включить stp spanning tree protocol что это

Принцип работы протокола STP

Причина создания STP

Причиной создания протокола STP стало возникновение петель на коммутаторах. Что такое петля? Определение петли звучит так:

Петля коммутации (Bridging loop, Switching loop) — состояние в сети, при котором происходит бесконечная пересылка фреймов между коммутаторами, подключенными в один и тот же сегмент сети.

Из определения становится ясно, что возникновение петли создает большие проблемы — ведет к перегрузке свитчей и неработоспособности данного сегмента сети. Как возникает петля? На картинке ниже приведена топология, при которой будет возникать петля при отсутствии каких-либо защитных механизмов:

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Возникновение петли при следующих условиях:

1. Какой-либо из хостов посылает бродкаст фрейм:

2. Также петля может образоваться и без отправки бродкаст фрейма.

Основы STP

Принцип работы данного протокола построен на том, что все избыточные каналы между коммутаторами логически блокируются и трафик через них не передается. Для построения топологии без избыточных каналов строится дерево (математический граф). Чтобы построить такое дерево вначале необходимо определить корень дерева, из которого и будет строиться граф. Поэтому первым шагом протокола STP является определение корневого коммутатора (Root Switch). Для определения Root Switch-a, коммутаторы обмениваются сообщениями BPDU. В общем, протокол STP использует два типа сообщений: BPDU — содержит информацию о коммутаторах и TCN — уведомляет о изменении топологии. Рассмотрим BPDU более детально. Про TCN более подробно поговорим ниже. При включении STP на коммутаторах, коммутаторы начинают рассылать BPDU сообщения. В данных сообщениях содержится следующая информация:

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Фрейм BPDU имеет следующие поля:

Вот вывод информации о Bridge ID с коммутатора Switch1 из первой картинки. Priority — 32769 ( по умолчанию 32768 + Vlan Id), MAC-адреса — Address 5000.0001.0000:

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Представим картину, коммутаторы только включились и теперь начинают строить топологию без петель. Как только коммутаторы загрузились, они приступают к рассылке BPDU, где информируют всех, что они являются корнем дерева. В BPDU в качестве Root Bridge ID, коммутаторы указывают собственный Bridge ID. Например, Switch1 отправляет BPDU коммутатору Switch3, а Switch3 отправляет к Switch1. BPDU от Switch1 к Switch3:

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

BPDU от Switch3 к Switch1:

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Как видим из Root Identifier, оба коммутотара друг другу сообщают, что именно он является Root коммутатором.

Выбор корневого коммутатора

Пока топология STP не построена, обычный трафик не передается из-за специальных состояний портов, о которых будет сказано ниже. Итак, Switch3 получается BPDU от Switch1 и изучает данное сообщение. Switch3 смотрит в поле Root Bridge ID и видит, что там указан другой Root Bridge ID, чем в том сообщении, которое отправил сам Switch3. Он сравнивает Root Bridge ID в данном сообщении со своим Root Bridge ID и видит, что хоть Priority одинаковые, но MAC-адрес данного коммутатора (Switch1) лучше (меньше), чем у него. Поэтому Switch3 принимает Root Bridge ID от Switch1 и перестает отправлять свои BPDU, а только слушает BPDU от Switch1. Порт, на котором был получен наилучший BPDU становится Root Port-ом. Switch1 также получив BPDU от Switch3, проводит сравнение, но в этом случае поведение Switch1 не меняется, так как полученный BPDU содержит худший Root Bridge ID, чем у Switch1. Таким образом, между Switch1 и Switch3 был определен корневой коммутатор. По аналогичной схеме происходит выбор корневого коммутатора между Switch1 и Switch2. Порты Gi0/0 на Switch2 и Switch3 становятся Root Port — порт, который ведет к корневому коммутатору. Через данный порт коммутаторы Switch2 и Switch3 принимают BPDU от Root Bridge. Теперь разберемся, что произойдет с каналом между Switch2 и Switch3.

Блокирование избыточных каналов

Как мы видим из топологии, канал между Switch2 и Switch3 должен быть заблокирован для предотвращения образования петель. Как STP справляется с этим?

После того, как выбран Root Bridge, Switch2 и Switch3 перестают отправлять BPDU через Root Port-ы, но BPDU, полученные от Root Bridge, они пересылают через все свои остальные активные порты, при этом изменив в данных BPDU только следующие поля:

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это
А Switch3 от Switch2 получает такой BPDU:

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

После обмена такими BPDU, Switch2 и Switch3 понимают, что топология избыточна. Почему коммутаторы понимают, что топология избыточна? И Switch2, и Switch3 в своих BPDU сообщают об одном и том же Root Bridge. Это означает, что к Root Bridge, относительно Switch3, существует два пути — через Switch1 и Switch2, а это и есть та самая избыточность против которой мы боремся. Также и для Switch2 два пути — через Switch1 и Switch3. Чтоб избавиться от этой избыточности
необходимо заблокировать канал между Switch3 и Switch2. Как это происходит?

Выбор на каком коммутатоторе заблокировать порт происходит по следующей схеме:

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Здесь как оказалось заблокируется порт Gi 0/1 на коммутаторе Sw2. В данном голосовании определяющим становится Root Path Cost. Вернемся к нашей топологии. Так как путь до Root Bridge одинаковый, то в данном выборе побеждает Switch2, так как его priority равны, сравниваются Bridge ID. У Switch2 — 50:00:00:02:00:00, у Switch3 — 50:00:00:03:00:00. У Switch2 MAC-адрес лушче (меньше). После того, как выбор сделан, Switch3 перестает переслать какие-либо пакеты через данный порт — Gi1/0, в том числе и BPDU, а только слушает BPDU от Switch2. Данное состояние порта в STP называется Blocking(BLK). Порт Gi1/0 на Switch2 работает в штатном режиме и пересылает различные пакеты при необходимости, но Switch3 их сразу отбрасывает, слушая только BPDU. Таким образом, на данном примере мы построили топологию без избыточных каналов. Единственный избыточный канал между Switch2 и Switch3 был заблокирован при помощи перевода порта Gi1/0 на Switch3 в специальное состояние блокирования — BLK. Теперь более детально разберем механизмы STP.

Состояния портов

Мы говорили выше, что, например, порт Gi1/0 на Switch3 переходит в специальное состояние блокирования — Blocking. В STP существуют следующие состояния портов:

Blocking — блокирование. В данном состоянии через порт не передаются никакие фреймы. Используются для избежания избыточности топологии.

Listening — прослушивание. Как мы говорили выше, что до того, пока еще не выбран корневой коммутатор, порты находятся в специальном состоянии, где передаются только BPDU, фреймы с данными не передаются и не принимаются в этом случае. Состояние Listening не переходит в следующее даже, если Root Bridge определен. Данное состояние порта длится в течении Forward delay timer, который, по умолчанию, равен 15. Почему всегда надо ждать 15 секунд? Это вызвано осторожностью протокола STP, чтоб случайно не был выбран некорректный Root Bridge. По истечению данного периода, порт переходит в следующее состояние — Learning.

Learning — обучение. В данном состояние порт слушает и отправляет BPDU, но информацию с данными не отправляет. Отличие данного состояния от Listening в том, что фреймы с данными, который приходят на порт изучаются и информация о MAC-адресах заносится в таблицу MAC-адресов коммутатора. Переход в следующее состояние также занимает Forward delay timer.

Forwarding — пересылка. Это обычное состояние порта, в котором отправляются и пакеты BPDU, и фреймы с обычными данными. Таким образом, если мы пройдемся по схеме, когда коммутаторы только загрузились, то получается следующая схема:

Роли портов

Помимо состояний портов, также в STP нужны определить портам их роли. Это делается для того, чтоб на каком порте должен ожидаться BPDU от корневого коммутатора, а через какие порты передавать копии BPDU, полученных от корневого коммутатора. Роли портов следующие:

Root Port — корневой порт коммутатора. При выборе корневого коммутатора также и определяется корневой порт. Это порт через который подключен корневой коммутатор. Например, в нашей топологии порты Gi0/0 на Switch2 и Switch3 являются корневыми портами. Через данные порты Switch2 и Switch3 не отправляют BPDU, а только слушают их от Root Bridge. Возникает вопрос — как выбирается корневой порт? Почему не выбран порт Gi1/0? Через него ведь тоже можно иметь связь с коммутатором? Для определения корневого порта в STP используется метрика, которая указывает в поле BPDU — Root Path Cost (стоимость маршрута до корневого свича). Данная стоимость определяется по скорости канала.

Switch1 в своих BPDU в поле Root Path Cost ставит 0, так как сам является Root Bridge. А вот, когда Switch2, когда отправляет BPDU к Switch3, то изменяет данное поле. Он ставит Root Path Cost равным стоимости канала между собой и Switch1. На картинке BPDU от Switch2 и Switch3 можно увидеть, что в данном поле Root Path Cost равен 4, так как канал между Switch1 и Switch2 равен 1 Gbps. Если количество коммутаторов будет больше, то каждый следующий коммутатор будет суммировать стоимость Root Path Cost. Таблица Root Path Cost.

Designated Port — назначенный порт сегмента. Для каждого сегмента сети должен быть порт, который отвечает за подключение данного сегмента к сети. Условно говоря, под сегментом сети может подразумеваться кабель, который осуществляет подключение данного сегмента. Например, порты Gi0/2 на Switch1, Switch3 подключают отдельные сегменты сети, к которым ведет только данный кабель. Также, например, порты на Root Bridge не могут быть заблокированы и все являются назначенными портами сегмента. После данного пояснения можно дать более строгое определения для назначенных портов:
Designated Port (назначенный) — некорневой порт моста между сегментами сети, принимающий трафик из соответствующего сегмента. В каждом сегменте сети может быть только один назначенный порт. У корневого коммутатора все порты — назначенные.

Также важно заметить, что порт Gi1/0 на Switch2 также является назначенным, несмотря на то, что данный канал связи заблокированным на Switch3. Условно говоря, Switch2 не имеет информации о том, что на другом конце порт заблокирован.

Nondesignated Port — неназначенный порт сегмента. Non-designated Port (неназначенный) — порт, не являющийся корневым, или назначенным. Передача фреймов данных через такой порт запрещена. В нашем примере, порт Gi1/0 является неназначенным.

Disabled Port — порт который находится в выключенном состоянии.

Таймеры и сходимость протокола STP

После того, как STP завершил построение топологии без петель, остается вопрос — Как определять изменения в сети и как реагировать на них? Сообщения BPDU при помощи которых работает STP, рассылаются Root Bridge каждые 2 секунды, по умолчанию. Данный таймер называется Hello Timer. Остальные коммутаторы получив через свой root port данное сообщение пересылают его дальше через все назначенные порты. Выше сказано более подробно какие изменения происходят с BPDU при пересылки его коммутаторов. Если в течении времени, определенным таймером Max Age (по умолчанию — 20 секунд), коммутатор не получил ни одного BPDU от корневого коммутатора, то данное событие трактуется как потеря связи с Root Bridge. Для того, чтобы более корректно описать сходимость протокола необходимо изменить нашу топологию и поставить между коммутаторами хабы. Мы добавили хабы, чтоб при выходе из строя одного из коммутаторов или выхода из строя линка, другие коммутаторы не определяли это по падению линка, а использовали таймеры:

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Перед тем, как начать также важно рассказать подробнее о другом типе сообщения STP — TCN. TCN рассылается коммутаторами в случае изменения топологии — как только на каком-либо коммутаторе изменилась топология, например, изменилось состояние интерфейса. TCN отправляется коммутатором только через Root Port. Как только корневой коммутатор получит TCN, он сразу меняет параметр времени хранения MAC-адресов в таблице с 300 секунд до 15 (для чего это делается будет сказано ниже) и в следующем BPDU, Root Switch проставляет флаг — TCA ( Topology Change Acknledgement ), который отправляется коммутатору отправившем TCN для уведовления о том, что TCN был получен. Как только TCN достигает Root Bridge, то он рассылает специальный BPDU, который содержится TCN флаг по всем остальным интерфейсам к другим коммутаторам. На картинке показана структура TCN:

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

TCN был включен в STP, чтоб некорневые коммутаторы могли уведовлять об изменении в сети. Обычными BPDU они этого делать не могут, так как некорневые коммутаторы не отправляют BPDU. Как можно заметить структура TCN не несет в себе никакой информации о том, что именно и где изменилось, а просто сообщает что где-то что-то изменилось. Теперь перейдем к рассмотрению вопроса о сходимости STP.

Посмотрим, что произойдет если мы отключим интерфейс Gi0/1 на Switch1 и посмотрим при помощи каких механизмов перестроится дерево STP. Switch2 перестанет получать BPDU от Switch1 и не будет получать BPDU от Switch3, так как на Switch3 данный порт заблокирован. У Switch2 уйдет 20 секунд ( Max Age Timer ), чтоб понять потерю связи с Root Bridge. До этого времени, Gi0/0 на Switch2 будет находится в состоянии Forwarding с ролью Root Port. Как только истечет Max Age Timer и Switch2 поймет потерю связи, он будет заново строить дерево STP и как это свойственно STP начнет считать себя Root Bridge. Он отправит новый BPDU, где укажет самого себя в качестве Root Bridge через все активные порты, в том числе и на Switch3. Но таймер Max Age, истекший на Switch2 также истек и на Switch3 для интерфейса Gi1/0. Данный порт уже 20 секунд не получал BPDU и данный порт перейдет в состояние LISTENING и отправит BPDU c указанием в качестве Root Bridge — Switch1. Как только Switch2 примет данный BPDU, он перестанет считать себя Root Bridge и выберет в качестве Root Port — интерфейс Gi1/0. В этот момент Switch2 также отправит TCN через Gi1/0, так как это новый Root Port. Это приведет к тому, что время хранения MAC-адресов на коммутаторах уменьшится с 300 секунд до 15. Но на этом работоспособность сети не восстановится полностью, необходимо подождать пока порт Gi1/0 на Switch3 пройдет состояние Listening, а затем Learning. Это займет время равное двум периодам Forward delay timer — 15 + 15 = 30 секунд. Что мы получаем — при потери связи Switch2 ждет пока истечет таймер Max Age = 20 секунд, заново выберает Root Bridge через другой интерфейс и ждет еще 30 секунд пока ранее заблокированный порт перейдет в состояние Forwarding. Суммарно получаем, что связь между VPC5 и VPC6 прервется на 50 секунд. Как было сказано несколькими предложениями выше при изменение Root Port с Gi0/0 на Gi1/0 на Switch2 был отправлен TCN. Если бы этого не произошло, то все MAC-адреса, изученные через порт Gi 0/0, оставались бы привязаны к Gi0/0. Например, MAC-адрес VPC5 и VPC7 несмотря на то, что STP завершит сходимость через 50 секунд, связь между VPC6 и VPC5, VPC7 не была бы восстановлена, так как все пакеты предназначенные VPC5, VPC7 отправлялись через Gi0/0. Надо было бы ждать не 50 секунд, а 300 секунд пока таблица MAC-адресов перестроится. При помощи TCN, время хранение изменилось с 300 секунд до 15 и пока интерфейс Gi1/0 на Switch3 проходил состояния Listening, а затем Learning и данные о MAC-адресах обновятся.

Также интересен вопрос, что произойдет, если мы заново включим интерфейс Gi0/1 на Switch1? При включение интерфейса Gi0/1, он, как и подобает, перейдет в состояние Listening и начнет рассылать BPDU. Как только Switch2 получит BPDU на порту Gi0/0, то сразу перевыберет свой Root Port, так как тут Cost будет наименьшем и начнет пересылать траффик через интерфейс Gi0/0, но нам необходимо подождать пока интерфейс Gi0/1 пройдет состояния Listening, Learning до Forwarding. И задержка будет уже не 50 секунд, а 30.

В протоколе STP также продуманы различные технологии для оптимизации и безопасности работы протокола STP. Более подробно в данной статье рассматривать их не буду, материалы по поводу них можно найти в избытке на различных сайтах.

Источник

Основы компьютерных сетей. Тема №7. Протокол связующего дерева: STP

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Приветствую на очередной статье по основам компьютерных сетей. Сегодня затронем еще одно семейство протоколов в мире коммутации. И сегодня мы поговорим о протоколах связующего дерева или STP. Узнаем, как это дерево строиться, как можно им управлять, что такое петли, как с ними бороться. Тема интересная, поэтому приглашаю ознакомиться поподробнее.

P.S. Возможно, со временем список дополнится.

Долго думал с чего начать. По-хорошему начинать надо с теории. Но смысл разбирать протокол, когда еще не сталкивался с проблемой, которую этот протокол может решить. Поэтому решил начать с небольшой практики и показать, обо что можно сразу споткнуться. Далее разобраться с это проблемой и показать, что делать дальше. Соберу самую обычную схему.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Есть 2 компьютера и 2 коммутатора, подключенных друг к другу. Адрес у PC1-192.168.1.2, а у PC2-192.168.1.3. Компьютеры общаются друг с другом, что-то друг другу отправляют. Но мы замечаем уязвимое место.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Если произойдет обрыв кабеля, то участники останутся без связи. И самая первая мысль, которая приходит в голову — это воткнуть еще один кабель. Но первая мысль не всегда бывает верна. На картинках это не показать, поэтому я покажу это в виде анимации.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Думаю заметили, как странно и синхронно замигали линки. Это явление зовут петлей. Чтобы подробнее с ней ознакомиться, необходимо перейти в режим симуляции. Открывайте спойлер ниже и любуйтесь.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Объясню подробнее. Итак, PC1 решает отправить пакет ICMP компьютеру PC2. Как правило, перед началом отправки, нужно узнать его MAC-адрес, и он пускает в ход ARP. Вспоминаем, как работают коммутаторы с ARP. Они отправляют его на все порты, кроме исходящего. Что происходит у нас.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Коммутатор, согласно своей логике, отправляет ARP на оба порта (fa0/2 и fa0/24). Но не отправляет его на fa0/1.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

SW2 поступит точно также. Тот ARP, который он получил с порта fa0/24, он отправит на активный порт fa0/2. А второй ARP, полученный с порта fa0/2, отправит на fa0/24. Казалось бы, что мы уже получали с 24-ого порта ARP. Но тут нюанс. Мы получали ARP с другого порта и отдельным ARP сообщением. Поэтому для коммутатора — это 2 разных кадра и обрабатываются они независимо друг от друга. Ну а дальше по аналогии. SW2 отправит один из ARP-ов обратно на SW1, а тот, в свою очередь, обратно SW2. И гулять он будет так до бесконечности, пока не будет выдернут кабель или пока коммутатор не «захлебнется» кадрами и перестанет отвечать. Это и есть петля. Соответственно, чем больше коммутаторов, тем больше кадров будут создано, что приведет к быстрому отказу сети. Поэтому повышая избыточность соединений, мы повышаем вероятность получения петель. Кому интересно посмотреть на это мерцание у себя на компьютере, качайте отсюда.

Поняли ведущие умы, что это плохо и с этим нужно бороться. Задачу эту возложили на плечи выдающегося инженера Радию Перлман (Radia Joy Perlman) в 1985 году. В чем суть ее технологии. У вас есть N-ое количество коммутаторов, соединенных друг с другом. И перед тем, как передавать пользовательские данные, они ведут переговоры между собой на право стать корневым коммутатором или «root switch». Остальные коммутаторы оставляют включенными только те интерфейсы, которые ведут к корневому коммутатору, а остальные отключают. Тем самым, к каждому коммутатору можно попасть только по одному пути. Разберем этот процесс более подробно.

У нас есть 3 коммутатора, соединенных друг с другом.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Если плохо видно, можно кликнуть по ней и откроется оригинал изображения (открывайте изображение нажатием колеса мышки, либо правой кнопкой по «Открыть ссылку в новой вкладке», чтобы не закрывать саму статью).
Очень много непонятных полей. Ознакомимся с ними и приведем всю эту кашу в порядок.

Скорость каналаСтоимость
10 Гбит/с2
1 Гбит/с4
100 Мбит/с19
10 Мбит/с100

Во многих изданиях «цисковских» и сторонних, работу STP показывают на примере 3 коммутаторов, соединенных между собой. Не буду отходить от традиции и сделаю аналогично.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

И так как на коммутаторах работает протокол STP, им нужно выбрать того, кто будет главным в топологии или корневым (root). Для этого, они начинают обмениваться BPDU-кадрами. Вот тут как раз важны поля 5, 6 и 7. Я специально хочу остановиться на них. Изначально коммутаторы в поле 5 (Идентификатор корневого моста или Root Identifier) начинают записывать свой «приоритет + MAC-адрес». Если вручную ничего не менять, то приоритет равен 32678. Дальше коммутатор, который получит этот кадр от соседа, будет сравнивать свой «Root Identifier» с вновь прибывшим. Если он увидит, что у соседа этот Root ID ниже, то с этого момента он будет ретранслировать его BPDU. В результате в сети останется только один коммутатор, который будет генерировать BPDU.

В поле 6 «Root Path Cost» коммутатор запишет стоимость пути. При создании BPDU, корневой коммутатор записывает туда 0, так как это он и есть. А вот следующие коммутаторы уже начинают суммировать стоимость по таблице, представленной выше.

Ну и в поле 7 «Bridge Identifier» записывается связка «приоритет + MAC-адрес» самого коммутатора. То есть, если в «Root Identifier» всегда записывается связка корневого коммутатора, то в это поле, он всегда записывает свою. То есть при ретрансляции BPDU от соседа к соседу, коммутаторы сюда дописывают свой Bridge ID.

Скажу пару слов о связке «приоритет + MAC-адрес». Они ни в коем случае не суммируются. Знак «+» я вставил в том контексте, что они всегда работают вместе. Сначала коммутаторы, при проведении выборов, смотрят на приоритет. И если приоритеты равны (а по-умолчанию они равны), то начинает опираться на MAC-адреса. И тот, у кого MAC-адрес меньше, становится главным, корневым или root. Называйте как вам удобно. Вот приоритет нужен как раз для того, чтобы административно влиять на выбор корневого коммутатора. Представьте ситуацию, что у вас есть 2 коммутатора. Один из них новый и производительный, а второй старый, древний и в скором времени пойдет под списание. И тут выясняется, что у старого коммутатора MAC-адрес меньше, чем у нового коммутатора, а значит, при равных приоритетах, выигрывать всегда будет старый коммутатор. Вот для решения такой спорной задачи и нужен приоритет. Причем, когда вы меняете приоритет, он обязан быть кратным 4096 (то есть 32768, 28672, 24576 и так далее). Возвращаемся к схеме.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Ну и так как приоритеты у трех коммутаторов одинаковые, то выборы они начинают по MAC-адресам. Наименьший MAC-адрес у Switch 1 => он становится корневым.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Раз Switch 1 становится корневым, то он сразу переводит все свои интерфейсы в режим «Designated». То есть это порт, который имеет самый короткий путь до корневого коммутатора (в данном случае до самого себя).

Дальше Switch 2 и Switch 3 должны решить для себя, какой порт будет корневым. То есть тот порт, который имеет наименьшую стоимость пути до корневого коммутатора. Здесь все очевидно. Если вдруг получится, что стоимость по нескольким портам будет одинаковая, то он выберет порт с наименьшим порядковым номером или именем. Например, из портов fa0/1, fa0/2 и fa0/3, будет выбран fa0/1.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Root-порты определены, но что делать с линком между Switch 2 и Switch 3, ведь он может создать петлю?! Для ее предотвращения они договариваются, кто из них отключит свой порт.

Договариваться они будут также по Bridge ID. Приоритеты равны, поэтому смотрим по MAC-адресам. У Switch 2 MAC-адрес меньше, поэтому он переводит порт в режим «Designated», а Switch 3 в режим «Non-Designated». «Non-Designated» — такой режим, при котором порту запрещено передавать какие-либо данные, но разрешено слушать, что происходит в сети. То есть, если отвалится какой-то линк, он может включиться и полноправно работать.

Помимо ролей, у портов есть состояния, которые они должны пройти в обязательном порядке. Объясню на примере построенной топологии. Вот у нас построено выше дерево STP. Петель нет и все замечательно. Один из портов коммутатора Switch 3 находится в состоянии Blocking. Вот он слушает BPDU и никого не трогает. Но если вдруг отвалится где-то линк или произойдет изменение топологии, он сразу переходит в состояние Listening или Прослушивание. В этом состоянии он отправляет, слушает только BPDU кадры и обрабатывает полученную информацию. Если он видит, что у соседей параметры хуже, чем у него, то по истечении 15 секунд, переходит в следующее состояние Learning или Обучение. Эта фаза длится также 15 секунд. В «Learning» порт делает практически все тоже самое, что и в предыдущем состоянии, за исключением того, что теперь строит таблицу коммутации на основании полученных кадров. Если по истечении 15 секунд, он не получит BPDU с параметрами лучше, чем у него, то перейдет в последнее состояние Forwarding или Продвижение. Это такое финальное и полноправное состояние. Он обменивается не только служебной информацией, но и пользовательскими данными. То есть переход из состояния Listening в Forwarding длится 30 секунд.

Есть еще состояние Disable или Отключен, когда вручную отключаете порт, но я не считаю, что это состояние STP. В этом состоянии передаваться ничего не будет. Это, грубо говоря, физическое отключение порта.

Вышепоказанный пример — это работа классического протокола STP, который еще называют CST (Classic Spanning Tree). Одним из его минусов — это то, что он строит одно единственное дерево для всей топологии. А учитывая, что появились VLAN-ы, то нужно было модифицировать этот протокол под них. Cisco, как пионер, выпустила протокол PVST (Per-VLAN Spanning Tree). Он позволял строить отдельное дерево для каждого VLAN. Единственное, что он работал с ISL (проприетарный цисковский протокол, работающий с тегированными кадрами), который применялся только на устройствах данного производителя. Но с появлением открытого протокола 802.1q, они быстренько модернизировали PVST и дали ему имя PVST+. Работает он также, как и его предшественник, но с 802.1q. Нарисую схему и объясню более подробно.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Вот, к примеру, у меня есть 2 VLAN-а. И для каждого VLAN-а, протокол PVST+ строит отдельное дерево. В принципе — это его отличие от CST. Выборы и переходы проходят аналогично и с тем же интервалом по времени. К сожалению, или к счастью, современные Cisco-коммутаторы уже не поддерживают CST.

Поэтому попрактикуемся на PVST+. Тем более, что, при работе сети в одном VLAN-е (который является VLAN-ом по-умолчанию), он мало чем будет отличаться от классического STP.

Я уже быстренько собрал лабораторку из 3-х коммутаторов и сейчас все наглядно покажу.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

И вот как только коммутаторы прошли все стадии, образуется STP-дерево.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Собственно, что и показано на рисунке.

Теперь покажу, что происходит с коммутаторами, когда дерево уже построено. По логике STP, корневой коммутатор должен отправлять Hello-кадр «подчиненным» коммутаторам с интервалом времени в 2 секунды.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Что он из себя представляет, вы видите на картинке выше. Прошу обратить внимание на поля кадра Ethernet 802.3. А именно «Source MAC-Address» и «Destination MAC-Address». В «Source MAC-Address» он записывает MAC-адрес своего порта (в данном случае FastEthernet 0/1). А в «Destination MAC-Address» мультикастовый адрес «0180.C200.0000», который посылается всем участникам, знающим, что такое STP и работающим с ним. Ну и сам кадр STP BPDU. Тут куча полей. Но заострю внимание на более важных, которые я отметил красным прямоугольником.

Мы уже знаем, кто является корневым коммутатором и какой порт заблокирован для устранения петли. Но на экзамене и в повседневной жизни мы будем оперировать командами, при помощи которых можно будет узнать, кто в сегменте является корневым, у кого заблокирован порт и прочую информацию. Начнем с коммутатора Switch1 и с самой важной команды «show spanning-tree». Ее важно запомнить.

Данная команда выводит информацию о всех процессах STP (то есть за каждый VLAN), в которых участвует коммутатор. В нашем случае всего один VLAN. Теперь поговорим о том, что означают эти письмена.

Первое, что бросается в глаза — это блок Root ID.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Он содержит информацию о приоритете, MAC-адресе и таймерах корневого коммутатора. Здесь красуется еще одна важная строчка «This bridge is the root». Она говорит о том, что именно этот коммутатор является корневым за данный VLAN. Поэтому, если вам надо будет найти корневой коммутатор, то ищите эту надпись. На соседнем коммутаторе (не являющимся корневым) этой строчки не будет.

Следующий блок — Bridge ID.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Здесь, соответственно, информация о текущем коммутаторе. На корневом коммутаторе этот блок идентичен вышестоящему.

Ну и ниже располагается таблица.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

В ней записаны интерфейсы, относящиеся к данному VLAN-у, их роли, статусы и прочее. Остановимся немного на ней.

Так как это корневой коммутатор, то порты автоматически переводятся в роль «Designated».
Статус «Forwarding» говорит о том, что порты прошли все стадии и сейчас находятся в активном режиме (пересылка).

Дальше идет стоимость, и она равна 19. FastEthernet работает на скорости 100 Мбит/с и для этой скорости стоимость равна 19 (выше приведена табличка).

Следом идет колонка Prio.Nbr или Priority Number. Это приоритет порта. По-умолчанию этот параметр равен 128, а после точки записывается порядковый номер порта. Соответственно для Fa0/1 — это 128.1, а для Fa0/2 — 128.2.

Тип «p2p» говорит о том, что порт коммутатора работает в режиме «full-duplex». Это означает, что порт может одновременно вести и передачу, и прием.

Если же там будет указан «shared», то это будет означать, что порт работает в режиме «half-duplex». То есть он либо передает, либо получает (не одновременно).

Перейдем к следующему коммутатору Switch2. Аналогично введу команду «show spanning-tree» и посмотрю, что он покажет.

Обратите внимание на блок Root ID.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Как говорилось ранее, здесь содержится информация о корневом коммутаторе. Но здесь уже нет надписи «This bridge is the root», так как этот коммутатор не корневой. Но есть другая запись Port. В ней указан порт, ведущий на корневой коммутатор, и это FastEthernet0/1. Выше есть строчка Cost и она равна 19. Не путайте эту строчку Cost с такой же строчкой в таблице интерфейсов ниже. Если в таблице интерфейсов стоимость указана за конкретный порт, то здесь записывается суммарная стоимость до корневого коммутатора. Например, если за коммутатором Switch2 будет еще один коммутатор с интерфейсом FastEthernet, то его стоимость будет выше.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

То есть он сложит стоимость своего интерфейса со стоимостью интерфейса соседа.
Двигаемся дальше и натыкаемся на блок Bridge ID. Сюда он записывает информацию о себе. Можете заметить, что MAC-адреса отличаются. Далее идут таймеры. Это важный показатель и старайтесь про него не забывать. Лучше его не менять. Но, если все-таки появилась нужда это сделать, то меняйте и на соседних коммутаторах. Иначе это может привести к серьезным ошибкам и займет не мало времени на устранение.

Таблица интерфейсов отличается от корневого коммутатора тем, что роль FastEthernet0/1 не «Designated», а «Root». То есть этот порт ведет к корневому коммутатору.
Остался последний коммутатор Switch3

Здесь конфигурация аналогичная, за исключением порта FastEthernet0/2.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Он в роли Alternate. То есть, в качестве запасного. А статус Blocking говорит о том, что порт заблокирован, дабы «оборвать» петлю. Вот принцип работы классического STP. Прикладываю ссылку на скачивание данной лабораторки.
Но данный вид уже не очень актуален, так как вы не встретите серьезную организацию, у которой всего один VLAN. Соответственно, наша задача подружить STP с VLAN.

Поэтому создаем VLAN-ы на каждом коммутаторе. Можно, конечно, включить VTP и они автоматически синхронизируются, но я не сторонник этого протокола. Поэтому в блокноте подготовил шаблон команд, которые вставлю на каждый коммутатор.

И теперь проверю, что получилось на выходе командой «show spanning-tree».

Получилось длинное полотно текста, в котором описан процесс STP для каждого VLAN-а. Если внимательно посмотреть, то можно увидеть, что Switch1 является корневым для каждого VLAN-а. Но не всегда так бывает нужно.

Сейчас объясню. Например, у нас есть Switch3, который блокирует порт для устранения петли. Давайте взглянем на его обновленную конфигурацию.

Видим, что он блокирует интерфейс FastEthernet0/2 во всех 3-х VLAN-ах. И вот возникла ситуация, что нужно сделать Switch3 корневым коммутатором для VLAN 3. Как описывалось ранее, на помощь придет игра с приоритетом. Сейчас он равен 32771 (32786 + 3). Мне надо его уменьшить. Сделать это можно несколькими способами. Первый способ — это задать приоритет вручную. Захожу на Switch 3 и пишу:

Я решил задать приоритет 30000, так как он меньше 32768. Да, обратите внимание, что мы меняем именно приоритет без sys-id-ext. Но после ввода, выходит сообщение, что нужно ввести число кратное 4096. И ниже предлагает допустимый приоритет. Можно ввести одно из предложенных значений и приоритет изменится.

Но я покажу другой способ изменения приоритета.

При вводе этой команды, коммутатор смотрит, какой Bridge ID был у корневого коммутатора и меняет его на меньшее значение. Только отнимает он не 4096, а 8192. То есть делает меньше на 2 порядка. Я введу эту команду и посмотрю, что изменится.

И вижу, что секция VLAN 3 изменилась. Теперь там приоритет 24579 (24576 + 3) и красуется строчка «This bridge is the root», указывающая, что данный коммутатор теперь корневой для VLAN 3. Оба порта в роли «Designated» и статусе «Forward» (что верно для корневого коммутатора). Но две верхних секции с VLAN-ами остались без изменения и для них FastEthernet 0/2 останется по-прежнему заблокированным.

Теперь посмотрим, как отреагировал Switch 1 на то, что у него забрали корону.

Видим, что отреагировал он спокойно. Switch 1 по-прежнему является корневым для VLAN 1 и VLAN 2. И лишь для VLAN 3 он изменил свое состояние и состояния портов.

Вот таким образом можно управлять различными процессами STP для каждого из VLAN-ов. Прикладываю ссылку на скачивание.

Это все конечно хорошо, что коммутатор перед включением порта, всячески все перепроверяет. Но если мы знаем, что за портом коммутатора находится клиентский компьютер, который не создаст петли, то можно сразу перевести порт в режим «Forwarding», не дожидаясь 30 секунд. Для этого есть технология «Portfast».

Зайду на коммутатор Switch2 и продемонстрирую на примере порта FastEthernet 0/3:

После ввода, он сразу переводит порт в режим Forwarding, но выводит предупреждение о том, что этот порт должен строго подключаться к одному пользовательскому хосту. Иначе, при подключении коммутаторов и прочих устройств, это может привести к появлению петли. Под спойлером ниже показано, как именно это работает.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Как видите, он миновал все стадии и сразу перешел к режиму «Forwarding». Не забывайте про эту технологию, но и пользуйтесь ею с осторожностью, так как окажись там не пользовательский хост, а коммутатор или иное устройство, вы рискуете создать петлю.

Вот основной принцип работы PVST+. Как видите, он мало чем отличается от классического STP или CST.

Я думаю вы заметили какое полотно текста выводит команда «show spanning-tree». И чем больше VLAN-ов, тем больше этот вывод. И если вам нужно будет посмотреть информацию на коммутаторе за 10-ый VLAN, то придется прокручивать весь вывод с самого начала, пока не доберетесь до строчки с нужным VLAN-ом. Для облегчения данной ситуации, есть очень хорошая команда, позволяющая узнать информацию за конкретный VLAN. Это команда «show spanning-tree vlan X». Проверю эту команду.

И вот он мне по моей команде выводит информацию только за 3-ий VLAN. Очень удобная команда, поэтому берите на заметку.

Есть еще одна интересная команда «show spanning-tree summary».

Она показывает суммарную и краткую статистику. В каком STP режиме работает коммутатор, для какого VLAN-а он является корневым, какие функции на нем включены. И самое главное, тут есть таблица, содержащая имена VLAN-ов и количество интерфейсов в данном VLAN-е, находящихся в различных состояниях. Это очень полезно, когда надо быстро зайти и посмотреть есть ли на коммутаторе заблокированные порты и для какого VLAN-а они заблокированы.

В принципе из всех команд — эти часто используемые и для уровня CCNA их более, чем достаточно.
На самом деле STP и PVST+ не единственные протоколы предотвращения петель. Есть еще RSTP и MSTP. Если MSTP в программе CCNA практически не упоминается, за исключением того, что он такой есть, то про RSTP говорить открыто и подробно Cisco начала с новой версией программы CCNA 3.0. Поэтому разберу его поподробнее.

Наверное вы заметили, что классический STP, что PVST+ требуют время на сходимость. А именно 30 секунд, при отказе или отключении какого-либо линка. Это конечно не так много, но чем больше сеть, тем больше времени это занимает. И в большой корпоративной среде полная сходимость может занять несколько минут. И вот для разрешения такой ситуации, комитет IEEE выпустил стандарт 802.1w или протокол RSTP.

Я собрал лабораторку и включил на каждом коммутаторе RSTP и проверю, как быстро произойдет перестроение дерева.

включить stp spanning tree protocol что это. Смотреть фото включить stp spanning tree protocol что это. Смотреть картинку включить stp spanning tree protocol что это. Картинка про включить stp spanning tree protocol что это. Фото включить stp spanning tree protocol что это

Как видите, перестроение происходит в считанные секунды. Для тех, кто захочет проверить это на себе, прикладываю файл с лабораторкой.

Вот и подошла к концу статья о протоколах STP. Теперь мы можем строить процессы STP для каждого VLAN-а, управлять приоритетом и много другого. А для быстроты сходимости можем применять протокол RSTP.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *