видео h 264 что это
Магия H.264
H.264 — стандарт сжатия видео. И он вездесущ, его используют для сжатия видео в интернете, на Blu-ray, телефонах, камерах наблюдения, дронах, везде. Все сейчас используют H.264.
Нельзя не отметить технологичность H.264. Он появился в результате 30-ти с лишним лет работы с одной единственной целью: уменьшение необходимой пропускной способности канала для передачи качественного видео.
С технической точки зрения это очень интересно. В статье будут поверхностно описаны подробности работы некоторых механизмов сжатия, я постараюсь не наскучить с деталями. К тому же, стоит отметить, что большинство изложенных ниже технологий справедливы для сжатия видео в целом, а не только для H.264.
Видео в несжатом виде это последовательность двумерных массивов, содержащих информацию о пикселях каждого кадра. Таким образом это трёхмерный (2 пространственных измерения и 1 временной) массив байтов. Каждый пиксель кодируется тремя байтами — один для каждого из трёх основных цветов (красный, зелёный и синий).
1080p @ 60 Hz = 1920x1080x60x3 =>
Этим практически невозможно было бы пользоваться. Blu-ray диск на 50Гб мог бы вмещать всего около 2 мин. видео. С копированием так же будет не легко. Даже у SSD возникнут проблемы с записью из памяти на диск.
Поэтому да, сжатие необходимо.
Обязательно отвечу на этот вопрос. Но сперва я покажу кое-что. Взгляните на главную страницу Apple:
Я сохранил изображение и приведу в пример 2 файла:
Эмм… что? Размеры файлов кажется перепутали.
Нет, с размерами всё в порядке. Видео H.264 с 300 кадрами весит 175 Кб. Один единственный кадр из видео в PNG — 1015 Кб.
Кажется, мы храним в 300 раз больше данных в видео, но получаем файл весом в 5 раз меньше. Получается H.264 эффективнее PNG в 1500 раз.
Как такое возможно, в чём заключается приём?
А приёмов очень много! H.264 использует все приёмы о которых вы догадываетесь (и уйму о которых нет). Давайте пройдёмся по основным.
Избавляемся от лишнего веса.
Представьте, что вы готовите машину к гонкам и вам нужно её ускорить. Что вы сделаете в первую очередь? Вы избавитесь от лишнего веса. Допустим, машина весит одну тонну. Вы начинаете выбрасывать ненужные детали… Заднее кресло? Пфф… выбрасываем. Сабвуфер? Обойдёмся и без музыки. Кондиционер? Не нужен. Коробка передач? В мусо… стойте, она еще пригодится.
Таким образом вы избавитесь от всего, кроме необходимого.
Этот метод отбрасывания ненужных участков называется сжатием данных с потерями. H.264 кодирует с потерями, отбрасывая менее значимые части и сохраняя при этом важные.
PNG кодирует без потерь. Это означает, что вся информация сохраняется, пиксель в пиксель, и поэтому оригинал изображения можно воссоздать из файла, закодированного в PNG.
Важные части? Как алгоритм может определять их важность в кадре?
Существует несколько очевидных способов урезания изображения. Возможно, верхняя правая четверть картинки бесполезна, тогда можно удалить этот угол и мы уместимся в ¾ исходного веса. Теперь машина весит 750 кг. Либо можно вырезать кромку определенной ширины по всему периметру, важная информацию всегда ведь по середине. Да, возможно, но H.264 всего этого не делает.
Что же на самом деле делает H.264?
H.264, как и все алгоритмы сжатия с потерями, уменьшает детализацию. Ниже, сравнение изображений до и после избавления от деталей.
Видите как на сжатом изображении исчезли отверстия в решётке динамика у MacBook Pro? Если не приближать, то можно и не заметить. Изображение справа весит всего 7% от исходного и это при том, что сжатия в традиционном смысле не было. Представьте машину весом всего лишь 70 кг!
7%, ого! Как возможно так избавиться от детализации?
Для начала немного математики.
Информационная энтропия
Мы подходим к самому интересному! Если вы посещали теорию информатики, то возможно вспомните про понятие информационной энтропии. Информационная энтропия это количество единиц для представления некоторых данных. Заметьте, что это вовсе не размер самих данных. Это минимальное количество единиц, которое нужно использовать, чтобы представить все элементы данных.
Например, если в виде данных взять один бросок монеты, то энтропия получится 1 единица. Если же бросков монетки 2, то понадобятся 2 единицы.
Предположим, что монета весьма странная — её подбросили 10 раз и каждый раз выпадал орёл. Как бы вы кому нибудь рассказали об этом? Вряд ли как-то вроде ОООООООООО, вы бы сказали «10 бросков, все орлы» — бум! Вы только что сжали информацию! Легко. Я вас спас от многочасовой утомительной лекции. Это, конечно же, огромное упрощение, но вы преобразовали данные в некое короткое представление с той же информативностью. То есть уменьшили избыточность. Информационная энтропия данных не пострадала — вы только преобразовали представление. Такой способ называется энтропийным кодированием, который подходит для кодирования любого вида данных.
Частотное пространство
Теперь, когда мы разобрались с информационной энтропией, перейдем к преобразованию самих данных. Можно представить данные в фундаментальных системах. Например, если использовать двоичный код, будут 0 и 1. Если же использовать шестнадцатеричную систему, то алфавит будет состоять из 16 символов. Между вышеупомянутыми системами существует взаимно однозначная связь, поэтому можно легко преобразовывать одно в другое. Пока всё понятно? Идём дальше.
А представьте, что можно представить данные, которые изменяются в пространстве или времени, в совершенно иной системе координат. Например, яркость изображения, а вместо системы координат с x и y, возьмём частотную систему. Таким образом, на осях будут частоты freqX и freqY, такое представление называется частотным пространством[Frequency domain representation]. И существует теорема, что любые данные можно без потерь представить в такой системе при достаточно высоких freqX и freqY.
Хорошо, но что такое freqX и freqY?
freqX и freqY всего лишь другой базис в системе координат. Так же как можно перейти из двоичной системы в шестнадцатеричную, можно перейти из X-Y в freqX и freqY. Ниже изображён переход из одной системы в другую.
Мелкая решётка MacBook Pro содержит высокочастотную информацию и находится в области с высокими частотами. Таким образом мелкие детали имеют высокую частоту, а плавные изменения, такие как цвет и яркость низкую. Всё, что между, остаётся между.
В таком представлении, низкочастотные детали находятся ближе к центру изображения, а высокочастотные в углах.
Пока всё понятно, но зачем это нужно?
Потому что теперь, можно взять изображение, представленное в частотных интервалах, и обрезать углы, иными словами применить маску, понизив тем самым детальность. А если преобразовать изображение обратно в привычное, можно будет заметить, что оно осталось похожим на исходное, но с меньшей детализацией. В результате такой манипуляции, мы сэкономим место. Путём выбора нужной маски, можно контролировать детализацию изображения.
Ниже знакомый нам ноутбук, но теперь уже с, применёнными к ней, круговыми масками.
В процентах указана информационная энтропия относительно исходного изображения. Если не приближать, то разница не заметна и при 2%! — машина теперь весит 20 кг!
Именно таким образом нужно избавляться от веса. Такой процесс сжатия с потерями называется Квантованием.
Это впечатляет, какие еще приёмы существуют?
Цветовая обработка
Человеческий глаз не особо хорошо различает близкие оттенки цвета. Можно легко распознавать наименьшие различия в яркости, но не цвета. Поэтому должен существовать способ избавления от лишней информации о цвете и сэкономить ещё больше места.
В телевизорах, цвета RGB преобразуются в YCbCr, где Y это компонента яркости (по сути яркость черно-белого изображения), а Cb и Cr компоненты цвета. RGB и YCbCr эквиваленты в плане информационной энтропии.
Зачем же тогда усложнять? RGB разве не достаточно?
Во времена чёрно-белых телевизоров, была только компонента Y. А с началом появления цветных телевизоров у инженеров встала задача о передаче цветного RGB изображения вместе с чёрно-белым. Поэтому вместо двух каналов для передачи, было решено кодировать цвет в компоненты Cb и Cr и передавать их вместе с Y, а цветные телевизоры уже сами будут преобразовывать компоненты цвета и яркости в привычный им RGB.
Но вот в чём хитрость: компонента яркости кодируется в полном разрешении, а компоненты цвета лишь в четверть. И этим можно пренебречь, т.к. глаз/мозг плохо различает оттенки. Таким образом можно уменьшить размер изображения в половину и с минимальными отличиями. В 2 раза! Машина будет весить 10 кг!
Данная технология кодирования изображения со снижением цветового разрешения называется цветовой субдискретизацией. Она используется повсеместно уже давно и относится не только к H.264.
Это самые значительные технологии в уменьшении размера при сжатии с потерями. Нам удалось избавиться от большинства детализации и сократить информацию о цвете в 2 раза.
Да. Обрезание картинки это лишь первый шаг. До этого момента мы разбирали отдельно взятый кадр. Пришло время взглянуть на сжатии во времени, где нам предстоит работать с группой кадров.
Компенсация движения
H.264 стандарт, который позволяет компенсировать движения.
Представьте, что вы смотрите теннисный матч. Камера зафиксирована и снимает с определенного угла и единственное что движется это мячик. Как бы вы закодировали это? Вы бы сделали что и обычно, да? Трёхмерный массив пикселей, две координаты в пространстве и один кадр за раз, так?
Но зачем? Большая часть изображения одинакова. Поле, сетка, зрители не меняются, единственное что движется это мячик. Что если определить единственное изображение фона и одно изображение мячика, движущегося по нему. Не сэкономило бы это значительно места? Вы видите к чему я клоню, не так ли? Компенсация движения?
И это именно то, что H.264 делает. H.264 разбивает изображение на макроблоки, обычно 16х16, которые используются для расчёта движения. Один кадр остаётся статичным, обычно его называют I-кадр [Intra frame], и содержит всё. Последующие кадры могут быть либо P-кадры [predicted], либо B-кадры [bi-directionally predicted]. В P-кадрах вектор движения кодируется для каждого макроблока на основе предыдущих кадров, таким образом декодер должен использовать предыдущие кадры, взяв последний из I-кадров видео и постепенно добавляя изменения последующих кадров пока не дойдёт до текущего.
Ещё интереснее обстоят дела с B-кадрами, в которых расчёт производится в обоих направлениях, на основании кадров идущих до и после них. Теперь вы понимаете почему видео в начале статьи весит так мало, это всего лишь 3 I-кадра, в которых мечутся макроблоки.
При такой технологии кодируется только различия векторов движения, тем самым обеспечивая высокую степень сжатия любого видео с перемещениями.
Мы рассмотрели статическое и временное сжатия. С помощью квантования мы во много раз уменьшили размер данных, затем с помощью цветовой субдискретизации ещё вдвое сократили полученное, а теперь еще компенсацией движения добились хранения лишь 3х кадров из 300, которые были первоначально в рассматриваемом видео.
Выглядит впечатляюще. Теперь что?
Теперь мы подведём черту, используя традиционное энтропийное кодирование без потерь. Почему нет?
Энтропийное кодирование
После этапов сжатия с потерями, I-кадры содержат избыточные данные. В векторах движения каждого из макроблоков в P-кадрах и B-кадрах много одинаковой информации, так как зачастую они двигаются идентично, как это можно наблюдать в начальном видео.
От такой избыточности можно избавиться энтропийным кодированием. И можно не переживать за сами данные, так как это стандартная технология сжатия без потерь, а значит всё можно восстановить.
Вот теперь всё! В основе H.264 лежат вышеупомянутые технологии. В этом и заключаются приёмы стандарта.
Отлично! Но меня разбирает любопытство узнать, сколько же весит теперь наша машина.
Исходное видео было снято в нестандартном разрешении 1232×1154. Если посчитать, то получится:
5 сек. @ 60 fps = 1232x1154x60x3x5 => 1.2 Гб
Сжатое видео => 175 Кб
Если соотнести результат с оговорённой массой машины в одну тонну, то получится вес равный 0.14 кг. 140 граммов!
Конечно же я в очень упрощённом виде изложил результат десятилетних исследований в этой сфере. Если захотите узнать больше, то страница в википедии вполне познавательна.
Сжатие видео на пальцах: как работают современные кодеки?
Затраты на хранение данных зачастую становятся основным пунктом расходов при создании системы видеонаблюдения. Впрочем, они были бы несравнимо больше, если бы в мире не существовало алгоритмов, способных сжимать видеосигнал. О том, насколько эффективны современные кодеки, и какие принципы лежат в основе их работы, мы и поговорим в сегодняшнем материале.
Для большей наглядности начнем с цифр. Пускай видеозапись будет вестись непрерывно, в разрешении Full HD (сейчас это уже необходимый минимум, во всяком случае, если вы хотите полноценно использовать функции видеоаналитики) и в режиме реального времени (то есть, с фреймрейтом 25 кадров в секунду). Предположим также, что выбранное нами оборудование поддерживает аппаратное кодирование H.265. В этом случае при разных настройках качества изображения (высоком, среднем и низком) мы получим примерно следующие результаты.
Кодек
Интенсивность движения в кадре
Использование дискового пространства за сутки, ГБ
H.265 (Высокое качество)
H.265 (Высокое качество)
H.265 (Высокое качество)
H.265 (Среднее качество)
H.265 (Среднее качество)
H.265 (Среднее качество)
H.265 (Низкое качество)
H.265 (Низкое качество)
H.265 (Низкое качество)
Но если бы сжатия видео не существовало в принципе, мы бы увидели совсем иные цифры. Попробуем разобраться, почему. Видеопоток представляет собой не что иное, как последовательность статичных картинок (кадров) в определенном разрешении. Технически каждый кадр является двумерным массивом, содержащим информацию об элементарных единицах (пикселях), формирующих изображение. В системе TrueColor для кодирования каждого пикселя требуется 3 байта. Таким образом, в приведенном примере мы бы получили битрейт:
Учитывая, что в сутках 86400 секунд, цифры выходят поистине астрономические:
Итак, если бы мы записывали видео без сжатия в максимальном качестве при заданных условиях, то для хранения данных, полученных с одной единственной видеокамеры в течение суток нам бы потребовалось 12 терабайт дискового пространства. Но даже система безопасности квартиры или малого офиса предполагает наличие, как минимум, двух устройств видеофиксации, тогда как сам архив необходимо сохранять в течение нескольких недель или даже месяцев, если того требует законодательство. То есть, для обслуживания любого объекта, даже весьма скромных размеров, потребовался бы целый дата-центр!
К счастью, современные алгоритмы сжатия видео помогают существенно экономить дисковое пространство: так, использование кодека H.265 позволяет сократить объем видео в 90 (!) раз. Добиться столь впечатляющих результатов удалось благодаря целому стеку разнообразных технологий, которые давно и успешно применяются не только в сфере видеонаблюдения, но и в «гражданском» секторе: в системах аналогового и цифрового телевидения, в любительской и профессиональной съемке, и многих других ситуациях.
Наиболее простой и наглядный пример — цветовая субдискретизация. Так называют способ кодирования видео, при котором намеренно снижается цветовое разрешение кадров и частота выборки цветоразностных сигналов становится меньше частоты выборки яркостного сигнала. Такой метод сжатия видеоданных полностью оправдан как с позиции физиологии человека, так и с точки зрения практического применения в области видеофиксации. Наши глаза хорошо замечают разницу в яркости, однако гораздо менее чувствительны к перепадам цвета, именно поэтому выборкой цветоразностных сигналов можно пожертвовать, ведь большинство людей этого попросту не заметит. В то же время, сложно представить, как в розыск объявляют машину цвета «паука, замышляющего преступление»: в ориентировке будет написано «темно-серый», и это правильно, ведь иначе прочитавший описание авто даже не поймет, о каком оттенке идет речь.
А вот со снижением детализации все оказывается уже совсем не так однозначно. Технически квантование (то есть, разбиение диапазона сигнала на некоторое число уровней с последующим их приведением к заданным значениям) работает великолепно: используя данный метод, размер видео можно многократно уменьшить. Но так мы можем упустить важные детали (например, номер проезжающего вдалеке автомобиля или черты лица злоумышленника): они окажутся смазаны и такая запись будет для нас бесполезной. Как же поступить в этой ситуации? Ответ прост, как и все гениальное: стоит взять за точку отсчета динамические объекты, как все тут же становится на свои места. Этот принцип успешно используется со времен появления кодека H.264 и отлично себя зарекомендовал, открыв ряд дополнительных возможностей для сжатия данных.
Это было предсказуемо: разбираемся, как H.264 сжимает видео
Вернемся к таблице, с которой мы начали. Как видите, помимо таких параметров, как разрешение, фреймрейт и качество картинки решающим фактором, определяющим конечный размер видео, оказывается уровень динамичности снимаемой сцены. Это объясняется особенностями работы современных видеокодеков вообще, и H.264 в частности: используемый в нем механизм предсказания кадров позволяет дополнительно сжимать видео, при этом практически не жертвуя качеством картинки. Давайте посмотрим, как это работает.
Кодек H.264 использует несколько типов кадров:
Поскольку в процессе вычитания возможны ошибки, приводящие к появлению графических артефактов, то через какое-то количество кадров схема повторяется: вновь формируется опорный кадр, а вслед за ним — серия кадров с изменениями.
Полное изображение формируется путем «наложения» P-кадров на опорный кадр. При этом появляется возможность независимой обработки фона и движущиеся объектов, что позволяет дополнительно сэкономить дисковое пространство без риска упустить важные детали (черты лиц, автомобильные номера и т. д.). В случае же с объектами, совершающими однообразные движения (например, вращающимися колесами машин) можно многократно использовать одни и те же разностные кадры.
Независимая обработка статических и динамических объектов позволяет сэкономить дисковое пространство
Данный механизм носит название межкадрового сжатия. Предсказанные кадры формируются на основе анализа широкой выборки зафиксированных состояний сцены: алгоритм предвидит, куда будет двигаться тот или иной объект в поле зрения камеры, что позволяет существенно снизить объем записываемых данных при наблюдении за, например, проезжей частью.
Кодек формирует кадры, предсказывая, куда будет двигаться объект
В свою очередь, использование двунаправленных предсказанных кадров позволяет в несколько раз сократить время доступа к каждому кадру в потоке, поскольку для его получения будет достаточно распаковать только три кадра: B, содержащий ссылки, а также I и P, на которые он ссылается. В данном случае цепочку кадров можно изобразить следующим образом.
Такой подход позволяет существенно повысить скорость быстрой перемотки с показом и упростить работу с видеоархивом.
В чем разница между H.264 и H.265?
В H.265 используются все те же принципы сжатия, что и в H.264: фоновое изображение сохраняется единожды, а затем фиксируются лишь изменения, источником которых являются движущиеся объекты, что позволяет значительно снизить требования не только к объему хранилища, но и к пропускной способности сети. Однако в H.265 многие алгоритмы и методы прогнозирования движения претерпели значительные качественные изменения.
Так, обновленная версия кодека стала использовать макроблоки дерева кодирования (Coding Tree Unit, CTU) переменного размера с разрешением до 64×64 пикселей, тогда как ранее максимальный размер такого блока составлял лишь 16×16 пикселей. Это позволило существенно повысить точность выделения динамических блоков, а также эффективность обработки кадров в разрешении 4K и выше.
Кроме того, H.265 обзавелся улучшенным deblocking filter — фильтром, отвечающим за сглаживание границ блоков, необходимым для устранения артефактов по линии их стыковки. Наконец, улучшенный алгоритм прогнозирования вектора движения (Motion Vector Predictor, MVP) помог заметно снизить объем видео за счет радикального повышения точности предсказаний при кодировании движущихся объектов, чего удалось достичь за счет увеличения количества отслеживаемых направлений: если ранее учитывалось лишь 8 векторов, то теперь — 36.
Помимо всего перечисленного выше, в H.265 была улучшена поддержка многопоточных вычислений: квадратные области, на которые разбивается каждый кадр при кодировании, теперь могут обрабатываться независимо одна от другой. Появилась и поддержка волновой параллельной обработки данных (Wavefront Parallelel Processing, WPP), что также способствует повышению производительности сжатия. При активации режима WPP обработка CTU осуществляется построчно, слева направо, однако кодирование каждой последующей строки может начаться еще до завершения предыдущей в том случае, если данных, полученных из ранее обработанных CTU, для этого достаточно. Кодирование различных строк CTU с временной задержкой со сдвигом, наряду с поддержкой расширенного набора инструкций AVX/AVX2 позволяет дополнительно повысить скорость обработки видеопотока в многоядерных и многопроцессорных системах.
Флэш-карты для видеонаблюдения: когда значение имеет не только размер
И вновь вернемся к табличке, с которой мы начали сегодняшний разговор. Давайте подсчитаем, сколько дискового пространства нам понадобится в том случае, если мы хотим хранить видеоархив за последние 30 дней при максимальном качестве видеозаписи:
По нынешним меркам 4 терабайта для винчестера индустриального класса — практически ничто: современные жесткие диски для видеонаблюдения имеют емкость до 14 терабайт и могут похвастаться рабочим ресурсом до 360 ТБ в год при MTBF до 1.5 миллионов часов. Что же касается карт памяти, то здесь все оказывается не так однозначно.
В IP-камерах флэш-карты играют роль резервных хранилищ: данные на них постоянно перезаписываются, чтобы в случае потери связи с видеосервером недостающий фрагмент видеозаписи можно было восстановить из локальной копии. Такой подход позволяет существенно повысить отказоустойчивость всей системы безопасности, однако при этом сами карты памяти испытывают колоссальные нагрузки.
Как видно из нашей таблицы, даже при низком качестве изображения и при условии минимальной активности в кадре, всего за сутки будет записано около 24 ГБ видео. А это значит, что 128-гигабайтная карточка будет полностью перезаписана менее чем за неделю. Если же нам требуется получать максимально качественную картинку, то все данные на таком носителе будут полностью обновляться раз в сутки! И это лишь при разрешении Full HD. А если нам понадобится картинка в 4K? В этом случае нагрузка вырастет практически в два раза (в заданных условиях видео в максимальном качестве потребует уже 250 ГБ).
При бытовом использовании подобное попросту невозможно, поэтому даже самая бюджетная карта памяти способна прослужить вам несколько лет к ряду без единого сбоя. А все благодаря алгоритмам выравнивания износа (wear leveling). Схематично их работу можно описать следующим образом. Пусть в нашем распоряжении есть новенькая флеш-карта, только что из магазина. Мы записали на нее несколько видеороликов, использовав 7 из 16 гигабайт. Через некоторое время мы удалили часть ненужных видео, освободив 3 гигабайта, и записали новые, объем которых составил 2 ГБ. Казалось бы, можно задействовать только что освободившееся место, однако механизм выравнивания износа выделит под новые данные ту часть памяти, которая ранее никогда не использовалась. Хотя современные контроллеры «тасуют» биты и байты куда более изощренно, общий принцип остается неизменным.
Напомним, что кодирование битов информации происходит путем изменения заряда в ячейках памяти за счет квантового туннелирования электронов сквозь слой диэлектрика, что вызывает постепенный износ диэлектрических слоев с последующей утечкой заряда. И чем чаще меняется заряд в конкретной ячейке, тем раньше она выйдет из строя. Выравнивание износа как раз направлено на то, чтобы каждая из доступных ячеек перезаписывалась примерно одинаковое количество раз и, таким образом, способствует увеличению срока службы карты памяти.
Нетрудно догадаться, что wear leveling перестает играть хоть сколько-нибудь значимую роль в том случае, если флэш-карта постоянно перезаписывается целиком: здесь на первый план уже выходит выносливость самих чипов. Наиболее объективным критерием оценки последней является максимальное количество циклов программирования/стирания (program/erase cycle), или, сокращенно, циклов P/E, которое способно выдержать флеш-память. Также достаточно точным и в данном случае наглядным (так как мы можем заранее рассчитать объемы перезаписи) показателем является коэффициент TBW (Terabytes Written). Если в технических характеристиках указан лишь один из перечисленных показателей, то вычислить другой не составит особого труда. Достаточно воспользоваться следующей формулой:
TBW = (Емкость × Количество циклов P/E)/1000
Так, например, TBW флеш-карты емкостью 128 гигабайт, ресурс которой составляет 200 P/E, будет равен: (128 × 200)/1000 = 25,6 TBW.
Давайте считать дальше. Выносливость карт памяти потребительского уровня составляет 100–300 P/E, и 300 — это в самом лучшем случае. Опираясь на эти цифры, мы можем с достаточно высокой точностью оценить срок их службы. Воспользуемся формулой и заполним новую таблицу для карты памяти емкостью 128 ГБ. Возьмем за ориентир максимальное качество картинки в Full HD, то есть в сутки камера будет записывать 138 ГБ видео, как мы выяснили ранее.
Ресурс карты памяти, циклов P/E