вируснейтрализующей эффект что это
Расшифровка результатов теста на антитела к коронавирусу – таблица
Что такое антитела к коронавирусу?
Антитела (другое название – иммуноглобулины) – это специальные белки, которые вырабатываются и (или) продуцируются плазматическими клетками.
Что делают иммуноглобулины?
Иммуноглобулины образуются в ответ на попадание в организм чужеродных бактерий или вирусов. Они взаимодействуют с антигеном (специфическим участком вредителя) и обезвреживают его.
Таким образом наш иммунитет стоит на страже нашего здоровья.
Какие классы иммуноглобулинов существует?
Выделяют 5 классов иммуноглобулинов, некоторые из которых содержат подклассы.
IgA – секретируются на поверхности эпителия и присутствуют в слюне, слезе, на поверхности слизистых.
IgM – обнаруживается при первичном попадании антигена. Указывает на острый инфекционный процесс у человека.
IgG – основной класс иммуноглобулинов, защищающий от вирусов, бактерий, токсинов.
IgD – обнаруживают на поверхности развивающихся B-лимфоцитов. Функция не установлена.
IgE – секретируются при аллергической реакции немедленного типа.
Методы определения антител к коронавирусу
Существуют два метода определения иммуноглобулинов к коронавирусу в организме человека – ИФА и ИХА.
Иммуннохроматографический анализ – это качественный метод определения иммуноглобулинов классов М и G.
Качественный метод – это метод, позволяющий только определить наличие антител в организме. Иными словами, ответить на вопрос – есть они или нет.
Иммуноферментный анализ – это количественный метод определения иммуноглобулинов.
Количественный метол – не просто говорит о наличии антител, но и показывает их количество в единице объема крови.
Для анализов проводят забор венозной крови, следовательно, подготовка к процедуре стандартная:
Проводить исследование на пустой желудок (не есть за 8 часов до процедуры).
Воздержаться от питья воды за час до забора крови.
Для курильщиков – не курить за 2 часа до процедуры.
Что выбрать – качественный или полуколичественный анализ?
Для чего проводится качественный и количественный анализ?
Качественный анализ позволяет ответ на 2 вопроса:
Полуколичественный тест позволяет ответить на эти вопросы, а также определить количество иммуноглобулинов в организме.
Для чего определять количество иммуноглобулинов?
Определение количества антител позволяет определить, сформирован ли долговременный иммунитет. Именно он защищает на организм от повторного заболевания коронавирусом.
Показания к проведению исследования
Показаниями к проведению анализа является:
Наличие симптомов общего недомогания. В этом случае тестирование проводится для подтверждения диагноза.
При контакте с носителем или больным коронавирусной инфекцией.
По желанию – для лабораторной оценке иммунного статуса.
Как проводится тест
Необходимо прийти в Клинику МЕДЕЛ по предварительной записи.
Процедура проводится путем забора крови.
В Клинике МЕДЕЛ результаты изготавливаются в течение 1 дня.
Адаптация МТТ-теста для определения нейтрализующих антител к вирусу SARS-CoV-2
Полный текст:
Аннотация
Введение. Основным показателем специфической активности антител к вирусу SARS-CoV-2 является их способность нейтрализовать вирус. Тест на вируснейтрализующие антитела (ВНА) широко востребован в различных направлениях биомедицинских исследований.
Целью работы являлся подбор оптимальных условий для определения ВНА к вирусу SARS-CoV-2 по ингибированию цитопатогенного действия (ЦПД) в культуре клеток с возможностью как микроскопического, так и спектрофотометрического учёта результата.
Материалы и методы. Сыворотку крови реконвалесцентов COVID-19 и здоровых лиц (n = 96) изучали методом ИФА. Коронавирус SARS-CoV-2, штамм Dubrovka (номер GenBank: MW514307.1) выращивали в культуре клеток Vero CCL81 (ATСС). Идентификацию вируса проводили методами ОТ-ПЦР-РВ, ИФА и секвенирования по Сэнгеру. Результаты реакции нейтрализации (РН) учитывали по ЦПД микроскопически и в метилтетразолиевом (МТТ) тесте.
Определение антител к вирусу в ИФА. Определение антител класса G к RBD-домену коронавируса SARS-CoV-2 проводили с использованием набора реагентов «SARS-CoV-2-ИФА-IgG» (OOO «МедипалТех»).
За титр антител к SARS-CoV-2 принимали последнее разведение, при котором значение ОП образца было выше, чем порог отсечения в каждом исследовании.
МТТ-тест. Выживаемость клеток Vero, заражённых вирусом, оценивали с помощью витального красителя метилтиазолилтетразолия бромида (МТТ). На 5-е сутки после заражения в лунки с клетками 96-луночного планшета добавляли по 20 мкл раствора МТТ, 5 мг/мл («ПанЭко») и инкубировали при 37°C в атмосфере с 5% CO2 в течение 2 ч. Далее культуральную жидкость отбирали и добавляли в лунки по 100 мкл диметилсульфоксида («SigmaAldrich») в каждую лунку. С помощью планшетного спектрофотометра определяли ОП каждой лунки при 530 нм с учётом фоновых значений при 620 нм. Выживаемость клеток рассчитывали по формуле:
Выживаемость = (ОП530 опытной пробы/ОП530 клеточного контроля) × 100%,
где ОП530 опытной пробы — среднее значение ОП530 в лунках с заражёнными клетками; ОП530 клеточного контроля — среднее значение ОП530 в лунках с незаражённой клеточной культурой.
Реакция нейтрализации. Определение титра
ВНА к SARS-CoV-2 проводили, как описано в работе [17], с модификациями. Образцы сывороток аликвотировали по 100 мкл и хранили при –20°С. Перед постановкой реакции нейтрализации (РН) сыворотку размораживали, прогревали при 56°С в течение 30 мин, готовили последовательные двукратные разведения поддерживающей средой. Разведения сывороток смешивали с равным объёмом вирусного материала SARS-CoV-2 в титре 2 × 10 3 ТЦД50/мл и инкубировали при 37°C в атмосфере 5% CO2 в течение 1 ч. Из 96-луночного планшета с 3-дневным монослоем клеток Vero удаляли среду, в лунки вносили смесь вируса и сыворотки в 4 повторах по 100 мкл (доза вируса — 100 ТЦД50 на лунку) согласно схеме (табл. 2) и инкубировали в течение 5 сут при 37°C в атмосфере с 5% CO2.
Таблица 2. Схема расположения образцов в 96-луночном планшете при постановке РН
Table 2. Arrangement of samples in the 96-well plate during NT
Помимо исследуемых образцов, в РН предусматривали следующие контроли: клеточный контроль (КК — незаражённая клеточная культура), вирусный контроль (ВК — клетки, заражённые рабочим разведением вируса), контроль сыворотки (КС — сыворотка в разведении 1 : 20), контроль дозы (КД — пятикратные разведения вируса).
Учёт результата РН проводили визуально путём микроскопического исследования клеток либо спектрофотометрически в колориметрическом тесте МТТ. В целях защиты персонала перед измерением ОП планшет в открытом виде с разных сторон обрабатывали в течение 5 мин ультрафиолетом в боксе микробиологической безопасности. При визуальном учёте нейтрализующим титром сыворотки считали обратное значение её последнего разведения, в котором признаков ЦПД не обнаруживалось в 2 или более лунках. В тесте МТТ учёт нейтрализующего титра проводили спектрофотометрически и считали по последнему разведению, при котором показатель среднего значения ОП530–620 (далее — ОП530) был равен или превышал значения порогового показателя (ПП), определённого по формуле:
где ОП530 КК — среднее значение ОП530 в контрольных лунках с незаражённой клеточной культурой; ОП530 ВК — среднее значение ОП530 в контрольных лунках, содержащих рабочее разведение вируса.
Значения контрольных показателей учитывали следующим образом: КК — клеточный монослой в контрольных лунках должен быть сохранён полностью. ВК — полная дегенерация монослоя клеток в результате ЦПД вируса. Значения ОП530 ВК должны быть не выше 0,2, а отношение ОП530 КК/ОП530 ВК должно быть не менее 8.
Статистическая обработка данных. Статистическую значимость разницы титров антител, учтённых разными методами, оценивали с помощью коэффициента ранговой корреляции Спирмена. Достоверной считали разницу при р nd passage; c — 7 th passage; d — 21 st passage.
В МТТ-тесте показано, что если при заражении вирусом 2-го пассажа выживаемость клеток Vero составляла 92%, то уже к 14-му пассажу достигала минимального уровня (2–4%) (рис. 4).
Рис. 4. Выживаемость клеток Vero на 5-е сутки после заражения вирусом в зависимости от пассажного уровня вируса, MOI = 0,0001.
Fig. 4. Viability of Vero cells on day 5 post-infection depending on a passage level of the virus, MOI = 0.0001.
Таким образом, адаптированный к культуре клеток Vero штамм SARS-CoV-2 при малых дозах заражения вызывал выраженное ЦПД, которое без труда можно детектировать при микроскопическом исследовании монослоя. На основе созданной индикаторной системы была отработана и апробирована РН. Изучена зависимость значения титра ВНА от дозы заражения клеток. С этой целью сыворотка реконвалесцента COVID-19 с высоким титром антител к вирусу SARS-CoV-2 была исследована в РН при 4 дозах заражения: 200, 100, 50 и 25 ТЦД50 на лунку. В результате значения титра ВНА закономерно распределились в обратной зависимости от дозы заражения и составили 160, 320, 640 и 1280 соответственно. В дальнейшей работе мы использовали в РН дозу 100 ТЦД50 на лунку, поскольку в известных нам научных публикациях применялась эта доза [16][18][19].
Далее было проведено исследование в РН сывороток крови, охарактеризованных ранее по содержанию антител к SARS-CoV-2. Было исследовано 46 образцов, содержащих IgG антитела к вирусу в диапазоне разведений (титр) от 1 : 200 до >1 : 3200 (рис. 5, а). Для контроля специфичности также исследовали 20 сывороток пациентов, не содержащих антитела к SARS-CoV-2. Титры ВНА достоверно коррелировали (Спирмен r = 0,714; р 1 : 3200 обладали нейтрализующей активностью (рис. 5, б).
Рис. 5. Распределение сывороток, в которых обнаружены IgG-антитела к SARS-CoV-2, по титрам (предельному разведению сыворотки; а) и корреляционная связь между титрами ВНА и суммарных антител к SARS-CoV-2 в сыворотках крови реконвалесцентов COVID-19 (n = 46; б).
Спирмен r = 0,714; р 1. Deeks J.J., Dinnes J., Takwoingi Y., Davenport C., Spijker R., Taylor-Phillips S., et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst. Rev. 2020; 6(6): CD013652. https://doi.org/10.1002/14651858.CD013652
2. Mekonnen D., Mengist H.M., Derbie A., Nibret E., Munshea A., He H., et al. Diagnostic accuracy of serological tests and kinetics of severe acute respiratory syndrome coronavirus 2 antibody: A sys- tematic review and meta-analysis. Rev. Med. Virol. 2020; e2181. https://doi.org/10.1002/rmv.2181
3. Zost S.J., Gilchuk P., Case J.B., Binshtein E., Chen R.E., Nkolola J.P., et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature. 2020; 584(7821): 443–9. https://doi.org/10.1038/s41586-020-2548-6
4. Rogers T.F., Zhao F., Huang D., Beutler N., Burns A., He W.T., et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020; 369(6506): 956–63. https://doi.org/10.1126/science.abc7520
5. Chi X., Yan R., Zhang J., Zhang G., Zhang Y., Hao M., et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 2020; 369(6504): 650–5. https://doi.org/10.1126/science.abc6952
6. Brown B.L., McCullough J. Treatment for emerging viruses: Convalescent plasma and COVID-19. Transfus. Apher. Sci. 2020; 59(3): 102790. https://doi.org/10.1016/j.transci.2020.102790
7. Баклаушев В.П., Аверьянов А.В., Сотникова А.Г., Перки- на А.С., Иванов А.В., Юсубалиева Г.М. и др. Предварительные итоги исследования безопасности и эффективности плазмы реконвалесцентов в терапии COVID-19. Клиническая практика. 2020; 11(2): 38–50. https://doi.org/10.17816/clinpract35168
8. Vanderheiden A., Edara V.V., Floyd K., Kauffman R.C., Mantus G., Anderson E., et al. Development of a rapid focus reduction neutralization test assay for measuring SARS-CoV-2 neutralizing antibodies. Curr. Protoc. Immunol. 2020; 131(1): e116. https://doi.org/10.1002/cpim.116
9. Tan C.W., Chia W.N., Qin X., Liu P., Chen M.I., Tiu C., et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat. Biotechnol. 2020; 38(9): 1073–8. https://doi.org/10.1038/s41587-020-0631-z
10. Meyer B., Reimerink J., Torriani G., Brouwer F., Godeke G.J., Yerly S., et al. Validation and clinical evaluation of a SARSCoV-2 surrogate virus neutralisation test (sVNT). Emerg. Microbes Infect. 2020; 9(1): 2394–403. https://doi.org/10.1080/22221751.2020.1835448
11. Nie J., Li Q., Wu J., Zhao C., Hao H., Liu H., et al. Establishment and validation of a pseudovirus neutralization assay for SARSCoV-2. Emerg. Microbes Infect. 2020; 9(1): 680–6. https://doi.org/10.1080/22221751.2020.1743767
12. Schmidt F., Weisblum Y., Muecksch F., Hoffmann H.H., Michailidis E., Lorenzi J.C.C., et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med. 2020; 217(11): e20201181. https://doi.org/10.1084/jem.20201181
13. Brouwer P.J.M., Caniels T.G., van der Straten K., Snitselaar J.L., Aldon Y., Bangaru S., et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020; 369(6504): 643–50. https://doi.org/10.1126/science.abc5902
14. Liu L., Wang P., Nair M.S., Yu J., Rapp M., Wang Q., et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature. 2020; 584(7821): 450–6. https://doi.org/10.1038/s41586-020-2571-7
15. Chan J.F., Yip C.C., To K.K., Tang T.H., Wong S.C., Leung K.H., et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. J. Clin. Microbiol. 2020; 58(5): e00310-20. https://doi.org/10.1128/JCM.00310-20
16. Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016; 5(2): 85–6. https://doi.org/10.5501/wjv.v5.i2.85
17. Gao Q., Bao L., Mao H., Wang L., Xu K., Yang M., et al. Development of an inactivated vaccine candidate for SARSCoV-2. Science. 2020; 369(6499): 77–81. https://doi.org/10.1126/science.abc1932
18. Logunov D.Y., Dolzhikova I.V., Zubkova O.V., Tukhvatulin A.I., Shcheblyakov D.V., Dzharullaeva A.S., et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020; 396(10255): 887–97. https://doi.org/10.1016/S0140-6736(20)31866-3
19. Chan J.F., Zhang A.J., Yuan S., Poon V.K., Chan C.C., Lee A.C., et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 2020; 71(9): 2428–46. https://doi.org/10.1093/cid/ciaa325
20. Haddad E.E., Whitfill C.E., Ricks C.A., Fredericksen T., Rowe D., Owen L., et al. Adaptation of the MTT (3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide) assay for the determination of virus-neutralizing antibodies using the virus-neutralization assay. Avian Dis. 1994; 38(4): 755–61.
21. Müller J.A., Harms M., Schubert A., Mayer B., Jansen S., Herbeuval J.P., et al. Development of a high-throughput colorimetric Zika virus infection assay. Med. Microbiol. Immunol. 2017; 206(2): 175–85. https://doi.org/10.1007/s00430-017-0493-2
22. Heldt C.L., Hernandez R., Mudiganti U., Gurgel P.V., Brown D.T., Carbonell R.G. A colorimetric assay for viral agents that produce cytopathic effects. J. Virol. Methods. 2006; 135(1): 56–65. https://doi.org/10.1016/j.jviromet.2006.01.022
23. Feoktistova M., Geserick P., Leverkus M. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb. Protoc. 2016; 2016(4): pdb.prot087379. https://doi.org/10.1101/pdb.prot087379
Об авторах
Грачева Анастасия Вячеславовна — м.н.с. лаб. молекулярной вирусологии
Вируснейтрализующей эффект что это
Перенесенный COVID-19 и вакцинация снижают риск реинфекции и клинически значимых проявлений COVID-19. Эффективность вакцин в отношении развития симптомных форм COVID-19 на относительно кратком отрезке времени варьирует по данным клинических исследований от 50 до 95%. Титр нейтрализующих антител у реконвалесцентов существенно снижается через 8 месяцев. Один из самых важных вопросов – какова продолжительность поддержания иммунитета на уровне, достаточном для защиты от инфицирования SARS-CoV2, после вакцинации. Эти данные необходимы для планирования стратегии вакцинации.
В журнале Nature Medicine опубликованы результаты работы, в которой была представлена математическая модель, предсказывающая динамику титра антител и их защитные свойства. В работе анализировались данные исследований 1-3 фазы по 7 вакцинам (как западным, так и произведенным в Китае), а также результаты исследования у реконвалесцентов после перенесенного COVID-19. Модель динамики титра антител и степени иммунопротекции строили по аналогии с гриппом. Теоретический расчет показал, что для 50%-ной защиты от инфицирования SARS-CoV2 достаточно титра антител, аналогичного 20%-ному титру у реконвалесцентов сразу после заболевания. Поскольку в разных исследованиях применялись немного разные методы оценки титра антител, соответствующий показатель от вакцины к вакцине (и от исследования к исследованию) варьировал от 1:10 до 1:30 (и составил, ориентировочно 54 международные единицы). Анализ показал, что титр нейтрализующих антител, измеренный после вакцинации, достоверно коррелирует с последующей клинической эффективностью. Специалисты провели также обратный анализ: удалив данные по одной из вакцин из общей модели, они провели теоретическое прогнозирование эффективности данной вакцины по известным данным титров антител после вакцинации. Полученные ими результаты (79,6%) оказались очень близки к реальным результатам исследования 3 фазы (80,6%).
Авторы построили модель, предсказывающую снижение титра нейтрализующих антител после вакцинации. Проверить модель они смогли за период времени с 26 по 115 день после вакцинации, поскольку такие экспериментальные данные были доступны из клинических исследований. Оказалось, что созданная модель весьма точно описывает процесс снижения титра за проверяемый период времени. Модель показала, что снижение титра антител после вакцинации происходит также, как и у реконвалесцентов. Интересно, что степень защиты от инфекции падала не строго пропорционально снижению титра антител, и эти показатели сильно варьировали от вакцине к вакцине. Также модель предсказала, что чем выше эффективность вакцины в отношении «исходного» типа вируса, который был выделен в Ухане и к которому разрабатывались вакцины, тем потенциально выше эффективность вакцины к «мутантным» типам вируса. Также было показано, что для 50%-ной защиты от тяжелой формы COVID-19 достаточно наличия нейтрализующих антител в титре, составляющем 3% от среднего титра у недавних реконвалесцентов. Вероятно, для защиты от тяжелой формы инфекции большое значение может иметь Т-клеточный иммунитет или иммунная «память» В-лимфоцитов. В этой ситуации логично предположить, что защита от тяжелой формы COVID-19 будет сохраняться дольше, чем просто от инфицирования. Авторы полагают также, что по истечении 8-месячного периода дальнейшее падение титра нейтрализующих антител у реконвалесцентов может замедлиться, и подавляющего количества пациентов иммунный ответ на тип вируса, близкого по антигенной структуре к исходному, может сохраняться достаточно долго.
ТОП противовирусных препаратов
Вирусные инфекции не только доставляют массу неудобств, но и увеличивают риск развития осложнений в виде бронхита или пневмонии, негативно отражающихся на здоровье и еще хуже, приводящих к летальному исходу. Антибиотики неэффективны против вирусных инфекций. Их прием возможен только при присоединении бактериальной флоры при ОРВИ или гриппе.
При сезонных эпидемиях назначаются лекарства, которые также эффективны против герпеса, гепатита и ВИЧ. Мы предлагаем рейтинг, который поможет разобраться, какое противовирусное средство лучше купить. Обратите внимание, что он носит исключительно рекомендательный характер и не может быть рассмотрен в качестве основы для приобретения медикаментов. Предварительная консультация с врачом является обязательной.
Классификация противовирусных препаратов
Какое лекарство лучше принимать, зависит от особенностей заболевания. Для начал следует изучить классификацию по принципу действия:
Причины развития вирусных заболеваний
Существуют следующие группы вирусных заболеваний, которые разделены в зависимости от органа и системы, пораженного патогенными микроорганизмами:
Рейтинг противовирусных препаратов
В ТОПе представлен список лучших средств для взрослых и детей. Для каждого медикамент даны основные характеристики, преимущества и недостатки (при наличии).
№1 – «Арбидол Максимум» (капсулы)
Возглавляет рейтинг. Разработан на основе умифеновира гидрохлорида, который специфически подавляет in vitro вирусы, а также возбудители острых респираторных инфекций.
Производитель: Фармстандарт-Лексредства, Россия
№2 – «Арбидол» (капсулы)
Производитель: Фармстандарт-Лексредства, Россия
№3 – «Тамифлю» (капсулы)
Активное вещество – осельтамивира фосфат (пролекарство). Активный метаболит эффективен против вируса гриппа А и В. Предотвращает проникновение патогена в эпителиальные клетки дыхательных путей, исключая дальнейшее распространение в организме.
«Тамифлю» сокращает время выделения вируса из организма и способствует смягчению симптомов. Принимать можно детям в возрасте от 1 года для профилактики и лечения.
Производитель: Фармстандарт-Лексредства, Франция
№4 – «Амиксин» (таблетки)
Незаменим против широкого спектра болезней вирусной этиологии (туберкулез, гепатит, хламидийные инфекции, герпес, пневмония и пр.). Представляет сбой низкомолекулярный синтетический индуктор интерферона.
Основан на ингибировании трансляции вирус-специфических белков. В результате наблюдается подавление репродукции патогена в инфицированных клетках. Биодоступность «Амиксина» составляет 60%.
Производитель: Фармстандарт-Лексредства, Россия
№5 – «Ингавирин» (капсулы)
Производитель: Valenta [Валента Фарм], Россия
№6 – «Кагоцел» (таблетки)
Активное вещество представлено натриевой солью сополимера, которая способствует образованию поздних интерферонов, принимающих участие в ответе организма. Преимуществом является отсутствие токсичности, мутагенности и тератогенности.
«Кагоцел» является лучшим лекарством от гриппа для взрослых и детей от 3-х лет. В случае передозировки достаточно обеспечить обильное питье и вызвать рвоту. В сочетании с антибиотиками дает аддитивный эффект (взаимное усиление).
Производитель: Ниармедик ФАРМА ООО, Россия
№7 – «Лавомакс» (таблетки в оболочке)
Содержит тилорон, который является активным индуктором синтеза интерферона. Обладает иммуномодулирующим действием и подавляет репродукцию патогенных клеток.
Назначается при цитомегаловирусе, остром гепатите, ветряной оспе, опоясывающем лишае. Также эффективен при гриппе, острых инфекций верхних дыхательных путей и пр. Ингибирует трансляцию вирус-специфических белков в инфицированных клеточных структурах, подавляя репродукцию вирусов.
Производитель: Stada Arzneimittel AG [Штада Арцнаймиттель], Россия
№8 – «Нобазит» (таблетки в пленочной оболочке)
Активное вещество – энисамия йодид, является индуктором синтеза интерферонов. Эффективно подавляет возбудителей различных инфекций за счет того, что оказывает непосредственное влияние на проникновение вирусов через мембраны клеточных структур.
Производитель: Ирбитский химико-фармацевтический завод, Россия
№9 – «Триазавирин» (капсулы)
Разработан на основе синтетического аналога пуриновых нуклеозидов. Эффективен против РНК-содержащих вирусов. Выступает в роли ингибитора синтеза вирусных РНК и репликатора геномных ферментов.
В случае необходимости назначается вместе с симптоматическими средствами. Принимать следует с осторожностью, т. к. существует вероятность передозировки. При беременности не назначается.
Производитель: Медсинтез завод, Россия
№10 – «Эргоферон» (таблетки рассасываемые)
Хорошие противовирусные таблетки оказывают противовоспалительное, антигистаминное, иммуномодулирующее действие. Эффективность «Эргоферона» клинически и экспериментально доказана. Активные вещества обладают единым механизмом, повышая функциональную активность рецепторов, вызывая выраженный иммунотропный ответ.
Производитель: Materia Medica [Материа Медика Холдинг НПФ], Россия
№11 – «Виферон» (гель для наружного и местного применения)
В состав входит интерферон альфа-2b (рекомбинантный человеческий). Предназначен для наружного применения. Дополнительно обладает антипролиферативным и иммуномодулирующим свойством.
Благодаря гелевой основе обеспечивается пролонгированное действие. Используется преимущественно в составе комплексной терапии.
Производитель: Ферон, Россия
№12 – «Гриппферон» (назальный спрей)
Средство используется для местного применения. Назначается для лечения и профилактики ОРВИ и гриппа у взрослых и детей. Не рекомендуется сочетать с каплями, обладающими сосудосуживающим действием.
Спрей «Гриппферон» допустимо использовать при беременности и в период грудного вскармливания. Среди побочных реакций – местные аллергические.
Производитель: Фирн М, Россия
№13 – «Арепливир» (таблетки)
Содержит фавипиравир, обладающий активностью против новой коронавирусной инфекции COVID-19. Механизм заключается в избирательном ингибировании РНК-зависимой РНК-полимеразы, которые участвуют в репликации вируса.
Назначается для лечения коронавирусной инфекции, вызванной SARS-CoV-2. Лучший противовирусный препарат при ковиде показан к приему после лабораторного подтверждения диагноза при наличии характерной клинической картины. При беременности не используется, т. к. вызывает гибель эмбриона.
Производитель: Биохимик, Россия
№14 – «Ингарон» (лиофилизат для приготовления раствора)
Содержит интерферон гамма, который вызывает ярко выраженную иммунную активность. Используется интраназально. Назначается для лечения гепатита С и В, СПИД/ВИЧ, туберкулеза легких, и пр. Беременным женщинам принимать противопоказан. Назначается детям старше 7 лет.
Производитель: Фармаклон НПП, Россия
№15 – «Циклоферон» (таблетки с кишечнорастворимой оболочкой)
Производитель: Полисан, Россия
№16 – «Римантадин Актитаб» (таблетки)
Используется в целях профилактики и лечения гриппа А у детей и взрослых. Является производным адамантана. Следует принимать с осторожностью т. к. возможно развитие побочных реакций.
При терапии «Римантадином» возможно обострение хронических заболеваний. Профилактический прием рекомендован после контакта с заболевшими людьми для предотвращения распространения инфекции.
Производитель: Оболенское ФП, Россия
Выводы
Рейтинг противовирусных препаратов по эффективности 2021 года включает средства от таких фирм, как Оболенское ФП (Россия), Фармаклон НПП (Россия), Italfarmaco (Италия) и др. Производители рекомендуют соблюдать рекомендации по приему, указанные в инструкции по применению.
Самое лучшее лекарство поможет выбрать врач после проведения комплексного обследования. Самолечение при вирусных заболеваниях недопустимо. Рейтинг противовирусных препаратов предложен для получения общей информации, а не в рекомендательных целях.