в кислородной стадии энергетического обмена происходит синтез чего
В кислородной стадии энергетического обмена происходит синтез чего
Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.
У аэробных организмов (живущих в кислородной среде) выделяют три этапа энергетического обмена: подготовительный, бескислородное окисление и кислородное окисление; у анаэробных организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода — два этапа: подготовительный, бескислородное окисление.
Подготовительный этап
Заключается в ферментативном расщеплении сложных органических веществ до простых: белковые молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению.
Бескислородное окисление, или гликолиз
Полезный выход энергии этого этапа — две молекулы АТФ, что составляет 40%; 60% рассеивается в виде тепла.
Кислородное окисление, или дыхание
Наиболее важным является кислородный этап аэробного дыхания. Он протекает в митохондриях и требует присутствия кислорода.
Продукт гликолиза — пировиноградная кислота — заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь пировиноградная кислота подвергается ферментативному расщеплению.
Углекислый газ выделяется из митохондрий в цитоплазму клетки, а затем в окружающую среду.
Атомы водорода, акцептированные НАД и ФАД (кофермент флавинадениндинуклеотид), вступают в цепь реакций, конечный результат которых — синтез АТФ. Это происходит в следующей последовательности:
Аэробное дыхание, включающее бескислородный и кислородный этапы, можно выразить суммарным уравнением:
Подготовительный этап | Бескислородный этап | Кислородный этап | |
Место расщепления | Органы пищеварения, клетки под действием ферментов | Внутри клетки | Митохондрии |
Активатор расщепления | Ферменты пищеварительных соков | Ферменты мембран клеток | Ферменты митохондрий |
Результат расщепления соединений клетки | Глюкоза до 2 молекул пировиноградной кислоты + энергия | Пировиноградная кислота до СО2 и Н2О | |
Выделившаяся энергия | Рассеивается в виде тепла | 55 % запасается в виде АТФ | |
Количество энергии в виде АТФ | 2 молекулы | 36 молекул |
Анаэробное дыхание — эволюционно более ранняя и энергетически менее рациональная форма получения энергии из питательных веществ по сравнению с кислородным дыханием.
В основе анаэробного дыхания лежит процесс, в ходе которого глюкоза расщепляется до пировиноградной кислоты и высвобождаются атомы водорода. Акцептором атомов водорода, отщепляемых в результате дыхания, является пировиноградная кислота, которая превращается в молочную.
Молочнокислое брожение осуществляют молочнокислые бактерии (например, кокки из рода стрептококк). Образование молочной кислоты по такому типу происходит также в животных клетках в условиях дефицита кислорода.
В природе широко распространено спиртовое брожение, которое осуществляют дрожжи. В отсутствие кислорода дрожжевые клетки образуют из глюкозы этиловый спирт и СО;. Вначале спиртовое брожение идет аналогично молочнокислому, но последние реакции приводят к образованию этилового спирта. От каждой молекулы пировиноградной кислоты отщепляется молекула С02, и образуется молекула двууглеродного соединения —уксусного альдегида, который затем восстанавливается до этилового спирта атомами водорода.
Спиртовое брожение, кроме дрожжей, осуществляют некоторые анаэробные бактерии. Этот тип брожения наблюдается в растительных клетках в отсутствие кислорода.
Наиболее распространенным питательным веществом, которое используется для анаэробного высвобождения энергии, является глюкоза. Однако следует помнить, что любое органическое вещество при соответствующих условиях может выступать источником энергии для синтеза АТФ.
При недостатке в клетке глюкозы в дыхание могут вовлекаться жиры и белки. Продуктами брожения являются различные органические кислоты (молочная, масляная, муравьиная, уксусная), спирты (этиловый, бутиловый, амиловый), ацетон, а также углекислый газ и вода.
В кислородной стадии энергетического обмена происходит синтез чего
Видео YouTube
СТАДИИ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА
Энергетический обмен (катаболизм, диссимиляция) — это процессы расщепления ве ществ с высвобождением энергии. Высвобожденная энергия преобразуется в энергию АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.
Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Синтезированная АТФ становится универсальным источником энергии для жизнедеятельности организмов. Она образуется в результате реакции фосфорилирования – присоединения остатков фосфорной кислоты к молекуле АДФ. На эту реакцию расходуется энергия, которая затем накапливается в макроэргических связях молекулы АТФ, при распаде молекулы АТФ или при ее гидролизе до АДФ клетка получает около 40 кДж энергии.
АТФ – постоянный источник энергии для клетки, она мобильно может доставлять химическую энергию в любую часть клетки. Когда клетке необходима энергия – достаточно гидролизовать молекулу АТФ. Энергия выделяется в результате реакции диссимиляции (расщепления органических веществ), в зависимости от специфики организма и условий его обитания энергетический обмен проходит в два или три этапа. Большинство живых организмов относятся к аэробам, использующим для обмена веществ кислород, который поступает из окружающей среды. Для аэробов энергетический обмен проходит в три этапа:
В организмах, которые обитают в бескислородной среде и не нуждаются в кислороде для энергетического обмена – анаэробах и аэробах, при недостатке кислорода проходят энергетический обмен в два этапа:
Количество энергии, которое выделяется при двухэтапном варианте намного меньше, чем в трехэтапном.
ЭТАПЫ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА
Подготовительный этап – во время него крупные пищевые полимерные молекулы распадаются на более мелкие фрагменты. В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами, у одноклеточных – ферментами лизосом. Полисахариды распадаются на ди- и моносахариды, белки – до аминокислот, жиры – до глицерина и жирных кислот. В ходе этих превращений энергии выделяется мало, она рассеивается в виде тепла, и АТФ не образуется. Образующиеся в ходе подготовительного этапа соединения-мономеры могут участвовать в реакциях пластического обмена (в дальнейшем из них синтезируются вещества, необходимые для клетки) или подвергаться дальнейшему расщеплению с целью получения энергии.
Большинство клеток в первую очередь используют углеводы, жиры остаются в первом резерве и используются по окончания запаса углеводов. Хотя есть и исключения: в клетках скелетных мышц при наличии жирных кислот и глюкозы предпочтение отдается жирным кислотам. Белки расходуются в последнюю очередь, когда запас углеводов и жиров будет исчерпан – при длительном голодании.
Бескислородный этап (гликолиз) – происходит в цитоплазме клеток. Главным источником энергии в клетке является глюкоза. Ее бескислородное расщепление называют анаэробным гликолизом. Он состоит из ряда последовательных реакций по превращению глюкозы в лактат. Его присутствие в мышцах хорошо известно уставшим спортсменам. Этот этап заключается в ферментативном расщеплении органических веществ, полученных в ходе первого этапа. Так как глюкоза является наиболее доступным субстратом для клетки как продукт расщепления полисахаридов, то второй этап можно рассмотреть на примере ее бескислородного расщепления – гликолиза (Рис. 1).
Рис. 1. Бескислородный этап
Гликолиз – многоступенчатый процесс бескислородного расщепления молекулы глюкозы, содержащей шесть атомов углерода, до двух молекул пировиноградной кислоты (пируват). Реакция гликолиза катализируется многими ферментами и протекает в цитоплазме клетки. В ходе гликолиза при расщеплении одного моля глюкозы выделяется около 200 кДж энергии, 60 % ее рассеивается в виде тепла, 40 % – для синтезирования двух молекул АТФ из двух молекул АДФ. При наличии кислорода в среде пировиноградная кислота из цитоплазмы переходит в митохондрии и участвует в третьем этапе энергетического обмена. Если кислорода в клетке нет, то пировиноградная кислота преобразуется в животных клетках или превращается в молочную кислоту.
В микроорганизмах, которые существуют без доступа кислорода – получают энергию в процессе брожения, начальный этап аналогичен гликолизу: распад глюкозы до двух молекул пировиноградной кислоты, и далее она зависит от ферментов, которые находятся в клетке – пировиноградная кислота может преобразовываться в спирт, уксусную кислоту, пропионовую и молочную кислоту. В отличие от того, что происходит в животных тканях, у микроорганизмов этот процесс носит название молочнокислого брожения. Все продукты брожения широко используются в практической деятельности человека: это вино, квас, пиво, спирт, кисломолочные продукты. При брожении, так же как и при гликолизе, выделяется всего две молекулы АТФ.
Кислородный этап стал возможен после накопления в атмосфере достаточного количества молекулярного кислорода, он происходит в митохондриях клеток. Он очень сложен по сравнению с гликолизом, это процесс многостадийный и идет при участии большого количества ферментов. В результате третьего этапа энергетического обмена из двух молекул пировиноградной кислоты формируется углекислый газ, вода и 36 молекул АТФ (Рис. 2).
Две молекулы АТФ запасаются в ходе бескислородного расщепления молекулами глюкозы, поэтому суммарный энергетический обмен в клетке в случае распада глюкозы можно представить как:
С 6 Н 12 О 6 + 6О 2 + 38АДФ + 38Н 3 РО 4 = 6СО 2 + 44Н 2 О + 38АТФ
В результате окисления одной молекулы глюкозы шестью молекулами кислорода образуется шесть молекул углекислого газа и выделяется тридцать восемь молекул АТФ.
Мы видим, что в трехэтапном варианте энергетического обмена выделяется гораздо больше энергии, чем в двухэтапном варианте – 38 молекул АТФ против 2.
В отсутствие кислорода или при его недостатке про исходит брожение. Брожение является эволюционно бо лее ранним способом получения энергии, чем дыхание, однако оно энергетически менее выгодно, поскольку ко нечными продуктами брожения являются органические вещества, богатые энергией. Существует несколько видов брожения, названия которых определяются конечными продуктами: молочнокислое, спиртовое, уксуснокислое и др. Так, в скелетных мышцах в отсутствие кислорода протекает молочнокислое брожение, в ходе которого пировиноградная кислота восстанавли вается до молочной кислоты. При этом восстановленные ранее коферменты НАДН расходу ются на восстановление пирувата:
В кислородной стадии энергетического обмена происходит синтез чего
Что характерно для кислородного этапа энергетического процесса?
1) протекает в цитоплазме клетки
2) образуются молекулы ПВК
3) встречается у всех известных организмов
4) протекает процесс в матриксе митохондрий
5) наблюдается высокий выход молекул АТФ
6) имеются циклические реакции
1 ЭТАП (подготовительный):
1) происходит в ЖКТ и лизосомах (вторичных лизосомах – пищеварительных вакуолях);
2) происходит гидролиз: высокомолекулярные соединения (полисахариды, белки, липиды) расщепляются до низкомолекулярных (моносахаридов (глюкозы), аминокислот, глицерин и жирных кислот);
3) энергия не запасается, а рассеивается в виде тепла.
2 ЭТАП (бескислородный, или анаэробный):
1) происходит в гиалоплазме (цитоплазме);
2) происходит гликолиз: бескислородное расщепление молекулы глюкозы до 2 молекул пировиноградной кислоты (ПВК);
3) запасается 2 молекулы АТФ.
3 ЭТАП (кислородный, или аэробный):
1) происходит в митохондриях;
2) в матриксе происходит окисление органических веществ (ПВК) до углекислого газа и воды (цикл Кребса, или цикл трикарбоновых кислот, или цикл лимонной кислоты), на кристах – окислительное фосфорилирование (синтез АТФ);
3) синтезируется более 30 молекул АТФ (в ЕГЭ обычно указывают 36 АТФ, по другим источникам – меньше).
(1) протекает в цитоплазме клетки — бескислородный этап энергетического обмена;
(2) образуются молекулы ПВК — бескислородный этап энергетического обмена;
(3) встречается у всех известных организмов — бескислородный этап энергетического обмена (характерен и для анаэробов, и для аэробов);
(5) наблюдается высокий выход молекул АТФ — кислородный этап энергетического обмена;
(6) имеются циклические реакции — кислородный этап энергетического обмена.
Энергетический обмен в ЕГЭ по биологии
Людмила Микушева
Зачем мы дышим? Почему используем кислород, а выдыхаем углекислый газ? Это не просто интересные вопросы. Понимать, как устроен энергетический обмен, важно для ЕГЭ по биологии. Вопросы по метаболизму могут встретится в нескольких заданиях принести до шести первичных баллов. В этой статье обсудим, как происходит энергетический обмен — и разберем несколько заданий, чтобы научиться применять эти знания на практике.
Что такое энергетический обмен?
Для начала нужно разобраться, что такое энергетический обмен и какие у него есть особенности. Уверена, что вы встречали в тестах слова «катаболизм» и «диссимиляция», эти названия являются синонимами термина «энергетический обмен», советую их запомнить. Что же такое энергетический обмен? Это реакции, при которых органические вещества расщепляются, а энергия запасается клеткой в молекулах АТФ. Эту энергию клетка потом потратит на дальнейшую жизнедеятельность.
Такой тип обмена (как и все реакции метаболизма) идет поэтапно. В нем выделяют два или три основных этапа — это зависит от организации клетки и среды, в которой она обитает. Предлагаю рассмотреть каждый из этапов энергетического обмена подробнее.
Если хотите лучше понять не только энергетический обмен, но и другие темы ЕГЭ по биологии, приходите учиться в MAXIMUM! Записывайтесь на консультацию — вы сможете пройти диагностику по выбранным предметам ЕГЭ, поставить цели и составить стратегию подготовки, чтобы получить на экзамене высокие баллы. Все это абсолютно бесплатно!
Этапы метаболизма
Первый этап — подготовительный. Здесь сложные органические вещества (полимеры) распадаются до более простых (мономеров). Например, белки распадаются до аминокислот, а полисахариды до моносахаридов. Сами понимаете, что энергии при этом выделяется очень мало, она не запасается в молекулах АТФ, а выделяется в окружающую среду в виде тепла. Это знакомый нам процесс — пищеварение, он происходит в пищеварительной системе.
Что делать организмам, у которых пищеварительной системы нет? Они тоже осуществяют пищеварение, но другими способами. Например, у одноклеточных животных внутриклеточное пищеварение происходит в лизосомах и пищеварительных вакуолях.
Второй этап имеет сразу несколько названий. Например, бескислородный или анаэробный, так как он происходит без участия кислорода. Еще одно название — гликолиз («глико» — сахар, «лизис» — расщепление). Глюкоза расщепляется до двух молекул пировиноградной кислоты (ПВК), при этом энергия запасается в виде двух молекул АТФ. Легко запомнить: во время второго этапа выделяется две ПВК и две АТФ. Гликолиз проходит в цитоплазме клетки.
Дальнейшая судьба ПВК зависит от кислорода — если он есть, начинается третий этап, а если его не хватает, ПВК превращается в молочную кислоту. Например, в мышцах при высокой нагрузке и недостатке кислорода образуется молочная кислота. Человек испытывает неприятные ощущения, и даже боль. А в клетках растений и некоторых грибов (яркий пример — дрожжи) при недостатке кислорода ПВК распадается до этилового спирта и углекислого газа — происходит спиртовое брожение.
У аэробных организмов проходит еще и третий этап. Кислородный этап или аэробный, проходит в кислородной среде, другое название — клеточное дыхание. Он проходит только в эукариотических клетках, на кристах митохондрий. ПВК вступает в циклические реакции и полностью окисляется до углекислого газа и воды, а энергия запасается в 36 молекулах АТФ.
Примеры заданий
Давайте разберем несколько заданий на энергетический обмен из ЕГЭ по биологии, чтобы закрепить знания на практике.
Пример 1. Что характерно для аэробного этапа энергетического процесса?
Решение. Аэробный или кислородный этап — третий этап энергетического обмена. Он проходит на кристах митохондрий, там расположены ферментативные комплексы и идут циклические реакции, в которых молекулы пировиноградной кислоты разрушаются, на этом этапе наблюдается высокий выход энергии —36 АТФ. В лизосомах проходит подготовительный этап, а в цитоплазме — гликолиз. Кислородный этап не характерен для бактерий, так как у них нет мембранных органоидов.
Пример 2. Установите соответствие между характеристикой энергетического обмена и его этапом
ХАРАКТЕРИСТИКА | ЭТАП ЭНЕРГЕТИЧЕСКОГО ОБМЕНА |
A) происходит в аэробных условиях Б) происходит в цитоплазме B) образуется молочная кислота Г) образуется пировиноградная кислота Д) синтезируется 36 молекул АТФ | 1) гликолиз 2) кислородное окисление |
Решение. Гликолиз — второй этап энергетического обмена, анаэробный, проходит в цитоплазме, образуется пировиноградная кислота, а при недостатке кислорода еще и молочная кислота. Кислородный — третий этап, аэробный, завершается образованием 36 молекул АТФ.
Пример 3. В процессе гликолиза образовались 64 молекулы пировиноградной кислоты (ПВК). Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется при полном окислении глюкозы в клетках эукариот? Ответ поясните
Как видите, энергетический обмен — важная часть ЕГЭ по биологии. Справиться с заданиями достаточно просто, если знать, что происходит на каждом из этапов.
Что нужно запомнить?
ЕГЭ по биологии — большой и сложный экзамен, который состоит из большого количества тем и заданий. Но сдать его на высокий балл реально, если организовать систематическую подготовку. Обязательно приходите на бесплатную консультацию в MAXIMUM — там вы сможете построить индивидуальную стратегию подготовки к ЕГЭ и узнаете все подводные камни экзамена.