временное сопротивление разрыву что это
Предел прочности материалов (разрыв металлов) при растяжении и сжатии: что это такое, виды, фото
При строительстве объектов обязательно необходимо использовать расчеты, включающие подробные характеристики стройматериалов. В обратном случае на опору может быть возложена слишком большая, непосильная нагрузка, из-за чего произойдет разрушения. Сегодня поговорим о пределе кратковременной прочности материала при разрыве и натяжении, расскажем, что это такое, его определение и обозначение, как работать с этим показанием.
Что это значит
ПП – будем использовать это сокращение, а также можно говорить об официальном сочетании «временное сопротивление» – это максимальная механическая сила, которая может быть применена к объекту до начала его разрушения. В данном случае мы не говорим о химическом воздействии, но подразумеваем, что нагревание, неблагоприятные климатические условия, определенная среда могут либо улучшать свойства металла (а также дерева, пластмассы), либо ухудшать.
Ни один инженер не применяет при проектировании крайние значения, потому что необходимо оставить допустимую погрешность – на окружающие факторы, на длительность эксплуатации. Рассказали, что называется пределом прочности, теперь перейдем к особенностям определения.
Как производится испытание
Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.
Все проверки проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.
Определение термина
Образец растягивается на испытательной машине. При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется. Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробности посмотрим на видео:
Виды ПП
Временное сопротивление разрыву определяют по различным воздействиям, согласно этому его классифицируют по:
Предел прочности на растяжение стали
Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными характеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:
Предел прочности материала: что называют текучестью
Новый термин обозначается в технической литературе буквой Т. Показатель актуален исключительно для пластичных образцов и показывает, как долго он может деформироваться без увеличения на него внешней нагрузки.
Обычно после преодоления этого порога кристаллическая решетка сильно меняется, перестраивается. Результатом выступают пластические деформации. Они не являются нежелательными, напротив, происходит самоупрочнение сплава.
Усталость стали
Обозначается буквой R. Это аналогичный параметр, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформирования и потери своих характеристик выдержать воздействие.
Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения векторной величины, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.
Предел пропорциональности
Это показатель, определяющий длительность оказываемых нагрузок к деформации тела. При этом численные характеристики должны изменяться в разный степени по закону Гука. Простыми словами: чем больше оказывается сжатие (растяжение), тем сильнее деформируется образчик.
Параметр каждого из них находится между абсолютной и классической упругостью. То есть если изменения обратимы, после того как сила перестала действовать (форма прежняя – пример, сжимание пружины), то такие качества нельзя называть пропорциональными.
Как определяют свойства металлов
Механические свойства
Различают 5 характеристик:
Классы
Все категории записаны в нормативных документах – ГОСТах, по ним все российские предприниматели изготавливают любой металлопрокат и прочие металлические изделия. Вот соответствие обозначения и параметра в таблице:
Класс | Временное сопротивление, Н/мм2 |
265 | 430 |
295 | 430 |
315 | 450 |
325 | 450 |
345 | 490 |
355 | 490 |
375 | 510 |
390 | 510 |
440 | 590 |
Видим, что для некоторых классов остаются одинаковыми показатели ПП, это объясняется тем, что при равных значениях у них может различаться текучесть или относительное удлинение. В зависимости от этого возможна различная максимальная толщина металлопроката.
Формула для механического напряжения
R с индексом «у» – обозначение данного параметра в физике. Рассчитывается как ПП (в записи – R) поделенное на плотность – d. То есть этот расчет имеет практическую ценность и учитывает теоретические знания о свойствах стали для применения в жизни. Инженеры могут сказать, как меняется временное сопротивление в зависимости от массы, объема изделия. Логично, что чем тоньше лист, тем легче его деформировать.
Формула выглядит так:
Здесь будет логичным объяснить, в чем измеряется прочность материала и что понимается под удельным пределом прочности металла. В Н/мм2 – это вытекает из предложенного алгоритма вычисления.
Использование свойств металлов
Два важных показателя – пластичность и ПП – взаимосвязаны. Материалы с большим первым параметром намного медленнее разрушаются. Они хорошо меняют свою форму, подвергаются различным видам металлообработке, в том числе объемной штамповке – поэтому из листов делают элементы кузова автомобиля. При малой пластичности сплавы называют хрупкими. Они могут быть очень твердыми, но при этом плохо тянуться, изгибаться и деформироваться, например, титан.
Сопротивление
Первый вариант скорее теоретический, для практических задач используется второй.
Пути увеличения прочностных характеристик
Есть несколько способов это сделать, два основных:
Иногда они используются вместе.
Общие сведения о сталях
Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о вариантах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:
Также посмотрим более подробное видео:
Углерод
Чем больше углеродность вещества, тем выше твердость и меньше пластичность. Но в составе не должно быть более 1% химического компонента, так как большее количество приводит к обратному эффекту.
Марганец
Очень полезная добавка, но при массовой доле не более двух процентов. Обычно Mn добавляют для улучшения качеств обрабатываемости. Материал становится более подвержен ковке и свариванию. Это объясняется вытеснением кислорода и серы.
Кремний
Эффективно повышает прочностные характеристики, при этом не затрагивая пластичность. Максимальное содержание – 0,6%, иногда достаточно и 0,1%. Хорошо сочетается с другими примесями, в совокупности можно увеличить устойчивость к коррозии.
Азот и кислород
Если они попадают в сплав, но ухудшают его характеристики, при изготовлении от них пытаются избавиться.
Легирующие добавки
Также можно встретить следующие примеси:
Эти и другие химические вещества должны применяться в строгих пропорциях. В статье мы рассказали про предел прочности металла (кратковременное сопротивление материала) – что это, формулы, как определяется и обозначается сигма при растяжении и сжатии в единицах измерения. А также дали несколько таблиц, которыми можно пользоваться при работе. В качестве завершения давайте посмотрим видеоролик:
Чтобы уточнить интересующую вас информацию, свяжитесь с нашими менеджерами по телефонам 8 (908) 135-59-82; (473) 239-65-79; 8 (800) 707-53-38. Они ответят на все ваши вопросы.
Временное сопротивление разрыву что это
Временное сопротивление
Временное сопротивление при комнатной температуре в результате длительной эксплуатации при высокой температуре изменяется двояким образом. При высоких значениях в исходном состоянии оно сильно снижается в эксплуатации; при значениях, близких к нижнему пределу по техническим условиям, временное сопротивление практически не изменяется. [1]
Временное сопротивление разрыву должно быть не ниже минимально допустимого предела для временного сопротивления разрыву основного металла по ГОСТ или техническим условиям на соответствующие полуфабрикаты ( ленты, трубы и др.) из сталей данной марки. [2]
Временное сопротивление и предел прочности при изгибе уменьшаются вследствие увеличения хрупкости металлической основы и наличия в образцах больших внутренних напряжений, вызванных закалкой. В таком состоянии малоуглеродистый чугун, как и другие чугуны с пластинчатой формой графита, после закалки имеет невысокую эрозионную стойкость. Это объясняется перенапряженностью отдельных микроучастков, особенно в местах скопления графитовых включений, где концентрируются большие напряжения. В этом случае металлическая основа чугуна разрушается быстро без инкубационного периода. [3]
Временное сопротивление растяжению должно быть не ниже 20 кг / еж2 через 2 дня. [4]
Временное сопротивление ( а) характеризует максимальное напряжение, предшествующее разрушению образца. Различают напряжения условные и истинные. Условным напряжением называют отношение величины нагрузки к исходному сечению образца; истинным – к сечению, которое образец приобрел к моменту достижения данной нагрузки. Диаграммы растяжения пластичных металлов с условными напряжениями отличаются от диаграмм с истинными напряжениями. [5]
Временное сопротивление ( предел прочности при растяжении) 0В ( впч, 0в, 0н), кгс / мм2 – напряжение, соответствующее наибольшей нагрузке, которая предшествует разрушению образца, и отнесенное к начальной площади ( F0) его поперечного сечения до испытания. [6]
Временное сопротивление скалыванию по склейке в сухом состоянии определяют на образцах, изображенных на фиг. [7]
Временное сопротивление скалыванию у клеевого соединения должно удовлетворять требованиям технических условий На клей. [8]
Временное сопротивление при изгибе существенно зависит от качества подготовки поверхности образцов. [9]
Временное сопротивление и относительное удлинение после разрыва определяют в соответствии с нормативно-технической документацией. [10]
Временное сопротивление разрыву и относительное удлинение соответствуют указанным, вгтабл. [11]
Временное сопротивление разрыву металла сварных швов при 20 С должно соответствовать значениям, установленным в нормативно-технической документации на основной металл. [12]
Временное сопротивление разрыву определяют для лент толщиной 0 3 мм и более, относительное удлинение – для лент толщиной 0 5 мм и более. [14]
Временное сопротивление возрастает с увеличением содержания олова. При высокой концентрации олова вследствие присутствия в структуре значительного количества эвтектоида, содержащего хрупкое соединение Cu31Sn8, временное сопротивление резко снижается. Относительное удлинение несколько возрастает при содержании в бронзе 4 – 6 % Sn, но при образовании эвтектоида – сильно падает. Оловянные бронзы обычно легируют Zn, Fe, P, Pb, Ni и другими элементами. Цинк улучшает технологические свойства бронзы и удешевляет бронзу. Он улучшает литейные свойства, повышает твердость, прочность, износостойкость, упругие и антифрикционные свойства. Никель повышает механические свойства, коррозионную стойкость и плотность отливок и уменьшает ликвацию. Железо измельчает зерно, но ухудшает технологические свойства бронз и сопротивляемость коррозии. [15]
Механические свойства характеризуют способность материала сопротивляться внешним механическим воздействиям. К основным механическим свойствам относятся прочность, пластичность, твердость, ударная вязкость и др.
Основные характеристики механических свойств сплавов цветных металлов:
Для стальных и железобетонных конструкций применяются углеродистые и низколегированные стали повышенной и высокой прочности. Стали для конструкций классифицируются по способу выплавки, технологии раскисления, химическому составу, способу упрочнения, качеству и назначению, а также по прочности.
По способу выплавки стали делятся на мартеновские, кислородно-конверторные и бессемеровские; по технологии раскисления – на спокойные, полуспокойные и кипящие (в том числе закупоренные кипящие); по способу упрочнения – на холоднодеформированные и термически обработанные (термоупрочненные).
Сталь по назначению подразделяется: на сталь общего назначения – углеродистая горячекатаная обыкновенного качества и сталь разных назначений – углеродистая горячекатаная повышенного качества (низколегированная) и высокой прочности.
Установлены следующие классы прочности стали (по значениям временного сопротивления и предела текучести): С 38/23, С 44/30, С 46/34, С 52/40, С 60/45, С 70/60.
Предел пропорциональности σпц – напряжение, при котором отступление от линейной зависимости между напряжениями и удлинениями достигает некоторой устанавливаемой техническими условиями или стандартом величины (например, уменьшения тангенса угла наклона касательной к диаграмме растяжения по отношению к оси деформаций на 20 или 33% своего первоначального значения).
Предел упругости σуп – напряжение, при котором остаточные удлинения достигают некоторой малой величины, устанавливаемой техническими условиями или стандартом (например, 0,001; 0,01% и т. д.). Иногда предел упругости обозначается соответственно допуску σ0,001; σ0,01 и т. д.
Предел текучести σт для материалов, имеющих площадку текучести (малоуглеродистая сталь), определяется как напряжение, соответствующее нижней точке площадки текучести; для материалов, не имеющих площадки текучести, определяется условный предел текучести σ0,2 – напряжение, при котором остаточное удлинение образца достигает 0,2%.
Временное сопротивление (предел прочности) σв – напряжение, равное отношению наибольшей нагрузки, предшествовавшей разрушению образца, к первоначальной площади сечения образца. Временное сопротивление можно отождествлять с пределом прочности только для хрупких материалов, разрушающихся без образования шейки. Для пластичных материалов это характеристика своеобразной потери устойчивости при растяжении, т. е. характеристика сопротивления значительным пластическим деформациям.
Относительное удлинение при разрыве δ – отношение (обычно в %) приращения расчетной длины образца после разрыва к ее исходной величине. Для длинного круглого образца (lрасч=10d) – δ10; для короткого образца (lрасч=5d) – δ5.
Относительное сужение при разрыве ψ – отношение уменьшения площади наименьшего поперечного сечения образца (после разрыва) к исходной площади поперечного сечения образца.
Условный предел текучести при изгибе σт.и – нормальное напряжение, вычисленное условно по формулам для упругого изгиба, при котором остаточное удлинение наиболее напряженного крайнего волокна достигает 0,2% или другой величины того же порядка соответственно требованиям технических условий.
Временное сопротивление (предел прочности) при изгибе σв.и – нормальное напряжение, вычисленное условно по формулам для упругого изгиба и соответствующее наибольшей нагрузке, предшествовавшей излому образца.
Условный предел текучести при кручении τ0,2, τт – касательное напряжение, вычисленное условно по формулам для упругого кручения, при котором остаточные деформации удлинения или сдвига по поверхности образца достигают 0,2% или другой величины того же порядка соответственно требованиям технических условий.
Временное сопротивление (предел прочности) при кручении τв – касательное напряжение, вычисленное условно по формулам для упругого кручения и соответствующее наибольшему скручивающему моменту, предшествовавшему разрушению образца.
Твердость по Бринеллю НВ – твердость материала, определяемая путем вдавливания в него стального шарика и вычисляемая как частное от деления нагрузки на поверхность полученного отпечатка. Для некоторых материалов существует приблизительно прямая пропорциональность между твердостью НВ и временным сопротивлением; например, для углеродистых сталей σв ≈ 0,36 НВ.
Твердость по Роквеллу HRC, HRB – твердость материала, определяемая путем вдавливания стального шарика или алмазного конуса стандартных размеров и измеряемая в условных единицах с помощью разных шкал по приращению оставшейся глубины погружения при переходе от малого стандартного груза к большому.
Твердость по Виккерсу HV – твердость материала, определяемая путем вдавливания алмазной четырехгранной пирамиды стандартных размеров и вычисляемая как частное от деления стандартной нагрузки на боковую поверхность полученного отпечатка.
Предел ползучести (условный) – длительно действующее напряжение, при котором скорость или деформация ползучести за определенный промежуток Бремени при данной температуре не превышает величины, установленной техническими условиями.
Предел длительной прочности – напряжение, вызывающее разрушение образца после заданного срока его непрерывного действия при определенной температуре.
Ударная вязкость ak – работа, затраченная на разрушение образца при ударном изгибе, отнесенная к рабочему поперечному сечению образца.
Упругое последействие: прямое – постепенное увеличение деформации после быстрого прекращения роста нагрузки; обратное – сохранение или медленное уменьшение деформации после быстрого снятия нагрузки или остановки разгрузки.
Наклеп – упрочнение металла, происходящее благодаря пластической деформации при процессах холодной обработки (холодной прокатке, вытяжке, волочении).
Старение (механическое) – самопроизвольное длительное изменение механических свойств стали после наклепа, вызванное фазовыми превращениями. Различают естественное старение, протекающее при комнатной температуре, и искусственное старение – при повышенных температурах.
Разрушение стали возможно вязкое (пластичное) – от сдвига, хрупкое – от отрыва. В обоих случаях разрушение состоит в нарушении целостности, в разрыве. Нарушение сплошности может возникнуть при условии накопления энергии, отвечающей величине поверхностной энергии на поверхностях нарушения целостности, и в соответствии с этим расстояние между атомами должно достичь критических величин, при которых происходит нарушение связи между ними.
Работа разрушения – величина всей площади диаграммы растяжения образца в координатах Р-∆l; упругая работа – площадь упругой части той же диаграммы; удельная работа – работа, приходящаяся на единицу объема рабочей части образца и соответствующая площади диаграммы растяжения в координатах σ-ε.
Удельный вес в расчетах принимают равным для стали 7,85, для чугуна 7,2; удельный вес стали с содержанием 0,1% С – 7,06 (в жидком состоянии).
Модуль упругости E стали и другие упругие константы практически не зависят от величины зерна, структуры, соотношений между объемами феррита и перлита, от содержания углерода и других легирующих добавок.
Коэффициент Пуассона (коэффициент поперечной деформации) μ=0,3.
Методы определения механических свойств металлов разделяют на:
– статические, когда нагрузка растет медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);
– динамические, когда нагрузка растет с большой скоростью (испытания на ударный изгиб);
– циклические, когда нагрузка многократно изменяется по величине и направлению (испытания на усталость).
1. Испытание на растяжение
При испытании на растяжение определяют предел прочности (σв), предел текучести (σт), относительное удлинение (δ) и относительное сужение (ψ). Испытания проводят на разрывных машинах c использованием стандартных образцов с площадью поперечного сечения Fo и рабочей (расчетной) длиной lo. В результате проведения испытаний получают диаграмму растяжения (рис. 1). На оси абсцисс указывается значение деформации, на оси ординат – значение нагрузки, которая прилагается к образцу.
Предел прочности (σв) – это максимальная нагрузка, которую выдерживает материал без разрушения, отнесенная к начальной площади поперечного сечения образца (Pmax/Fo).
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8256 – | 7223 – или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Предел прочности – это то же, что и временное сопротивление материала. Но несмотря на то, что правильнее использовать термин временное сопротивление, понятие предел прочности лучше прижилось в технической разговорной речи. В то же время в нормативной документации, стандартах применяют термин «временное сопротивление».
Прочность – это сопротивление материала деформации и разрушению, одно из основных механических свойств. Другими словами, прочность – это свойство материалов, не разрушаясь, воспринимать те или иные воздействия (нагрузки, температурные, магнитные и другие поля).
К характеристикам прочности при растяжении относятся модуль нормальной упругости, предел пропорциональности, предел упругости, предел текучести и временное сопротивление (предел прочности).
Предел прочности – это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации; предел прочности при растяжении обозначается σВ и измеряется в килограммах силы на квадратный сантиметр (кгс/см 2 ), а также указывается в мегапаскалях (МПа).
Различают:
Предел кратковременной прочности (МПа) определяется с помощью испытаний на растяжение, деформацию проводят до разрушения. С помощью испытаний на растяжение определяют временное сопротивление, удлинение, предел упругости и др.. Испытания на длительную прочность предназначены главным образом для оценки возможности использования материалов при высоких температурах (длительная прочность, ползучесть); в результате определяется σB/Zeit – предел ограниченной длительной прочности на заданный срок службы. [1]
Физику прочности основал Галилей: обобщая свои опыты, он открыл (1638 г.), что при растяжении или сжатии нагрузка разрушения P для данного материала зависит только от площади поперечного сечения F. Так появилась новая физическая величина – напряжение σ=P/F – и физическая постоянная материала: напряжение разрушения [4].
Физика разрушения как фундаментальная наука о прочности металлов возникла в конце 40-х годов XX века [5]; это было продиктовано острой необходимостью разработки научно обоснованных мер для предотвращения участившихся катастрофических разрушений машин и сооружений. Раньше в области прочности и разрушения изделий учитывалась только классическая механика, основанная на постулатах однородного упруго-пластического твёрдого тела, без учёта внутренней структуры металла. Физика разрушения учитывает также атомно-кристаллическое строение решётки металлов, наличие дефектов металлической решётки и законы взаимодействия этих дефектов с элементами внутренней структуры металла: границами зёрен, второй фазой, неметаллическими включениями и др.
Большое влияние на прочность материала оказывает наличие ПАВ в окружающей среде, способных сильно адсорбироваться (влага, примеси); происходит уменьшение предела прочности.
К повышению прочности металла приводят целенаправленние изменения металлической структуры, в том числе – модифицирование сплава.
Учебный фильм о прочности металлов (СССР, год выпуска:
Предел прочности металла
Предел прочности меди. При комнатной температуре предел прочности отожжённой технической меди σВ=23 кгс/мм 2 [8]. С ростом температуры испытания предел прочности меди уменьшается. Легирующие элементы и примеси различным образом влияют на предел прочности меди, как увеличивая, так и уменьшая его.
Предел прочности сталей
В качестве примера представлены значения предела прочности некоторых сталей. Эти значения взяты из государственных стандартов и являются рекомендуемыми (требуемыми). Реальные значения предела прочности сталей, равно как и чугунов, а также других металлических сплавов зависят от множества факторов и должны определяться при необходимости в каждом конкретном случае.
Для стальных отливок, изготовленных из нелегированных конструкционных сталей, предусмотренных стандартом (стальное литьё, ГОСТ 977-88), предел прочности стали при растяжении составляет примерно 40-60 кг/мм 2 или 392-569 МПа (нормализация или нормализация с отпуском), категория прочности К20-К30. Для тех же сталей после закалки и отпуска регламентируемые категории прочности КТ30-КТ40, значения временного сопротивления уже не менее 491-736 МПа.
Для конструкционных углеродистых качественных сталей (ГОСТ 1050-88, прокат размером до 80 мм, после нормализации):
Категории прочности сталей
Категории прочности сталей (ГОСТ 977-88) условно обозначаются индексами «К» и «КТ», после индекса следует число, которое представляет собой значение требуемого предела текучести. Индекс «К» присваивается сталям в отожженном, нормализованном или отпущенном состоянии. Индекс «КТ» присваивается сталям после закалки и отпуска.
Предел прочности чугуна
Метод определения предела прочности чугуна регламентируется стандартом ГОСТ 27208-87 (Отливки из чугуна. Испытания на растяжение, определение временного сопротивления).
Предел прочности высокопрочного чугуна. Маркировка высокопрочного чугуна также включает в себя цифры, обозначающие временное сопротивление при растяжении чугуна (предел прочности), ГОСТ 7293-85. Предел прочности при растяжении высокопрочного чугуна составляет 35-100 кг/мм 2 (или от 350 до 1000 МПа).
Из вышеизложенного видно, что чугун с шаровидным графитом может успешно конкурировать со сталью.
Подготовлено: Корниенко А.Э. (ИЦМ)
Конкурс «Я и моя профессия: металловед, технолог литейного производства». Узнать, участвовать >>>