вне одз что значит

Область допустимых значений (ОДЗ), теория, примеры, решения

Каждому выражению с переменными соответствует область допустимых значений (ОДЗ) переменных, которую ОБЯЗАТЕЛЬНО нужно учитывать при работе с этим выражением. Акцент на слове «обязательно» сделан не случайно: при решении примеров и задач халатное отношение к ОДЗ может привести к получению неверных результатов.

Чтобы у нас не возникало подобных проблем, давайте внимательно изучим все, что связано с ОДЗ. Для начала узнаем, что это такое, после этого разберем на характерных примерах, как найти ОДЗ переменных для заданного выражения, а в заключение остановимся на важности учета ОДЗ при преобразовании выражений.

Навигация по странице.

Допустимые и недопустимые значения переменных

Определение области допустимых значений переменных для выражения дается через термин допустимые значения переменной. Введем это вспомогательное определение, для чего проследим, что нас приводит к нему.

На уроках математики в школе вплоть до 7 класса познаются азы работы преимущественно с числами и числовыми выражениями. А с 7 класса начинается изучение такой математической дисциплины как алгебра, и начинается оно с того, что вводится определение выражения с переменными, а также связанное с ним определение значения выражения при выбранных значениях переменных.

выражение с переменными имеет смысл при данных значениях переменных, если при этих значениях переменных можно вычислить его значение

выражение с переменными не имеет смысла при данных значениях переменных, если при этих значениях переменных нельзя вычислить его значение.

Вот теперь мы обладаем всеми сведениями, позволяющими дать определение допустимых и недопустимых значений переменных:

Допустимые значения переменных – это такие значения переменных, при которых выражение имеет смысл. А значения переменных, при которых выражение не имеет смысла, называют недопустимыми значениями переменных.

Что такое ОДЗ?

Практически у всех, так или иначе имеющих отношение к алгебре, на слуху словосочетание «область допустимых значений», также довольно часто аббревиатуру ОДЗ можно встретить в описаниях решений, но как такового определения области допустимых значений (ОДЗ) нет в основных учебниках, используемых в школе. Поэтому интересно, откуда берет начало этот термин. Ну а с позиций практики интереснее знать, какой смысл в него вкладывают.

Под областью допустимых значений (ОДЗ) понимают множество всех допустимых значений переменных для данного выражения.

Как найти ОДЗ? Примеры, решения

Прежде чем обратиться к главной теме этого пункта, нужно понимать, что значит найти ОДЗ, хотя это достаточно отчетливо ясно из определения. Это значит, что надо указать множество всех допустимых значений переменных для заданного выражения. На это можно посмотреть и с другой стороны: найти ОДЗ – это значит указать условия, которые исключают те и только те значения переменных, при которых выражение не имеет смысла. Теперь можно двигаться дальше.

Заданий с формулировкой «найти ОДЗ» не так много. Однако почти постоянно приходится преобразовывать выражения, а это неявно требует нахождения области допустимых значений для ее контроля. В этом свете вопрос, как найти ОДЗ, очень злободневен.

В поисках ответа на него поразмыслим, значения каких выражений мы не можем вычислить.

Что нам это дает? А то, что перечисленные выше моменты и нужно учитывать при поиске ОДЗ. Как это делать, станет понятно из следующих примеров.

Найти ОДЗ переменной x для выражения вне одз что значит. Смотреть фото вне одз что значит. Смотреть картинку вне одз что значит. Картинка про вне одз что значит. Фото вне одз что значит.

Найти ОДЗ вне одз что значит. Смотреть фото вне одз что значит. Смотреть картинку вне одз что значит. Картинка про вне одз что значит. Фото вне одз что значит.

В более сложных случаях приходится учитывать одновременно несколько условий из приведенного выше списка. Это дает системы неравенств, задающие ОДЗ.

Определите ОДЗ переменной x для выражения вне одз что значит. Смотреть фото вне одз что значит. Смотреть картинку вне одз что значит. Картинка про вне одз что значит. Фото вне одз что значит.

Здесь лишь заметим, что во многих случаях на практике нет необходимости в решении составленных систем.

В заключении остается сказать, что такой подход используется и тогда, когда нужно найти область определения функции.

Почему важно учитывать ОДЗ при проведении преобразований?

Решая различные задачи, нам очень часто приходится проводить тождественные преобразования выражений. Но бывает, что какое-то преобразование в одних случаях допустимо, а в других – нет. Существенную помощь в плане контроля допустимости проводимых преобразований оказывает ОДЗ. Остановимся на этом подробнее.

Суть подхода состоит в следующем: сравниваются ОДЗ переменных для исходного выражения с ОДЗ переменных для выражения, полученного в результате выполнения тождественных преобразований, и на основании результатов сравнения делаются соответствующие выводы.

Вообще, тождественные преобразования могут

Давайте поясним каждый случай примером.

При преобразовании выражений надо строго избегать преобразований, сужающих ОДЗ. Почему? Для пояснения приведем пример.

Так что надо придерживаться таких тождественных преобразований выражения, которые не изменяют ОДЗ.

А как быть с преобразованиями выражений, при которых расширяется ОДЗ? Их можно проводить, но при этом стоит придерживаться такого взгляда: полученное в результате преобразования выражение рассматривать на ОДЗ переменных исходного выражения.

Итак, на каждом шаге преобразования выражения постоянно спрашивайте себя: «Не изменяет ли это преобразование ОДЗ»? Если не изменяет, то выполняйте его. Если сужает, то откажитесь от него. А если расширяет, то выполняйте его, но оставайтесь в рамках ОДЗ переменных для исходного выражения.

Источник

Область допустимых значений

Содержание:

Область допустимых значений

Областью определения уравнения или областью допустимых значений (сокращенно ОДЗ) уравнения называется множество тех значений неизвестного, при которых имеют смысл его левая и правая части.

Уравнение может быть правильно решено, если в решении отсутствует даже упоминание об ОДЗ. И наоборот, верно найденная ОДЗ и последующий отбор корней по нему не гарантируют от ошибок. Универсальных рецептов здесь нет и быть не может. Более того, любая, даже в принципе полезная рекомендация, которая может быть истолкована как универсальная, превратившись в догму, принесет лишь вред, о чем, в частности, свидетельствует короткая, но поучительная история возникновения и распространения понятия ОДЗ.

(Посмотрите с точки зрения полезности нахождения ОДЗ примеры 1—8. Обратите внимание на то, что в уравнениях 3—7 даже лишние корни входят в ОДЗ.)

Разберем еще два примера, показывающих, что в одних случаях нахождение ОДЗ полезно при решении уравнения, в других — задача определения ОДЗ оказывается сложной и абсолютно ненужной.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Примеры с решением

Пример 1.

вне одз что значит. Смотреть фото вне одз что значит. Смотреть картинку вне одз что значит. Картинка про вне одз что значит. Фото вне одз что значит

Решение:

Нахождение ОДЗ в этом уравнении представляет собой достаточно трудную (проверьте) и совершенно ненужную задачу. Возведем уравнение в квадрат:

вне одз что значит. Смотреть фото вне одз что значит. Смотреть картинку вне одз что значит. Картинка про вне одз что значит. Фото вне одз что значит

вне одз что значит. Смотреть фото вне одз что значит. Смотреть картинку вне одз что значит. Картинка про вне одз что значит. Фото вне одз что значит— лишний корень (проверка).

Возможно вам будут полезны данные страницы:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *