в треугольнике abc известно что найдите площадь треугольника abc
В треугольнике abc известно что найдите площадь треугольника abc
В треугольнике ABC отрезок DE — средняя линия. Площадь треугольника CDE равна 97. Найдите площадь треугольника ABC.
Треугольники ABC и DEC подобны по двум углам. Коэффициент подобия k = 2, так как Значит,
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 2. Найдите площадь четырёхугольника ABMN.
MN − средняя линия треугольника ABC. Треугольники ABC и NMC подобны по двум углам. Коэффициент подобия k = 2. Значит, , а
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 20. Найдите площадь четырёхугольника ABMN.
MN − средняя линия треугольника ABC. Треугольники ABC и NMC подобны по двум углам. Коэффициент подобия k = 2. Значит, , а
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 76. Найдите площадь четырёхугольника ABMN.
MN − средняя линия треугольника ABC. Треугольники ABC и NMC подобны по двум углам. Коэффициент подобия k = 2. Значит, , а
В треугольнике ABC DE — средняя линия. Площадь треугольника CDE равна 9. Найдите площадь треугольника ABC.
Поскольку — средняя линия, Рассмотрим треугольники и углы и равны как соответственные при параллельных прямых, угол — общий, следовательно, треугольники подобны с коэффициентом подобия Площади подобных фигур относятся как квадраты коэффициентов подобия, поэтому
В треугольнике известно, что — средняя линия. Площадь треугольника равна 25. Найдите площадь треугольника .
Поскольку — средняя линия, Рассмотрим треугольники и углы и равны как соответственные при параллельных прямых, угол — общий, следовательно, треугольники подобны с коэффициентом подобия Площади подобных фигур относятся как квадраты коэффициентов подобия, поэтому
В треугольнике abc известно что найдите площадь треугольника abc
Какие из следующих утверждений верны?
1. Площадь треугольника меньше произведения двух его сторон.
2. Средняя линия трапеции равна сумме её оснований.
3. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Рассмотрим каждое из утверждений:
В трапеции ABCD известно, что AD=6, BC=5, а её площадь равна 22. Найдите площадь треугольника ABC.
Пусть длина высоты трапеции равна Площадь трапеции можно найти как произведение полусуммы оснований на высоту:
Высота трапеции также является высотой треугольника Найдём площадь треугольника как полупроизведение основания на высоту:
Заметим, что высота треугольника ABC равна расстоянию от точки A до прямой BC, которое, в свою очередь, равно расстоянию между параллельными прямыми AD и BC, или расстоянию от точки B до прямой AD, то есть высоте трапеции.
Какие из данных утверждений верны? Запишите их номера.
1) Вокруг любого треугольника можно описать окружность.
3) Площадь треугольника не превышает произведения двух его сторон.
Проверим каждое из утверждений.
1) «Вокруг любого треугольника можно описать окружность» — верно, по свойству треугольника.
3) «Площадь треугольника не превышает произведения двух его сторон» — верно, поскольку площадь треугольника может быть найдена по формуле: где и — стороны треугольника, а — угол между ними и
Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит больший угол.
2) Любой прямоугольник можно вписать в окружность.
3) Площадь треугольника меньше произведения двух его сторон.
Проверим каждое из утверждений.
1) «Против большей стороны треугольника лежит больший угол» — верно, по свойству треугольника.
2) «Любой прямоугольник можно вписать в окружность» — верно; выпуклый четырёхугольник можно вписать в окружность тогда и только тогда, когда сумма противоположных углов этого четырёхугольника равна 180°.
3) «Площадь треугольника меньше произведения двух его сторон» — верно, поскольку площадь треугольника можно вычислить по формуле , где и — стороны треугольника, а — угол между этими сторонами. Так как не может быть больше 1, то и не может превышать полупроизведения сторон.
В треугольнике abc известно что найдите площадь треугольника abc
В треугольнике ABC биссектрисы AK и BL пересекаются в точке I. Известно, что около четырёхугольника CKIL можно описать окружность.
а) Докажите, что угол BCA равен 60°.
б) Найдите площадь треугольника ABC, если его периметр равен 12 и IC = 2.
а) Обозначим через α и β углы CAB и ABC соответственно. Тогда углы IAB и ABI равны и соответственно. По теореме о сумме углов треугольника получаем, что угол BIA равен Такая же величина у вертикального к нему угла LIK. По условию около четырёхугольника CKIL можно описать окружность. Следовательно, угол BCA дополняет угол LIK до 180°. С другой стороны, по теореме о сумме углов треугольника угол BCA дополняет до 180° сумму углов α и β. Следовательно, и Значит, угол BCA равен 60°.
б) Поскольку точка I является точкой пересечения биссектрис AK и BL, она также лежит на биссектрисе угла BCA и является центром вписанной в треугольник ABC окружности. Значит, радиус этой окружности равен длине перпендикуляра IH, опущенного из этой точки на BC. По доказанному угол HCI равен половине угла BCA, то есть он равен 30°. В прямоугольном треугольнике HCI против угла в 30° лежит катет IH. Следовательно, Площадь треугольника ABC равна половине произведения его периметра на радиус вписанной окружности. Значит, эта площадь равна
Критерии оценивания выполнения задания | Баллы |
---|---|
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
Получен обоснованный ответ в пункте б) имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
Имеется верное доказательство утверждения пункта а) при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
|