верно ли что вписанный угол опирающийся на диаметр окружности прямой
Вписанный угол опирающийся на диаметр окружности прямой
Здравствуйте!
Помогите разобраться, какое из следующих утверждений верно?
1) вписанный угол, опирающийся на диаметр окружности, прямой;
2) если 3 угла в одном треугольнике соответственно равны трем углам в другом треугольнике, то эти треугольники являются равными.
Спасибо!
Утверждение №1.
Вписанный угол, опирающийся на диаметр окружности, прямой.
Ответ.
Утверждение является верным.
Так как рассматриваемый угол является вписанным в окружность и опирается на дугу, равную 180 градусов (диаметр можно рассматривать как развернутый угол с вершиной в центре окружности, равный 180 градусов). Следовательно, такой угол будет равен половине градусной меры этой дуги, а значит, равен 180 / 2 = 90 градусов.
Существует также теорема о плоском угле, который опирается на диаметр окружности, которая называется теоремой Фалеса. Причем эта теорема является частным случаем свойств вписанного угла.
При использовании свойства угла, который опирается на диаметр, возможно выполнить построение касательной к окружности.
Утверждение №2.
Если 3 угла в одном треугольнике соответственно равны трем углам в другом треугольнике, то эти треугольники являются равными.
Ответ.
Утверждение является неверным.
Если у двух треугольников соответственно равны все три угла, то в таком случае треугольники являются подобными, а не равными между собой. Это следует из признаков подобия треугольников, которых всего три. Не стоит путать равенство и подобие треугольников.
Вписанный угол, опирающийся на диаметр
Вписанный угол, опирающийся на диаметр, обладает полезным свойством, вытекающим из теоремы о вписанном угле.
Свойство вписанного угла, опирающегося на диаметр
(следствие из теоремы о вписанном угле)
Вписанный угол, опирающийся на диаметр, прямой.
Дано:
Так как AC- диаметр, то ∠AOC=180º.
∠AOC — центральный, ∠ABC — соответствующий ему вписанный угол.
Следовательно, по теореме о вписанном угле,
Что и требовалось доказать.
Из этого следует, например, что если центр описанной окружности лежит на стороне треугольника, то угол напротив этой стороны — прямой.
Если центр описанной окружности лежит на диагонали четырехугольника, то угол напротив этой диагонали — прямой.
Другой вариант формулировки следствия:
Диаметр виден из любой точки окружности под углом 90º.
Если вписанный угол связать с дугой, то следствие из теоремы о вписанном угле звучит так:
Вписанный угол, опирающийся на полуокружность — прямой.
Центральные и вписанные углы
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Центральный угол и вписанный угол
Окружность — замкнутая линия, все точки которой равноудалены от ее центра.
Определение центрального угла:
Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.
На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF
Определение вписанного угла:
Вписанный угол — это угол, вершина которого лежит на окружности.
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу, что и вписанный угол.
На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC
Свойства центральных и вписанных углов
Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.
Угол AOC и угол ABC, вписанный в окружность, опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.
ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.
ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.
Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:
На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.
Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.
Хорда — отрезок, соединяющий две точки на окружности.
AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.
ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.
Примеры решения задач
Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.
Как решаем: окружность 360° − ⌒AC − ⌒CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ ⌒AB = 40°
Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.
Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ ⌒AC = 140/2 = 70°
Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?
⌒СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от ⌒CB = 72° / 2 = 36°
Углы, связанные с окружностью
Вписанные и центральные углы
Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.
Теоремы о вписанных и центральных углах
Фигура | Рисунок | Теорема | |||||||||||||||||||||
Вписанный угол |
Фигура | Рисунок | Теорема | Формула |
Угол, образованный пересекающимися хордами | |||
Угол, образованный секущими, которые пересекаются вне круга | |||
Угол, образованный касательной и хордой, проходящей через точку касания | |||
Угол, образованный касательной и секущей | |||
Угол, образованный двумя касательными к окружности |
Угол, образованный пересекающимися хордами хордами |
Формула: |