вал ведомый что такое
Вал ведомый что такое
Вал – один из основных компонентов редуктора, который используется для понижения частоты вращения приводной машины в целях обеспечения заданной скорости движения лифта. Редуктор позволяет формировать необходимую скорость вращения исполнительного устройства привода лифта. Приводными машинами в лифтах являются асинхронные скоростные электродвигатели, а редуктор преобразует высокую частоту их вращения в равномерное движение канатоведущего шкива.
Ведущий и ведомый вал
Редуктор представляет собой закрытую конструкцию в виде зубчатой передачи на базе двух валов: быстроходного (ведомого) и тихоходного (ведущего). На ведущий вал крепится тормозная полумуфта, а ведомый вал обеспечивает крепление канатоведущего шкива. Для привода в движение лифтов применяются червячные редукторы, так как одноступенчатые устройства могут формировать большие передаточные числа.
Червячный вал
Рабочим элементом конструкции червячного редуктора является вал. По форме он может быть цилиндрическим или глобоидным. Они различаются друг от друга тем, что при изготовлении глобоидных «червяков» применяется принцип локализации пятен контакта с червячным колесом. Проще говоря, расстояние между сопредельными витками по длине детали может быть различным. Этим достигается уравновешенное распределение усилий на зубья червячного колеса. В отечественных лифтах в основном применяются глобоидные редукторы РГП и РГЛ.
Глобоидные редукторы для лифта
Пассажирский глобоидный редуктор (РГП) конструктивно выполнен из корпуса, двух подшипников, входного червячного вала и выходного вала-ступицы с червячным колесом, которое закреплено болтами. Вал-ступица вмонтирован в роликовые конические подшипники и фиксируется в корпусе крышкой. Редуктор лифтовой глобоидный (РГЛ) отличается от устройств серии РГП тем, что на его корпусе предусмотрен специальный фланец для соединения с электродвигателем. Также в РГЛ имеется специальный винт регулировки точности плоскости червячного колеса по отношению к оси червячного вала со стороны двигателя.
Вал редуктора
Редуктор – это механизм, который позволяет получить момент и скорость вращения на выходном валу, отличающиеся от момента и скорости на входном. Момент на выходном валу редуктора может быть как больше входного момента – это собственно редуктор, так и меньше – это мультипликатор. Один из главных и ответственных элементов редуктора – это вал, а в простейшем случае два отдельных вала – входной и выходной, соединенные зубчатыми шестернями. В общем случае у редуктора могут быть входной, выходной и промежуточные валы.
Назначение вала редуктора
Вал редуктора – основной элемент передачи крутящего момента. На валу располагаются практически все детали редуктора – шестерни, звездочки, также валы сочленяются с внешними механизмами, для этого концы валов выполняются со шпоночными пазами или коническими. В корпусе вал редуктора устанавливается в подшипниковые гнезда. Выходной вал редуктора обеспечивает момент и скорость для основного рабочего механизма, входной вал сочленен с исходным механизмом (двигателем) и воспринимает его момент и скорость. В некоторых источниках выходной вал называют ведущим валом редуктора, а входной именуется ведомым валом редуктора.
Валы редуктора несут на себе существенную нагрузку, как от собственного веса, деталей самого редуктора, так и нагрузку со стороны исходного и основного механизмов, она может быть и осевой и радиальной. При проектировании особое внимание уделяется тщательным расчетам прочности валов на кручение, изгиб для обеспечения нормальной работы продолжительное время. В процессе расчетов выбираются необходимые диаметры валов редуктора, как главного геометрического параметра, определяющего его работоспособность, его форма и другие размеры, также возможно различное взаимное расположение валов относительно друг друга.
Область применения
Область применения редукторов включает в себя практически все сферы деятельности человека, где необходима передача момента. Это приводы различного применения – в строительстве, на нефтегазовых предприятиях, в сельскохозяйственной технике.
Классификация валов редукторов
Вал редуктора относят к валам передач. Классификация их довольно условна, но можно выделить следующие типы
Технические характеристики, описывающие параметры устройства включают:
Технические характеристики определяют максимально допустимые нагрузки на валы редуктора и позволяют рассчитать его параметры – момент и скорость выходного вала по следующим зависимостям:
Мвых =Мвх i ; пвых = пвх/i.
Материалы, применяемые для изготовления вала редуктора
Если нет каких-либо специальных требований, то для изготовления вала редуктора берут круглый прокат или поковки из среднеуглеродистых сталей Ст 5, Ст 40Х, Ст 45Х с возможным улучшением в виде закалки нагревом и последующим отпуском.
Чтобы задать вопрос или сделать заявку,
нажмите на кнопку ниже:
Вал ведомый
Служебное назначение оси, анализ конструкции и технических требований. Материал, его состав и его свойства. Режимы термообработки. Определение типа производства и партии запуска. Выбор метода получения заготовки и его технико-экономическое обоснование.
Машиностроение является одной из важнейших отраслей в промышленном комплексе нашей страны. Для народного хозяйства необходимо увеличение выпуска продукции машиностроения и повышение её качества. Технический прогресс в машиностроении характеризуется не только улучшением конструкции машин, но и непрерывном совершенствованием технологии их производства. Важно качественно, экономично и в заданные сроки с минимальными затратами живого и овеществлённого труда изготовить любую машину или деталь.
Основные задачи в области машиностроения и перспективы её развития:
приближение формы заготовки к форме готового изделия за счёт применения методов пластической деформации, порошковой металлургии, специального профильного проката и других прогрессивных видов заготовок;
автоматизация технологических процессов за счет применения автоматических загрузочных устройств, манипуляторов, промышленных роботов, автоматических линий, станков с ЧПУ;
концентрация переходов и операций, применение специальных и специализированных станков;
применение групповой технологии и высокоэффективной оснастки;
использование эффективных смазочно-охлаждающих жидкостей с подводом их в зону резания;
разработка и внедрение высокопроизводительных конструкций режущего инструмента из твёрдых сплавов, минералокерамики, синтетических сверхтвёрдых материалов, быстрорежущих сталей повышенной и высокой производительности;
широкое использование электрофизических и электрохимических методов обработки, нанесение износоустойчивых покрытий.
В курсовом проекте согласно заданию предусматривается разработка технологического процесса изготовления «Вал ведомый», который является одной из важнейших деталей механизма для передачи вращения.
1. Общетехническая часть
1.1 Служебное назначение изделия. Анализ конструкции и технических требований
Данная ось предназначена поддержания насаживаемых деталей, изготовленный из стали 45 на оси имеются шпоночный паз и отверстие для крепления с сопрягаемыми деталями. Поверхность 10. является основной конструкторской базой, и два отверстия диаметром 8 под конический штифт и отверстие М5 под метрическую резьбу.
Таблица 1.1. Технические требования
Наименование поверхности, номинальное значение, мм
Что такое вал редуктора?
Вал – одна из самых прочных и самых нагружаемых деталей редукторного устройства. Он постоянно находится в движении и служит для передачи крутящего момента с одновременной регулировкой угловой скорости вращения.
Обычно выполняется из усиленной легированной стали (марка 40 или импортный аналог) в форме цилиндра. Диаметр трубки может меняться по всей длине. В конструкции предусматривают пазы в местах посадки или соединения с рабочими элементами (зубчатого колеса, шестерни) на шпонках.
Какие функции выполняет в сборке
Вал редуктора выполняет 2 основные задачи:
Обе функции требуют от валов мотор-редуктора постоянного движения (запускается вместе с оборудованием и находится в непрерывном вращении), устойчивости к деформации. На решение первой задачи работает схема размещения в связке с запускающим устройством. Второе требование выполняется через грамотный подбор материала и продуманную сборку, которую формируют 3 блока:
Валы редукторов промышленного назначения в 99% случаев выполняют на прямой оси. Это позволяет добиться их повышенной прочности, устойчивости к деформациям при работе подключаемой техники и долговечности службы.
Форма может отличаться (гладкие, ступенчатые, совмещенные вал-червяк или вал-шестерня). В частности, вал редуктора привода выполняется с подготовленными зонами для будущей «насадки» на него колес зубчатой передачи, соединенных с шестерней промежуточной или тихоходной ступени.
Классификация
В механизмах используют три вида элементов, отличные по назначению:
В большинстве конструкций ведомые и ведущие валы редуктора присоединяются к приводу с муфтой. Кроме назначения, они делятся по способу исполнения.
Здесь 2 варианта – цельная и полая модель. Вторая используется в системах, когда элемент необходимо располагать строго внутри короба. Полый ведущий и ведомый вал редуктора обладает меньшей прочностью, зато позволяет снизить вес оборудования и сократить количество соединений.
Расположение
Расположение бывает вертикальным или горизонтальным. Вертикальный вал редуктора позволяет сэкономить пространство для горизонтального размещения оси двигателя, что для многих устройств важно. Такое конструктивное решение свойственно редукторам на червячной или конической передаче.
Относительно друг друга (осей) детали располагают параллельно, под прямым углом, перекрестно. Выбор схемы зависит от типа редукторного оборудования:
В привязке к другим элементам сборки схема бывает сосной, раздвоенной или развернутой. Первые два решения более технологичны для 2–3-ступенчатых механизмов, поскольку дают хороший КПД и износостойкость устройства (способность переносить повышенные нагрузки, не снижая крутящего момента вала редуктора).
То же относится к 2-ступенчатым механизмам с зубчатой передачей и соосным размещением, которое используется в цилиндрических и планетарных моделях. При этом в соосном цилиндрическом редукторе часто устанавливается выходная ступень с прямым зацеплением.
Расположение и тип передачи
Если при размещении заказа на производство мотор-редуктора схема валов шестерни редуктора задается типом требуемого оборудования, то при его ремонте действует обратная закономерность. Тип передачи определяется по размещению. Примеры:
В комбинированных системах (когда в корпус редуктора установлено несколько видов передач) валы устанавливают соосно, выдерживая заданное расстояние между их осями (для этого нужны высокоточные опоры).
Установка
Первоначально в коробе устройства предусматривают технологические выемки (посадочные места) – так называемые постели для установки входного и тихоходного вала редуктора. В них деталь монтируется на подшипниках при сборке и устанавливается во время замены.
Курсовая работа: Вал ведомый
Название: Вал ведомый Раздел: Промышленность, производство Тип: курсовая работа Добавлен 16:38:27 18 декабря 2010 Похожие работы Просмотров: 1265 Комментариев: 20 Оценило: 4 человек Средний балл: 4 Оценка: неизвестно Скачать | ||||||||
Наименование поверхности, номинальное значение, мм | Назначение поверхности | Точность | Шероховатость Ra, мкм | |||||
1 | 2 | 3 | 4 | 5 | ||||
1 | Торцевая L=96 мм | Свободная | 12 | 10 | 10 | |||
2 | Фаска 1,5×45º | Свободная | 12 | 10 | 10 | |||
3 | Наружная цилиндрическая Ø 25 мм | Вспомогательная | 6 | 1 | 0,63 | |||
4 | Торцевая L=28 мм | Свободная | 12 | 10 | 10 | |||
5 | Канавка Ø 19 мм | Свободная | 12 | 10 | 2,5 | |||
6 | Торцевая L=30 | Свободная | 12 | 10 | 1,25 | |||
7 | Наружная цилиндрическая Ø20 мм | Основная | 6 | 1 | 2,5 | |||
8 | Торцевая L=84 мм | Свободная | 12 | 10 | 2,5 | |||
9 | Канавка Ø 14 мм | Свободная | 12 | 10 | 2,5 | |||
10 | Наружная цилиндрическая Ø 15 мм | Вспомогательная | 6 | 1 | 2,5 | |||
11 | Фаски 1×45 мм | Свободная | 12 | 10 | 1,25 | |||
13 | Внутренняя цилиндрическая Ø 8 мм | Вспомогательная | 12 | 10 | 1,25 | |||
14 | Резьба М5 | Вспомогательная | h25 | 10 | 5 | |||
15 | Шпоночный паз 8×3×28 | Вспомогательная | 9 | 2,5 | 2,5 | |||
16 | Наружная цилиндрическая Ø20 мм | Основная | 12 | 10 |
1.2 Анализ технологичности детали
Для анализа технологичности оси рассмотрим следующие показатели:
– возможность рационального метода получения заготовки.
– использование типичных технологических процессов.
– наличие поверхностей труднодоступных для обработки.
С точки зрения рационального выбора заготовки оси относится к достаточно технологичному изделию. В качестве заготовки используем штамповку т. к. она дешевле проката. Данная заготовка относится к деталям класса «вал». Ось позволяет использовать типовые этапы обработки для большинства поверхностей. Показатели точности и шероховатости находятся в экономических пределах (точность 6 квалитет, шероховатость Ra 1). Для достижения этих параметров не требуется применение отделочных методов обработки. Возможна реализация принципа постоянства баз на большинстве операций. Ось не имеет труднодоступных для обработки и измерения поверхностей. Шпоночный паз открытый с двух сторон, что позволяет применить при их обработке шпоночную фрезу. На основных операциях возможно применение стандартного режущего и измерительного инструментов (резец проходной, резец канавочный, фреза шпоночная, ШЦ-II, центра и т.д.)
Проведённый анализ позволяет сделать вывод, что конструкция в целом технологична.
1.3 Материал, его состав и его свойства. Режимы термообработки
Сталь 45 ГОСТ 1050–88 – углеродистая конструкционная, качественная сталь. Предназначена для деталей требующих высокую прочность или высокую поверхностную твёрдость.
Сталь 45 применяется для деталей разных размеров с твёрдой износоустойчивой поверхностью при достаточно прочной сердцевине работающей при больших скоростях и средних давлениях. Свариваемость стали 45 не высока. Применяется для изготовления коленчатых валов, поршневых колец, шатунов, шестерен, втулок и т.д.
Режимы и виды термообработки:
– полная закалка до t 940…960ºС с последующим охлаждением в одном охладителе (вода или масло).
– высокий отпуск до 500…550ºС выдержка и последующее охлаждение.
Таблица 1.2. Химический состав стали
Группа | Марка стали | С, % | S, % | Mn, % | Р, % |
М 2 | Сталь 45 | 0,45 | 0,3…0,4 | 0,3…0,8 | 0,06 |
Таблица 1.3. Физико-механические свойства стали
Плотность ρ, кг/м 3 | Предел прочности σвр, кг/мм 2 | Относительное удлинение δ, % | Твёрдость | |
7850 | Не менее 61 | Не менее 36 | 16 | 240 |
1.4 Определение массы изделия
Масса изделия определяется расчетным путем и корректируется по чертежу. Для этого конструкцию детали разбивают на простые геометрические фигуры и определяют их объём по формуле: [ 1.24]
(1.1)
Затем путём алгебраического сложения определяется общий объём. Масса детали вычисляется по формуле:
. (1.2)
Определяем объём детали:
см 3
см 3
см 3
см 3
Определяем общий объём изделия.
Определяем массу детали
(1.3)
(1.4)
1.5 Определение типа производства и партии запуска
Для предварительного определения типа производства используем заданный объём выпуска изделия и его массу.
По заданию годовой объём выпуска изделия составляет N=5000 шт. масса детали, определяем расчётным путём, равна m=0,25 кг.
Используя эти данные, определяем тип производства – среднесерийный. Среднесерийное производство характеризуется ограниченной номенклатурой изделий, изготовляемых периодически повторяющимися партиями.
Характерный признак среднесерийного производства – расчленение технологического процесса на отдельные самостоятельные операции, которые закреплены за определённым рабочим местом.
При среднесерийном производстве необходима переналадка технологического оборудования при переходе на изготовление деталей другой партии.
Для выполнения различных операций используются универсальные металлорежущие станки, оснащённые специальными, универсальными или универсально-сборочными приспособлениями. Находят применение специализированные, специально-автоматизированные станки. Широко используются станки с числовым программным управлением.
Целесообразно применять специальный режущий инструмент, а также специальный измерительный инструмент.
В среднесерийном производстве оборудование устанавливается или по ходу технологического процесса или по группам оборудования.
Квалификация рабочих в среднесерийном производстве ниже, чем в одиночном.
Количество деталей в партии запуска определяем по формуле:
(1.5)
где N – годовой объём выпуска заданного изделия, шт.;
а – число дней, на которое необходимо иметь запас деталей (периодичность запуска – выпуска, соответствующая потребности сборки);
F – число рабочих дней в году, 251 день.
а=1, 2, 5, 10 или 20 дней.
2. Технологическая часть
2.1 Выбор метода получения заготовки и его технико-экономическое обоснование
Для изделия можно применять заготовку, полученную из проката или методом горячей объёмной штамповки.
Вариант 1. Заготовка из проката.
Согласно точности и шероховатости обрабатываемой поверхности, определяем промежуточные припуски. За основу расчёта промежуточных припусков принимаем наибольший наружный диаметр Ø 25 h 12. Назначаем последовательность обработки данной поверхности, выбираем табличный припуск для однократного точения h 12 – 1,5 мм.
Определяем расчетный диаметр заготовки:
мм. (2.1)
Стандартный прокат имеет Ø 27 мм.
.
Размер заготовки с отклонением Ø .
Определяем длину заготовки по формуле:
, (2.2)
где LД – номинальная длина детали по рабочему чертежу, мм;
Zпод =1,5 мм – припуск на подрезание торцов.
мм.
Определяем объём заготовки по формуле с учетом максимальных размеров:
где DЗ – диаметр заготовки по плюсовым допускам, см.
Определяем массу заготовки по формуле:
, (2.4)
кг.
Определяем расход материала на одну деталь с учётом неизбежных технологических потерь на отрезку заготовок. Толщина дисковой плиты от 2 до 5 мм. Принимаем 4 мм.
Определяем коэффициент использования материала:
. (2.5)
Определяем стоимость заготовки из проката:
, (2.6)
где СМ = 20 уб/кг – цена одного килограмма материала;
СОТХ = 2000 руб./т – цена 1 тонны отходов. мм
Вариант 2. Заготовка, изготовленная методом горячей объёмной штамповки на ГКМ.
Пользуясь таблицей 20. ГОСТ 7505–89 принимаем:
Степень сложности – С 1;
Точность изготовления – Т 4;
.
.
;=0,3.
Степень сложности определяем из формулы:
С учётом табличных припусков определяем расчетные размеры заготовки:
К; (2.7)
мм,
мм,
мм,
;
мм,
мм,
мм,
Таблица 2.1 Припуски на размеры заготовки
Категория размера | Номинальное значение размера, мм | Шероховатость, мкм | Припуск, мм | Предельные отклонения, мм | Размер заготовки, мм |
D1 | 25 | 1 | 1 | 26 | |
D2 | 20 | 1 | 1 | 21 | |
D3 | 15 | 1 | 1 | 16 | |
L1 | 29 | 12 | 1 | 29 | |
L2 | 57 | 12 | 1,2 | 57 | |
L3 | 13 | 12 | 1 | 13 |
Определяем объем отдельных элементов заготовки по предельным размерам:
; (2.8)
=16,6см 3 ;
=21,4 см 3 ;
2,02 см 3 ;
Определяем массу заготовки:
, (2.9)
кг.
Определяем коэффициент использования материала:
, (2.11)
(2.19)
Определяем стоимость штампованной заготовки по формуле:
,
где См = 35 руб./кг – стоимость 1 кг штамповки;
СОТХ = 2000 руб./т – стоимость 1 тонны отходов.
,
Таким образом, технико-экономические расчеты показывают, что заготовка полученная методом горячей объемной штамповки на ГКМ более экономична, чем заготовка полученная из проката.
2.2 Назначение технологических схем обработки поверхности
Таблица 2.2 Технологические схемы обработки поверхности