершается, мы говорим, что сердце сократилось один раз, то есть, произошло одно сердцебиение. Затем всё повторяется заново. И так примерно 100 тысяч раз в день. Каждый день.
А теперь позвольте задать очень простой вопрос. Если сердце сокращается 60 раз за 60 секунд, сколько времени проходит между каждым сокращением?
Правильный ответ — сколько угодно. Например, между первым и вторым сокращениями может пройти полсекунды, между вторым и третьим — полторы секунды, а между третьим и четвертым — секунда. Итого, за 3 секунды мы насчитали 3 удара, но вариабельность сердечного ритма при этом была очень высокой.
Из этого примера можно сделать такой вывод:
Вариабельность сердечного ритма — это изменение интервала между последовательными сердцебиениями
Если разница по времени между сокращениями большая (как в нашем примере), то это здорово. Если же сердце сокращается через ровные промежутки времени (например, ровно каждую секунду) — это очень плохо. В таком случае мы говорим, что вариабельность очень низкая. То есть, промежутки времени между ударами не отличаются между собой по длительности.
Чтобы понять, почему это так, нужно вначале разобраться, что вообще заставляет наше сердце биться.
Это заслуга синусового узла — скопления уникальных клеток, которые способны без всякой причины (без участия мозга и влияния нервов) сами по себе генерировать электрические импульсы с определенной периодичностью.
Находится синусовый узел вот здесь:
Именно с этой точки начинается сердцебиение. Вы можете еще раз посмотреть анимацию выше и заметить, что именно эта область сжимается первой при возникновении электрического импульса.
Затем импульс волнообразно проходит по всему сердцу, вызывая последовательное сокращение мышц в других его частях.
Так вот, синусовый узел генерирует электрические импульсы через ровные промежутки времени без какого-либо вмешательства. Но ведь мозг также должен иметь контроль над таким важнейшим параметром, как сердцебиение, не так ли?
Действительно, к синусовому узлу подключены «провода» (нервные окончания) автономной нервной системы для вмешательства мозга в работу сердца. И именно это вмешательство мы наблюдаем в виде изменения интервала между ударами сердца.
Другими словами, анализируя, как сильно и как часто изменяется продолжительность этих интервалов, мы можем анализировать вмешательство автономной нервной системы в работу сердца. А это уже позволяет оценивать стресс и другие важные параметры. Об этом у нас есть подробная и интересная статья.
Как на самом деле измеряется вариабельность сердечного ритма?
Не нужно быть гением, чтобы ответить на этот вопрос. Достаточно просто посчитать, сколько миллисекунд проходит между каждым сокращением сердца. А затем остается взять квадратный корень из среднего значения квадратов последовательных различий.
Согласен, последнее предложение было лишним.
Хотя именно это делает компания Apple в своих Apple Watch, когда показывает в качестве вариабельности сердечного ритма всего одну цифру за день, например, 53 мс, как на этом скриншоте:
Мы не будем сейчас разбирать, что значит эта цифра, хорошо это или плохо. Просто важно понимать, что измерять вариабельность в теории очень просто — достаточно засекать промежутки времени между каждым сердцебиением.
Но как это делать? Самый очевидный ответ — измерять электрическую активность сердца. То есть, смотреть, как проходит электрический импульс по сердцу, прикрепив к телу электроды. Ведь мы знаем, что этот импульс, проходя по сердцу, точно будет вызывать сокращение мышц. А значит, считая интервалы между электрическими импульсами, мы будем считать интервалы между сокращениями сердца.
Именно это и делает ЭКГ (электрокардиограмма). Она не показывает нам пульс, течение крови по артериям и т.п. Всё, что отображается на ЭКГ — это движение электрических импульсов по сердцу. Чем выше напряжение, тем выше отклоняется график от прямой линии и чем быстрее этот импульс возрастает или затухает, тем резче линия на графике поднимается или опускается.
Вот небольшая анимация, которая показывает электрическую активность сердца (распространение электрического импульса показано красным цветом) и соответствующий график ЭКГ:
Именно на ЭКГ можно максимально точно посчитать вариабельность сердечного ритма, так как мы непосредственно анализируем работу сердца, а точнее, прохождение электрических импульсов по нему.
Все эти отклонения линии на графике мы называем зубцами и каждый такой зубец мы называем определенной буквой (P, Q, R, S, T). Для анализа вариабельности (длительности интервалов между ударами) мы выбираем самый большой зубец, который называем буквой R:
На этом рисунке показана хорошая вариабельность сердечного ритма, так как между каждым последовательным электрическим импульсом (= сокращением сердца) проходит разное время.
Вроде бы всё понятно, но как быть с фитнес-браслетами и смарт-часами? Ведь даже Apple Watch или Galaxy Watch (с поддержкой ЭКГ) не используют этот датчик для определения вариабельности пульса.
Фитнес-трекеры не измеряют вариабельность сердечного ритма!
И это правда. Если ЭКГ показывает электрическую активность сердца, то фитнес-трекеры при помощи светодиодов измеряют объем крови в сосудах, показывая пульс (как именно это работает?). Соответственно, на «графиках пульса» ЭКГ и фитнес-трекера показываются совершенно разные процессы и сравнивать напрямую эти картинки нельзя.
Вариабельность сердечного ритма (HRV) измеряется по ЭКГ, а с помощью фитнес-браслета мы можем определить лишь вариабельность пульса (PRV).
Показатель PRV (вариабельность пульса) всегда считался альтернативой HRV (вариабельности сердечного ритма), так как по сути они отображают одно и то же — разницу во времени между последовательными сокращениями сердца.
Когда электрический импульс проходит по сердцу и оно сжимается, выбрасывая порцию крови в аорту, спустя примерно 100 миллисекунд фитнес-браслет на запястье регистрирует пульсовую волну (увеличение объема крови в сосудах).
То есть, оптический пульсометр видит пульс с небольшой задержкой. Если мы одновременно измерим ЭКГ и пульс фитнес-браслетом, то графики будут немного смещаться относительно друг друга:
Так в чем же проблема? Если оптический пульсометр смарт-часов или фитнес-браслета определяет каждое сокращение сердца, пусть и с небольшой задержкой (она вообще не играет никакой роли), тогда в чем сложность измерить вариабельность?
Конечно, если бы фитнес-браслет получал такую красивую пульсовую волну, как на картинке выше, то никаких проблем бы не было. Посчитать длительность интервалов по таким графикам вплоть до миллисекунды — сущий пустяк для процессора.
Проблема лишь в том, что браслет не может получить настолько чистый сигнал. Даже если вы будете соблюдать все правила, о которых я рассказывал здесь, чтобы фитнес-трекер максимально точно определял пульс, ошибок не избежать.
Пульсовая волна даже в идеале выглядит не в виде чередующихся горбиков, а вот так:
Именно самый высокий подъем (систолический пик) соответствует зубцу R на ЭКГ. И вариабельность пульса фитнес-браслеты измеряют по систолическим пикам, точнее, времени между ними.
Но обратите внимание, что после такого пика идет спад, а сразу за ним — небольшой подъем (дикротический зубец).
А теперь представьте, что хватит даже малейшего визуально неуловимого движения браслета на руке, чтобы внести помехи в сигнал и по ошибке незначительно увеличить дикротический зубец.
Вот, каким должен был быть график пульса без ошибок, вызванных движением браслета или сокращением мышц запястья:
А вот, что вышло в реальности, когда во время второго сердцебиения в сигнал попала ошибка:
Мы видим, что на второй волне дикротический зубец по ошибке стал чуть выше систолического пика. Это привело к тому, что разница во времени между первым и вторым сокращениями сердца увеличилась, а между вторым и третьим — сократилась. То есть, из-за одной «испорченной» волны мы получили два неверных значения вариабельности пульса.
И такие проблемы действительно встречаются, что влияет на точность работы всех функций, связанных с вариабельностью.
Кроме того, есть одно фундаментальное отличие ЭКГ от пульсометра браслета. ЭКГ измеряет электрическую активность и прекрасно «видит», откуда и куда направляются электрические импульсы. А фитнес-трекер не видит ничего, кроме периодического изменения объема крови в артериях.
Так вот, нередко бывают ситуации, когда источником пульса является не синусовый узел (который контролируется автономной нервной системой). ЭКГ увидит это и посчитает такой пульс, как результат деятельности автономной нервной системы. А вот браслету всё равно, откуда взялся пульс. Он посчитает любое изменение объема крови, как работу автономной нервной системы.
Тем не менее, все эти проблемы и ошибки незначительны, если мы говорим об измерении вариабельности в состоянии покоя. Есть научные исследования, которые утверждают, что даже смартфон со вспышкой достаточно точно измеряет PRV (вариабельность пульса), чтобы применять этот показатель в качестве альтернативы HRV (вариабельности сердечного ритма) для клинического использования!
Подведем итоги
В самой идее измерения фитнес-браслетами промежутков времени между последовательными сердцебиениями нет ничего странного или сверхъестественного.
Любой современный фитнес-трекер при правильном ношении довольно точно измеряет пульс. Этого уже достаточно для определения вариабельности пульса. Чтобы максимально исключить артефакты движения, смарт-часы замеряют вариабельность только в состоянии покоя.
Да, ошибки могут быть. Но не забывайте, что сигнал от фитнес-трекера проходит очень жесткую фильтрацию. Применяются различные алгоритмы для его очистки от ошибок. Используются показания акселерометра и гироскопа, чтобы вычитать малейшие движения из графика пульса.
Если ваш фитнес-браслет точно измеряет пульс, можно быть уверенным, что погрешность в определении вариабельности пульса незначительна, когда вы находитесь в состоянии покоя (а не во время физической активности). Это доказывают многие научные исследования.
Алексей, глав. ред. Deep-Review
P.S. Не забудьте подписаться в Telegram на первый научно-популярный сайт о мобильных технологиях — Deep-Review, чтобы не пропустить очень интересные материалы, которые мы сейчас готовим!
Как бы вы оценили эту статью?
Нажмите на звездочку для оценки
Внизу страницы есть комментарии.
Напишите свое мнение там, чтобы его увидели все читатели!
Если Вы хотите только поставить оценку, укажите, что именно не так?
Мобильная диагностика: как работают датчики уровня кислорода, пульса, ЭКГ и шума
Содержание
Содержание
Непростой 2020 год показал, что за здоровьем надо тщательно следить даже при самой невероятной занятости. Тем более, что развитие технологий позволяет делать это при помощи смартфона, умных часов или фитнес-браслета. Комбинация различных датчиков и софта может контролировать ряд важных параметров и делать выводы: все ли в порядке или стоит запланировать визит к врачу.
Всплеск интереса к повседневному контролю здоровья случился после появления на рынке «умных» часов и браслетов. Разработчики с самого начала встраивали в них не только акселерометр и/или гироскоп с навигационным приемником, но и датчики контроля сердечных ритмов. Сейчас в такие устройства ставят несколько дополнительных чипов, позволяющих узнать о своем организме много полезного.
Давайте разберемся, какие датчики применяются в «умных» гаджетах, что они умеют и насколько точным получается результат измерений.
Акселерометр и гироскоп
Изначально эти датчики устанавливали в смартфоны. Когда появились «умные» часы и браслеты, их также оснастили такими чипами: на работе акселерометра, например, построена одна из основных задач всех «умных» гаджетов — подсчет количества шагов.
Сейчас все настолько привыкли к тому, что акселерометр и гироскоп есть в мобильных устройствах, что не видят между ними разницы. Тем более, что функции этих датчиков реализуются одной микросхемой. На самом деле разница есть. Если коротко, то акселерометр реагирует на ускорение предмета, а гироскоп — на изменение его положения в пространстве. Поэтому с помощью акселерометра можно, например, понять, нужно ли сменить ориентацию экрана смартфона или посчитать шаги. А с помощью гироскопа — точно определить положение тела.
Зачем это нужно в мобильной диагностике? С подсчетом шагов все ясно — это контроль здорового образа жизни. Но это больше относится к фитнесу. А как это помогает в плане наблюдений за своим самочувствием?
Дело в том, что связка акселерометра и гироскопа обеспечивает работу функции, способной определить, что владелец устройства упал. «Умный» гаджет на основании резкого изменения показаний датчиков делает вывод, что пользователю необходима помощь, и автоматически вызовет экстренные службы, например, скорую или полицию. Зачем это нужно? Например, гаджет оперативно вызовет врачей, если с вами случится какая-то неприятность на улице. А при инсульте и инфаркте очень важно, чтобы квалифицированная медицинская помощь была оказана как можно быстрее.
К примеру, такая функция реализована в Apple Watch. По умолчанию она активируется у пожилых пользователей, также можно ее включить вручную.
Кстати, обратите внимание, что наличие акселерометра вместе с гироскопом позволяет получать более точные результаты тренировок: гироскоп точно распознает такие вещи, как бег на месте или прыжки, и понимает, когда вы идете пешком, а когда бежите.
Датчик пульса
Датчик пульса — первое устройство для мобильной диагностики, появившееся в носимых гаджетах. Он предназначен для контроля сердечных ритмов в состоянии покоя и при физической нагрузке. На основании собранной статистики можно оценить состояние здоровья и понять, оптимальны ли нагрузки на тренировках или, если имеются какие-либо заболевания, сориентироваться, не пора ли обратиться к специалисту.
Измерения пульса
Датчики пульса, используемые в мобильных гаджетах, работают на основе оптической технологии — фотоплетизмографии (PPG). Смысл ее заключается в следующем. При сокращении сердечной мышцы в кровеносных сосудах изменяется кровяное давление и происходит изменение интенсивности капиллярного кровотока. Увеличившееся количество крови в сосуде поглощает больше поступающего света. Если подать поток света определенной интенсивности, то на основании прошедшего через ткань или отраженного сигнала можно сделать вывод об изменениях анализируемой среды: например, подсчитать количество «всплесков» кровотока в минуту и сделать вывод о частоте пульса.
В мобильных гаджетах подсчет пульса реализуется на основе как прошедшего через ткань света (в компактных пульсоксиметрах), так и отраженного — в «умных» часах и фитнес-браслетах. В них светодиод, размещенный на внутренней стороне устройства, испускает свет,который отражается от тканей запястья и поступает на фотодатчик, регистрирующий уровень отраженного сигнала.
Для подсветки используется светодиод зеленого цвета (525 нм). Зеленый цвет излучения выбран потому, что является наиболее контрастным к красному цвету крови, согласно цветовому кругу Иттена, а следовательно, лучше всего поглощается.
«Умные» гаджеты регистрируют пульс автоматически (по расписанию) или по желанию пользователя. На основании измеренных значений они построят красивые графики в мобильных или десктопных приложениях, которые помогут следить за уровнем пульса: контролировать выход за установленные пределы, наблюдать процесс в динамике за определенные интервалы времени. В целом с этой задачей мобильные устройства справляются хорошо.
Измерения артериального давления
Раз датчик пульса анализирует сердечные ритмы на основе изменений кровотока и давления, то логично предположить, что с его помощью можно не только посчитать пульс, но и измерить давление. Это на самом деле так. На основании данных, полученных от датчика пульса, программа может рассчитать величину артериального давления.
Но проблема заключается в том, что для того, чтобы получить близкий к реальному результат, необходимо выполнить калибровку устройства под конкретного пользователя. В противном случае измерение давления будет корректным только для тех, у кого оно находится на нормальном уровне, и еще не проявились возрастные изменения или проблемы, связанные с различными заболеваниями. Поэтому, если вы хотите с помощью «умных» гаджетов контролировать еще и давление, ищите модель с настройкой измерений под владельца.
Датчик ЭКГ
Еще более интересная вещь в плане контроля здоровья — датчик электрокардиографии (ЭКГ). Дело в том, что о работе сердца можно судить не только по изменениям кровотока в сосудах, но и по электрическим сигналам, которые возникают в процессе работы этого органа. И эта информация точнее и информативнее. Электрокардиограмма, полученная специалистом медицинского центра, позволяет сделать выводы о работе сердца и его здоровье. Для этого на руки, ноги и грудную клетку устанавливают электроды, а результат интерпретирует компьютер.
Точно такой же датчик ЭКГ, только миниатюрных размеров, сейчас устанавливают в ряд мобильных устройств. Например, начиная с 4-го поколения, датчик ЭКГ имеется в Apple Watch. Но с мобильными датчиками существует ряд проблем.
Дело в том, что в профессиональном медицинском оборудовании обычно используют 10-12 датчиков, минимум шесть из них размещают в области сердца. А носимое мобильное устройство крепится на запястье. То есть, оно удалено от сердца на большое расстояние. И датчиков в таких устройствах значительно меньше.
Например, в Apple Watch их всего два: один размещен в Digital Crown, второй вместе с датчиком пульса установлен на внутренней стороне.
Поэтому точность ЭКГ, снятого с помощью мобильного устройства, не настолько высока, чтобы делать серьезные клинические выводы. Тем не менее, даже такой точности достаточно, чтобы определить мерцательную аритмию, показывающую, что визит к врачу откладывать не стоит.
Еще один важный момент — работа функции ЭКГ должна пройти проверку надзорных органов в разных странах. На момент написания статьи у Apple, например, получено разрешение для использования функции ЭКГ на территории США. В России Росздравнадзор сертифицировал ее буквально несколько дней назад. В остальном мире она официально отключена, хотя датчики в устройствах имеются. Остается только надеяться, что вопрос рано или поздно решится и полезная функция будет разблокирована.
Датчик уровня шума
Еще одна занятная функция, которая имеется, например, в Apple Watch — измерение уровня шума. Датчик регистрирует уровень фонового шума и, если он в течение некоторого времени превышает пороговое значение, гаджет выдает уведомление и предлагает покинуть место с высоким уровнем шума.
Полезна ли такая функция? Да, поскольку ВОЗ обращает внимание на то, что значительное количество людей подвергается риску потерять слух из-за сильного шумового воздействия в местах развлечений. Вы, наверное, замечали, что после того, как выходишь с рок-концерта или из клуба, некоторое время все слышно словно сквозь вату. Вот от таких «сюрпризов» датчик шума вас и защитит. Если, конечно, вы сами захотите защищаться.
Датчик уровня кислорода в крови
Теперь поговорим о новомодном датчике, которым мобильные устройства начали оснащать недавно. Это датчик определения уровня кислорода в крови. В свете коронавирусной инфекции, ставшей главной темой 2020 года, эта функция оказалась чуть ли не самой рекламируемой.
Нужно отметить, что, помимо наблюдений за своим состоянием в свете последних событий, контроль за уровнем кислорода в крови интересен и в других случаях: недостаток кислорода приводит к таким нехорошим вещам, как дыхательная недостаточность, одышка, головные боли и так далее.
Медики измеряют уровень кислорода в крови с помощью небольших приборов — пульсоксиметров. Внешне они напоминают прищепку с экраном, которая крепится на палец и выдает информацию о пульсе и степени насыщения кислородом артериальной крови. По этой причине датчики уровня кислорода в крови также называют датчиками SpO2.
Расшифровывается эта аббревиатура так:
Нормальной считается величина сатурации от 95 до 100%, показания ниже 90% говорят о наличии проблем.
В пульсооксиметре датчик измерения уровня кислорода работает следующим образом. В приборе установлен светодиод, излучающий сигналы инфракрасного диапазона и красного цвета, а также фотодетектор, фиксирующий, какая часть светового потока прошла через ткани пальца с капиллярными сосудами. Аналогичный способ используется и в умных гаджетах.
Только фотодетектор принимает не прошедший через ткани, а отраженный от них сигнал, так как браслет или часы крепятся на запястье. На основании уровня отраженного сигнала приложение, встроенное в гаджет, делает оценку сатурации и выводит на дисплей измеренное значение.
Такие датчики есть в новой серии Apple Watch, а также в ряде фитнес-браслетов, например, Honor Band 5 и Huawei Band 4 PRO.
Точность измерений и их использование для диагностики
Все перечисленные измерения — сердечных ритмов, ЭКГ и уровня кислорода — работают в мобильных гаджетах в упрощенном режиме. Они имеют уровень погрешности, не позволяющий использовать их как медицинские диагностические приборы. Это написано в документации ко всем «умным» часам и фитнес-трекерам, но, тем не менее, на этом стоит дополнительно заострить внимание.
К примеру, датчик уровня кислорода может ошибаться на несколько процентов, причем значение может колебаться, как в большую, так и в меньшую сторону. Также результаты измерений изменятся в том случае, если браслет или часы неплотно прилегали к вашему запястью, либо потому что резко похолодало.
Поэтому производители и специалисты обращают внимание, что все данные, полученные с мобильных датчиков, могут использоваться для общего контроля здоровья и оценки динамики состояния организма. Они не предназначены для постановки диагнозов и не являются медицинскими приборами. Для профессионального осмотра необходимо использовать специализированную технику.
Вместе с тем, нельзя не отметить и то, что имеется очевидная польза от использования датчиков в мобильной технике. Спортсмены и просто любители активного образа жизни успешно контролируют процесс тренировоки объемы нагрузок. А те, кому пришло время внимательнее относиться к своему здоровью, собирают статистику, показывающую общую картину изменений, и могут ее соотнести со своим самочувствием.
Анализ собранной статистики позволит вовремя заметить, если что-то пошло не так, и своевременно обратиться к врачу, например, при наличии сердечно-сосудистых заболеваний. Поэтому во многих случаях использование мобильной диагностики интересно, полезно и даже необходимо.