в кубе в квадрате а дальше что
Формулы сокращенного умножения
Таблица формул сокращенного умножения
Примеры использования формул
Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.
Пример: (x + 3y) 2 = x 2 + 2 ·x·3y + (3y) 2 = x 2 + 6xy + 9y 2
Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.
Разность квадратов двух выражений равна произведению разности самих выражений на их сумму.
Пример: 9x 2 – 16y 2 = (3x) 2 – (4y) 2 = (3x – 4y)(3x + 4y)
Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.
(a+b) 3 = a 3 +3a 2 b+3ab 2 +b 3
Пример: (x + 2y) 3 = x 3 + 3·x 2 ·2y + 3·x·(2y) 2 + (2n) 3 = x 3 + 6x 2 y + 12xy 2 + 8y 3
Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.
Сумма кубов двух выражений равна произведению суммы самих выражений на неполный квадрат их разности.
a 3 +b 3 = (a+b)(a 2 –ab+b 2 )
Разность кубов двух выражений равна произведению разности самих выражений на неполный квадрат их суммы.
Пример: 64x 3 – 8 = (4x) 3 – 2 3 = (4x – 2)((4x) 2 + 4x·2 + 2 2 ) = (4x – 2)(16x 2 + 8x + 4)
Формулы для квадратов
Формулы для кубов
Формулы для четвертой степени
В заданиях ЕГЭ по математике применяются формулы сокращенного умножения.
Формулы сокращенного умножения.
Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук. Эти 7 символьных записей не заменимы при упрощении выражений, решении уравнений, при умножении многочленов, сокращении дробей, решении интегралов и многом другом. А значит будет очень полезно разобраться как они получаются, для чего они нужны, и самое главное, как их запомнить и потом применять. Потом применяя формулы сокращенного умножения на практике самым сложным будет увидеть, что есть х и что есть у. Очевидно, что никаких ограничений для a и b нет, а значит это могут быть любые числовые или буквенные выражения.
Четвертая (х + у) 3 = х 3 + 3х 2 у + 3ху 2 + у 3. Чтобы вычислить куб суммы двух выражений нужно к кубу первого выражения прибавить утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.
Шестая х 3 + у 3 = (х + у) (х 2 — ху + у 2 ) Чтобы высчитать сумму кубов двух выражений нужно умножить суммы первого и второго выражения на неполный квадрат разности этих выражений.
Не сложно запомнить, что все формулы применяются для произведения расчетов и в противоположном направлении (справа налево).
О существовании этих закономе рностей з нали еще около 4 тысяч лет тому назад. Их широко применяли жители древнего Вавилона и Египта. Но в те эпохи они выражались словесно или геометрически и при расчетах не использовали буквы.
Первым эту математическую закономерность доказал древнегреческий учёный Евклид, работавший в Александрии в III веке до н.э., он использовал для этого геометрический способ доказательства формулы, так как буквами для обозначения чисел не пользовались и учёные древней Эллады. Ими повсеместно употреблялись не “а 2 ”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник, заключенный между отрезками a и b”.
И так Евклид взял квадрат со стороной (a + b):
С другой стороны, этот же квадрат он представить иначе, разделив сторону на а и b:
Тогда площадь квадрата можно представить в виде суммы площадей:
И так как квадраты были одинаковы, то их площади равны, и это значит:
Таким образом, была доказана геометрически формула квадрата суммы.
Урок 25 Бесплатно Степень числа. Квадрат и куб числа
На данном уроке мы познакомимся с понятием степени числа.
Выясним, что называют «показателем степени» и «основанием степени».
Научимся вычислять квадрат и куб числа.
Составим таблицу степеней первых десяти натуральных чисел и рассмотрим ряд задач с использованием таких таблиц.
Определим, в каком порядке выполняют действия в выражениях, содержащих степень.
Степень числа
Известно, что сумму равных слагаемых можно заменить произведением.
Например, сумму пяти слагаемых, каждое из которых равняется четырем, можно записать короче:
4 + 4 + 4 + 4 + 4 = 5 ∙ 4
В произведении число 5 указывает на количество одинаковых слагаемых.
В свою очередь произведение одинаковых множителей тоже можно записать компактнее.
Произведение n одинаковых множителей можно представить в виде степени.
В буквенном виде произведение равных множителей можно представить следующим образом:
а— любое натуральное число.
Читают «а в n-ной степени» или «а в степени n».
Число а называют основанием (число, возводимое в степень).
n— это показатель степени (число, которое указывает сколько раз повторяется основание степени).
Степень числа представляют всегда так: записывают основание степени, а показатель ее записывают меньше размером в верхнем правом углу основания степени.
Операция умножения одинаковых множителей называется возведением в степень.
Например, произведение пяти множителей, каждое из которых равняется четырем, можно записать так:
4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 = 4 5
Читают данную запись следующим образом:
4 5 — четыре в пятой степени.
Данная степень равна произведению трех двоек.
2— основание степени.
3— показатель степени.
Данная степень равна произведению четырех пятерок.
5— основание степени.
4— показатель степени.
Пройти тест и получить оценку можно после входа или регистрации
Квадрат и куб числа
Вторую степень числа называют квадратом числа.
Так, квадрат любого натурального числа а будет представлять собой произведение двух одинаковых множителей: а ∙ а = а 2 (говорят и читают «а в квадрате»).
2 2 (два во второй степени) иначе говорят и читают «два в квадрате».
10 2 (десять во второй степени) иначе говорят и читают «десять в квадрате».
27 2 (двадцать семь во второй степени) иначе говорят и читают «двадцать семь в квадрате».
Давайте сосчитаем квадраты первого десятка натуральных чисел (возведем во вторую степень первые десять натуральных чисел), используя таблицу умножения.
Один в квадрате равняется одному: 1 2 = 1 ∙ 1 = 1.
Два в квадрате равняется четырем: 2 2 = 2 ∙ 2 = 4.
Три в квадрате равняется девяти: 3 2 = 3 ∙ 3 = 9.
Четыре в квадрате равняется шестнадцати: 4 2 = 4 ∙ 4 = 16.
Пять в квадрате равняется двадцати пяти: 5 2 = 5 ∙ 5 = 25.
Шесть в квадрате равняется тридцати шести: 6 2 = 6 ∙ 6 = 36.
Семь в квадрате равняется сорока девяти: 7 2 = 7 ∙ 7 = 49.
Восемь в квадрате равняется шестидесяти четырем: 8 2 = 8 ∙ 8 = 64.
Девять в квадрате равняется восьмидесяти одному: 9 2 = 9 ∙ 9 = 81.
Десять в квадрате равняется сотне: 10 2 = 10 ∙ 10 = 100.
Оформим полученные данные квадратов натуральных чисел от 1 до 10 в виде таблицы.
Таблица квадратов первых десяти натуральных чисел
Учитывая данные таблицы квадратов, решим уравнение.
Решим уравнение х 2 = 49.
Решить уравнение- это значит найти корень уравнения (в нашем случае установить значение х).
Следовательно, корень уравнения (х) равен семи.
х 2 = 49
х = 7
Проверка: подставим найденное значение неизвестной (х = 7) в исходное уравнение х 2 = 49, получим:
7 2 = 49
7 ∙ 7 = 49
49 = 49
Ответ: х = 7.
У меня есть дополнительная информация к этой части урока!
Чтобы возвести в любую степень число 10, необходимо дописать после единицы нули, количество которых показывает показатель степени.
Разберем пример первый.
Найдите четвертую степень десяти (десять в четвертой степени 10 4 ).
10— это основание.
4— это показатель степени.
Так как по вышеизложенному правилу количество нулей после единицы должно быть равно показателю степени, то результат запишем следующим образом:
10 4 = 1 0000
На самом деле, если перемножить (по определению степени) четыре десятки, то получим:
10 4 = 1 0 ∙ 1 0 ∙ 1 0 ∙ 1 0 = 1 0000
Пример второй: найдите третью степень десяти (десять в третьей степени 10 3 ).
10— это основание.
3— это показатель степени.
Так как по правилу количество нулей после единицы должно быть равно показателю степени, то результат запишем следующим образом:
10 3 = 1 000
Соответственно, если перемножить (по определению степени) три десятки, то получим:
10 3 = 1 0 ∙ 1 0 ∙ 1 0 = 1 000
Рассмотрим обратную ситуацию:
Представим число 100 в виде степени с основанием 10.
Запишем основание 10, а показателем будет число, равное количеству нулей исходного числа (1 00 ).
Число 100 содержит два нуля, следовательно, это число в виде степени с основанием 10 представим следующим образом:
1 00 = 10 2
10— это основание.
2— это показатель степени.
Рассмотрим еще один подобный пример.
Представим число 10000 в виде степени с основанием 10.
Запишем основание 10, а показателем будет число, равное количеству нулей исходного числа (1 0000 ).
Данное число содержит четыре нуля, следовательно, 10000 в виде степени с основанием 10 представим следующим образом:
1 0000 = 10 4
10— это основание.
4— это показатель степени
Третья степень числа тоже имеет свое название.
Число в третьей степени называют кубом числа.
Так, куб любого натурального числа а будет представлять собой произведение трех одинаковых множителей: а ∙ а ∙ а = а 3 (говорят и читают «а в кубе»).
2 3 (два в третьей степени) иначе говорят и читают «два в кубе».
10 3 (десять в третьей степени) иначе говорят и читают «десять в кубе».
27 3 (двадцать семь в третьей степени) иначе говорят и читают «двадцать семь в кубе».
Давайте определим кубы первого десятка натуральных чисел (возведем в третью степень первые десять натуральных чисел), используя таблицу умножения.
Один в кубе: 1 3 = 1 ∙ 1 ∙ 1 = 1.
Два в кубе: 2 3 = 2 ∙ 2 ∙ 2 = 8.
Три в кубе: 3 3 = 3 ∙ 3 ∙ 3 = 27.
Четыре в кубе: 4 3 = 4 ∙ 4 ∙ 4 = 64.
Пять в кубе: 5 3 = 5 ∙ 5 ∙ 5 = 125.
Шесть в кубе: 6 3 = 6 ∙ 6 ∙ 6 = 216.
Семь в кубе: 7 3 = 7 ∙ 7 ∙ 7 = 343.
Восемь в кубе: 8 3 = 8 ∙ 8 ∙ 8 = 512.
Девять в кубе: 9 3 = 9 ∙ 9 ∙ 9 = 729.
Десять в кубе: 10 3 = 10 ∙ 10 ∙ 10 = 1000.
Оформим полученные данные кубов натуральных чисел от 1 до 10 в виде таблицы.
Таблица кубов первых десяти натуральных чисел
1000
С помощью таблицы кубов можно легко и просто решать примеры и задачи, в которых необходимо высчитывать третью степень числа.
Представим в виде куба число 343.
По таблице кубов видим, что 343 = 7 3
Проверим: найдем произведение трех семерок:
7 3 = 7 ∙ 7 ∙ 7 = 49 ∙ 7 = 343
На прошлом уроке мы подробно разобрали порядок выполнения арифметических действий в выражениях.
Выяснили, что в первую очередь выполняются арифметические действия в скобках, затем-действия второй ступени (умножение и деление) по порядку их следования слева направо, и только потом выполняются действия первой ступени (сложение и вычитание) по порядку слева направо.
Однако, в математических выражениях, в которых отсутствуют скобки, но есть действия первой, второй ступени и степень, возведение в степень выполняется раньше других действий, только потом умножают, делят, складывают и вычитают в установленном правилами порядке.
Если в скобках содержится степенное выражение, то действия в скобках выполняются по порядку слева направо, начиная с действий высшей ступени- возведение в степень, и далее по известным нам правилам.
За скобками действия выполняют, соблюдая порядок выполнения действий без скобок, рассмотренный выше.
Рассмотрим поясняющие примеры.
При решении различных задач и примеров будем пользоваться составленными таблицами степеней.
Пример 1.
Определим порядок действий в выражении и найдем его значение.
Так как исходное выражение не содержит скобки, а возведение в степень- это действие более высокой ступени, чем умножение, деление, сложение и вычитание, следовательно, в первую очередь необходимо выполнить вычисление степени, затем слева направо в порядке следования сначала действия второй ступени (деление), затем- действия первой ступени (вычитание).
1) 8 2 = 8 ∙ 8 = 64 (по определению степени или по таблице квадратов).
2) 64 ÷ 4 = 16
Пример 2.
Найдем значение данного выражения, определив порядок действий в нем.
Согласно порядка выполнения действий сначала выполняются действия в скобках.
Найдем разность 21 и 11.
Далее выполняется действие высшей ступени (возведение в степень), т.е. разность, полученную в скобках, возведем в квадрат.
Найдем, чему равно 10 2 по определению степени или по таблице квадратов.
2) 10 2 = 10 ∙ 10 = 100
Затем выполним действия, которые находятся в исходном выражении за скобками.
Определим третью степень двойки по таблице кубов или по определению степеней.
3) 2 3 = 2 ∙ 2 ∙ 2 = 8
4) 100 ∙ 8 = 800
У меня есть дополнительная информация к этой части урока!
С давних пор основными арифметическими операциями являются операции сложения, вычитания, умножения и деления.
Представление о степени, как об отдельной операции возникло не сразу.
Однако степени применялись при вычислении площадей и объемов уже у древних народов: степень числа высчитывали при решении различных задач в Древнем Египте, Древней Греции, в Вавилоне.
Диофант Александрийский древнегреческий математик, философ (III век н.э.) в своем знаменитом труде «Арифметика» описал первые натуральные степени чисел.
Диофант первым из античных ученых предложил специальные обозначения для шести степеней неизвестного (квадрат, куб, квадрато-квадраты, квадрато-кубы и т.д.)
Древнегреческий ученый Пифагор и его последователи (пифагорейцы) проявляли большой интерес к числам, искали в них скрытый смысл, закономерности и приписывали им различные свойства.
Пифагорейцы предполагали, что каждое число можно представить в виде фигуры.
Так, например, числа 4, 9, 16, 25 они представляли в виде квадратов.
В Древнем Вавилоне для вычисления и расчетов был создан целый ряд вычислительных таблиц: таблицы умножения, таблицы квадратов и кубов и многие другие.
В Древней Индии успешно развивалась наука.
Высоких результатов индийцы добились в астрономии, медицине, математике.
Индийские ученые часто оперировали большими числами.
В Древней Индии существовало понятие степени числа, математики того времени умели вычислять площади и объемы фигур, разработали алгоритмы вычисления всех арифметических операций, в том числе определение степени числа.
Важнейшим открытием индийских ученых в математике стало изобретение позиционной системы счисления, а также запись (чтение) чисел, для каждой цифры был придуман свой знак.
Математические труды их были изложены в основном в словесной форме на древнеиндийском языке в священных писаниях, книгах, сказаниях.
Потребность в решении более сложных математических задач со степенями заставляла ученых разных стран расширять понятие о степени, систематизировать и обобщать известные уже данные о ней.
В начале XV века самаркандский математик Гияс ад-Дин Джемшид Аль-Каши рассматривал нулевой показатель степени, в это же время французский ученый Никола Шюке применял в своих трудах нулевой и отрицательный показатель степени.
В 1544 г. немецкий математик Михаэль Штифель в своей книге «Полная арифметика» впервые ввел понятие «Показатель степени».
Постепенно понятие степени становится все шире, оно применяется не только к числу, но и к переменной.
Математики средневековья пытались установить единое обозначение степени и сделать ее компактней.
Французский ученый математик Франсуа Виет ввел буквенное обозначение (N, Q, C) для первой, второй и третьей степени.
Нидерландский математик Симон Стевин предложил называть степень по их показателям, отвергая тем самым словесные обозначения степеней, составленные Диофантом.
Современное обозначение степеней (а n ), где а-основание степени, n-показатель степени, ввел французский математик Рене Декарт.
Пройти тест и получить оценку можно после входа или регистрации
Куб и квадрат – разница и отличие между квадратом и кубом
Отличие куба от квадрата, разница между ними
Куб и квадрат часто путают, думая, что это тождественные геометрические фигуры. В действительности они отличаются друг от друга, ведь у каждого из этих объектов имеются только им присущие признаки. Какие, нетрудно понять, зная определение куба и квадрата.
Что такое квадрат и что такое куб
Фото: Квадрат
Квадрат – фигура, лежащая на плоскости, и она двухмерная. Её можно отобразить в виде прямоугольника с идентичными по длине сторонами. Квадрат можно вырезать из бумаги.
Фото: Куб
Куб же является трехмерным объектом, имеющим объём и 12 одинаковых граней. Таким образом, это правильный многогранник. Если разложить его на плоскости, то он будет состоять из 6 квадратов. Для наглядности куб можно склеить из плотной бумаги, а лучше слепить из гипса, пластилина.
Фото: разложенный куб на плоскости
В чем разница между кубом и квадратом: сравнение двух фигур
По сравнению с квадратом, куб – более сложная геометрия. Квадрат является фигурой простой, в нём только 4 стороны и 4 угла, между которыми абсолютное равенство. Квадрат можно назвать подвидом прямоугольника, только у которого ширина и длина сторон одинаковы. При этом квадрат всегда плоский. Чтобы посчитать площадь квадрата, достаточно умножить одну его сторону на другую.
Конфигурация куба сложнее, поскольку в нём уже присутствует третья мера – объём. Эта характеристика отражает пространство, которое занимает объект, в нашем случае куб. У куба также есть и третье измерение (параметр) – высота. Между собой ширина, длина и высота у куба равны.
Нахождение объема и площади
Если необходимо посчитать объем фигуры, то для расчета берут длину любого ребра между гранями и возводят её в третью степень. Для нахождения площади трехмерной фигуры куба надо узнать сумму площади всех его сторон. Поскольку они идентичны, то просто площадь одной стороны умножаем на 6. А чтобы найти площадь одной из сторон, умножаем длину ребра на себя же. Допустим, длина ребра 4 см, чтобы найти площадь одной стороны куба, 4 умножаем на 4 – получаем 16. И эту цифру уже увеличиваем в 6 раз. Значит, объём куба будет равен 96 см²
Сложные свойства куба
По сравнению с квадратом куб обладает более сложными, дополнительными характеристиками. Например, геометрический объект имеет четыре сечения, которые представляют собой правильные шестиугольники. Все сечения куба проходят через его центр и располагаются перпендикулярно относительно четырех главных его диагоналей.
Поскольку куб имеет объём, то в него можно вписать различные многогранники – такие как тетраэдр (простейший многогранник с гранями в виде 4-х треугольников), октаэдр (у этого многогранника уже 8 граней), икосаэдр (20 граней многогранника).
Чтобы ещё легче было понять разницу между кубом и квадратом, имеет смысл оценить свойства каждой фигуры наглядно. К примеру, взять обычный детский кубик с наклеенными картинками на его стороны. Так вот, сам кубик – это фигура куб, а каждая наклеенная на его сторону картинка – квадрат.