в чем заключается явление резонанса
Резонанс
Содержание
Механика
Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле:
,
где g это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна, и включает эллиптический интеграл). Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).
Резонансные явления могут вызвать необратимые разрушения в различных механических системах.
В основе работы механических резонаторов лежит преобразование потенциальной энергии в кинетическую. В случае простого маятника, вся его энергия содержится в потенциальной форме, когда он неподвижен и находится в верхних точках траектории, а при прохождении нижней точки на максимальной скорости, она преобразуется в кинетическую. Потенциальная энергия пропорциональна массе маятника и высоте подъёма относительно нижней точки, кинетическая — массе и квадрату скорости в точке измерения.
Другие механические системы могут использовать запас потенциальной энергии в различных формах. Например, пружина запасает энергию сжатия, которая, фактически, является энергией связи её атомов.
Струна
Струны таких инструментов, как лютня, гитара, скрипка или пианино, имеют основную резонансную частоту, напрямую зависящую от длины, массы и силы натяжения струны. Длина волны первого резонанса струны равна её удвоенной длине. При этом, его частота зависит от скорости v, с которой волна распространяется по струне:
где L — длина струны (в случае, если она закреплена с обоих концов). Скорость распространения волны по струне зависит от её натяжения T и массы на единицу длины ρ:
Таким образом, частота главного резонанса зависит от свойств струны и выражается следующим отношением:
,
где T — сила натяжения, ρ — масса единицы длины струны, а m — полная масса струны.
Увеличение натяжения струны и уменьшение её массы (толщины) и длины увеличивает её резонансную частоту. Помимо основного резонанса, струны также имеют резонансы на высших гармониках основной частоты f, например, 2f, 3f, 4f, и т. д. Если струне придать колебание коротким воздействием (щипком пальцев или ударом молоточка), струна начнёт колебания на всех частотах, присутствующих в воздействующем импульсе (теоретически, короткий импульс содержит все частоты). Однако частоты, не совпадающие с резонансными, быстро затухнут, и мы услышим только гармонические колебания, которые и воспринимаются как музыкальные ноты.
Электроника
В электронных устройствах резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.
Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.
Электрическое устройство, состоящее из ёмкости и индуктивности, называется колебательным контуром. Элементы колебательного контура могут быть включены как последовательно, так и параллельно. При достижении резонанса, импеданс последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства. Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.
Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения
,
где ; f — резонансная частота в герцах; L — индуктивность в генри; C — ёмкость в фарадах. Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания, то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы.
В СВЧ электронике широко используются объёмные резонаторы, чаще всего цилиндрической или тороидальной геометрии с размерами порядка длины волны, в которых возможны добротные колебания электромагнитного поля на отдельных частотах, определяемых граничными условиями. Наивысшей добротностью обладают сверхпроводящие резонаторы, стенки которых изготовлены из сверхпроводника и диэлектрические резонаторы с модами шепчущей галереи.
Оптика
В оптическом диапазоне самым распространенным типом резонатора является резонатор Фабри-Перо, образованный парой зеркал, между которыми в резонансе устанавливается стоячая волна. Применяются также кольцевые резонаторы с бегущей волной и оптические микрорезонаторы с модами шепчущей галереи.
Акустика
Резонанс — один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы, например, струны и корпус скрипки, трубка у флейты, корпус у барабанов.
Астрофизика
Орбитальный резонанс в небесной механике — это ситуация, при которой два (или более) небесных тела имеют периоды обращения, которые относятся как небольшие натуральные числа. В результате эти небесные тела оказывают регулярное гравитационное влияние друг на друга, которое может стабилизировать их орбиты.
Резонансный метод разрушения льда
Резонанс.
Явление резонанса заключается в том, что амплитуда установившихся вынужденных колебаний достигает наибольшего значения, когда частота вынуждающей силы равна собственной частоте колебательной системы.
Отличительной особенностью вынужденных колебаний является зависимость их амплитуды от частоты изменения внешней силы. Для изучения этой зависимости можно воспользоваться установкой, изображенной на рисунке:
На кривошипе с ручкой укреплен пружинный маятник. При равномерном вращении ручки на груз через пружину передается действие периодически изменяющейся силы. Изменяясь с частотой, равной частоте вращения ручки, эта сила заставит груз совершать вынужденные колебания. Если вращать ручку кривошипа очень медленно, то груз вместе с пружиной будет перемещаться вверх и вниз так же, как и точка подвеса О. Амплитуда вынужденных колебаний при этом будет невелика. При более быстром вращении груз начнет колебаться сильнее, и при частоте вращения, равной собственной частоте пружинного маятника (ω = ωсоб), амплитуда его колебаний достигнет максимума. При дальнейшем увеличении частоты вращения ручки амплитуда вынужденных колебаний груза опять станет меньше. Очень быстрое вращение ручки оставит груз почти неподвижным: из-за своей инертности пружинный маятник, не успевая следовать изменениям внешней силы, будет просто дрожать на месте.
Явление резонанса можно продемонстрировать и с нитяными маятниками. Подвесим на рейке массивный шар 1 и несколько маятников, имеющих нити разной длины. Каждый из этих маятников имеет свою собственную частоту колебаний, которую можно определить, зная длину нити и ускорение свободного падения.
Теперь, не трогая легких маятников, выведем шар 1 из положения равновесия и отпустим. Качания массивного шара вызовут периодические колебания рейки, вследствие которых на каждый из легких маятников начнет действовать периодически изменяющаяся сила упругости. Частота ее изменений будет равна частоте колебаний шара. Под действием этой силы маятники начнут совершать вынужденные колебания. При этом маятники 2 и 3 останутся почти неподвижными. Маятники 4 и 5 будут колебаться с немного большей амплитудой. А у маятника б, имеющего такую же длину нити и, следовательно, собственную частоту колебаний, как у шара 1, амплитуда окажется максимальной. Это и есть резонанс.
Резонанс возникает из-за того, что внешняя сила, действуя в такт со свободными колебаниями тела, все время совершает положительную работу. За счет этой работы энергия колеблющегося тела увеличивается, и амплитуда колебаний возрастает.
Резкое возрастание амплитуды вынужденных колебаний при ω = ωсоб называется резонансом.
Изменение амплитуды колебаний в зависимости от частоты при одной и той же амплитуде внешней силы, но при различных коэффициентах трения и, изображено на рисунке ниже, где кривой 1 соответствует минимальное значение и, кривой 3 — максимальное.
Из рисунка видно, что о резонансе имеет смысл говорить, если затухание свободных колебаний в системе мало. Иначе амплитуда вынужденных колебаний при ω = ω0 мало отличается от амплитуды колебаний при других частотах.
Явление резонанса в жизни и в технике.
Явление резонанса может играть как положительную, так и отрицательную роль.
Известно, например, что тяжелый «язык» большого колокола может раскачать даже ребенок, но при условии, что будет тянуть за веревку в такт со свободными колебаниями «языка».
На применении резонанса основано действие язычкового частотомера. Этот прибор представляет собой набор укрепленных па общем основании упругих пластин различной длины. Собственная частота каждой пластины известна. При контакте частотомера с колебательной системой, частоту которой нужно определить, с наибольшей амплитудой начинает колебаться та пластина, частота которой совпадает с измеряемой частотой. Заметив, какая пластина вошла в резонанс, мы определим частоту колебаний системы.
С явлением резонанса можно встретиться и тогда, когда это совершенно нежелательно. Так, например, в 1750 г. близ города Анжера во Франции через цепной мост длиной 102 м шел в ногу отряд солдат. Частота их шагов совпала с частотой свободных колебаний моста. Из-за этого размахи колебаний моста резко увеличились (наступил резонанс), и цепи оборвались. Мост обрушился в реку.
В 1830 г. по той же причине обрушился подвесной мост около Манчестера в Англии, когда по нему маршировал военный отряд.
В 1906 г. из-за резонанса разрушился Египетский мост в Петербурге, по которому проходил кавалерийский эскадрон.
Теперь для предотвращения подобных случаев войсковым частям при переходе через мост приказывают «сбить ногу», идти не строевым, а вольным шагом.
Если же через мост проезжает поезд, то, чтобы избежать резонанса, он проходит его либо на медленном ходу, либо, наоборот, на максимальной скорости (чтобы частота ударов колес о стыки рельсов не оказалась равной собственной частоте моста).
Собственной частотой обладает и сам вагон (колеблющийся на своих рессорах). Когда частота ударов его колес на стыках рельсов оказывается ей равной, вагон начинает сильно раскачиваться.
Явление резонанса встречается не только на суше, но и в море, и даже в воздухе. Так, например, при некоторых частотах гребного вала в резонанс входили целые корабли. А на заре развития авиации некоторые авиационные двигатели вызывали столь сильные резонансные колебания частей самолета, что он разваливался в воздухе.
Определение резонанса
Из курса школьной или университетской физики многие помнят такое понятие, как «резонанс» – явление постепенного или резкого возрастания колебательной амплитуды определенного тела в момент прикладывания к нему внешней силы определенной частоты.
Практически ответить на вопрос о резонировании или его применении могут не все. Именно поэтому в сегодняшнем материале будет рассказано, в чем заключается явление резонанса, каково применение резонанса в технике и какие виды резонанса существуют.
Зависимость амплитуды от частоты колебаний
Резонанс – что это такое
Резонанс в физике – это частотно-избирательный отклик системы колебаний на внешние силы, которые периодически воздействуют на систему. Проявляется это воздействие в резком увеличении амплитуды движений этих колебаний, когда частота внешней воздействующей силы совпадает с некоторыми, характерными для данной колебательной системы, частотами.
Важно! Суть резонирования заключается в резком увеличении амплитуды колебаний при совпадении значения частоты силы, воздействующей на систему извне, с собственной частотой колебаний этой системы.
Чтобы далее говорить о явлении резонирования, следует понять, что такое колебания и частота. Колебания – это процесс изменения состояний колебательной системы, который повторяется через определенные промежутки времени и происходит вокруг точки равновесия. В пример можно привести раскачивание на качелях. Произойти резонирование частот может только там, где есть колебательные движения. Причем совсем неважно, к какому именно виду относятся колебания: электрические, звука, механические.
Виды колебательных движений
Процесс колебаний характеризуют частота и амплитуда. Простыми словами, на примере качели можно сказать, что амплитуда – это высшая точка, которую они достигают. Частота колебаний отвечает за скорость достижения качелями этой точки.
Возвращаясь к примеру с качелями, можно сказать, что когда они раскачиваются, система колебаний совершает вынужденные колебания. Увеличить амплитуду этих колебаний можно путем воздействия на эту систему определенным образом. То есть, если толкать качели с определенной силой и в определенное время, то можно сильно раскачать их без применения больших усилий.
Это явление и будет называться резонансом: частота воздействий извне будет совпадать с частотой колебаний в системе, и вследствие этого будет увеличиваться амплитуда.
Резонирование напряжений в электроцепи
Как определяется резонанс
На примере электричества и резонирования напряжений определить его можно специальными приборами: вольтметром или осциллографом. Для этого делают измерения напряжений во время настройки резонирования. При максимальном напряжении резонанс будет достигнут. Важно понимать, в какой именно системе достигается резонанирование. Например, в трансформаторе «Тесла» напряжение может достигать миллионов вольт и для настройки достаточно поднести щупы на небольшое расстояние к нему и менять параметры, смотря на изменение напряжения. Когда настройка будет достигнута и напряжение будет максимальным – это и будет резонирование.
Принципы действия
Теперь ясно, что резонирование – это процесс возбуждения колебаний одного объекта колебаниями другого тела такой же частоты. Это явление присуще всему, что есть на планете. Это может быть человек или камень. Резонирование может возникать между всеми телами вне зависимости от их природы и устройства. Но есть одно условие – работа тела на одном виде энергии и на совпадающей частоте и гармонике.
Качели – одно из основных механических проявлений резонирования
Этот принцип соответствия и дает возможность происходить обменным энергетическим и информационным процессам, позволяя представителям живого и неживого производить общение друг с другом. Резонанс, который лежит в любом взаимодействии, способен разрушать и создавать, убивать и исцелять. Неизвестно, в какой области он проявляется более полно и сильно. Согласно физическим законам, в области чувств явление и принцип резонирования должны проявляться сильнее, так как именно в этой области несущими сигнал являются более короткие волны, обладающие более высокой энергией.
Интерферометр Фабри-Перо
Вхождение в резонанс или антирезонанс с тем или иным объектом, процессом или телом на уровне действий и ощущений может способствовать или препятствовать исходу того или иного события любого масштаба (локального и глобального). Это могут быть и природные катастрофы, и техногенные аварии.
Токовое резонирование
Типы резонанса
В физике существует большое количество видов резонанса. Все они чем-то схожи и чем-то различны, а именно – своими признаками и природой появления. Среди них можно выделить:
В следующих подразделах будет более подробно описан каждый из этих видов.
Механический и акустический
Наиболее популярным и очевидным механическим видом будут резонирующие качели, которые были упомянуты раньше. Если толкать их в определенные моменты с учетом их частоты, то размах их движения увеличится или затухнет, если силу не прикладывать.
Основаны механические резонаторы на преобразовании потенциальной энергии в кинетическую и обратно. Если рассматривать маятник, то вся его энергия – потенциальная в состоянии покоя. Она преобразуется в кинетическую, когда он проходит нижнюю точку на своей максимальной скорости.
Приборы для организации резонанса
Важно! Некоторые механические системы способны запасать потенциальную энергию и использовать ее в различных формах. В пример можно привести пружину, которая запасет сжатие, являющееся энергией связи атомов.
Акустический тип резонирования можно встретить в некоторых музыкальных инструментах по типу гитары, скрипки, пианино. Они имеют основную резонансную частоту, которая зависит от длины, массы и силы натяжения струн.
Акустическое резонирование помогает людям найти дефекты в трубопроводе
Кроме основной частоты, струны этих музыкальных инструментов обладают резонансом на высших гармонических колебаниях основной частоты. Если струну дернуть, то она начнет колебаться на всех частотах, которые присущи данному импульсу, но частоты, несовпадающие с резонансом, очень быстро затухнут, и человеческое ухо услышит только гармонические колебания, являющиеся нотами.
Акустические системы, микрофоны и громкоговорители не терпят резонанса отдельных частей своего корпуса, так как это снижает равномерность их амплитудно-частотной характеристики и ухудшает качество воспроизведения звуков.
Струны создают акустический резонанс
Резонанс электрический
В электронике резонанс также имеется. Им называется состояние или режим пассивной электроцепи, содержащей катушки и конденсаторы, при котором ее входное реактивное электросопротивление и проводимость будут нулевыми. Это означает, что при резонансе ток на входе в цепь, если он есть, будет совпадать по фазе с напряжением.
Колебательный контур
В электричестве резонирование достигается тогда, когда индукция и емкость реакции уравновешиваются. Это равенство и позволяет энергии производить циркуляцию между индуктивными элементами и их магнитным полем, и полем электрического типа в конденсаторе.
Сам механизм резонанса основан на том, что МП индуктивности создает электроток, который заряжает конденсатор, разрядка его и создает это магнитное поле. Простейшее устройство, основанное на этом взаимодействии, – колебательный контур, способный производить резонанс напряжений и токов.
Модель светового оптического резонирования
Оптический резонанс
И в оптическом диапазоне есть резонанс. Один из самых популярных его примеров – резонатор Фабри-Перо. Он образован несколькими зеркалами, между которыми устанавливается так называемая резонирующая стоячая волна. Кроме этого используются кольцевые системы резонирования с бегущей волной и микроскопические резонаторы со стоячими волнами.
Схема колебательного контура
Орбитальные колебания
Колебания в астрофизике представляют собой ситуации, когда есть два или более небесных объекта, которые имеют некоторые периоды обращения, соотносящиеся, как небольшие натуральные числа. В результате этого воздействия небесные объекты оказывают друг на друга постоянное гравитационное притяжение. Оно и производит стабилизацию их орбит.
Резонанс: атомный, частичный и молекулярный
Атомный резонанс – это поглощение электромагнитных волн ядрами атома, которое происходит, когда изменяется вектор его момента движения. Особенно часто АР проявляется в атомах, которые помещают в сильное магнитное поле. При этом на них должно воздействовать небольшое электромагнитное поле, характеризующееся радиочастотным диапазоном.
График ядерного магнитного резонанса
В этом области существует и теория резонанса. Согласно ей, химические соединения имеют электронное строение, а распределение электронов в молекулах вещества есть комбинация или резонанс структуры с различным строением.
Важно! Это означает, что структура молекулы описывается не только одной возможной структурной формулой, сочетанием (резонансом) других структур. Теория резонанса позволяет путем химической терминологии и классических формул визуализировать построение мат. модели волновой функции какой-либо сложной молекулы.
Где применяется резонанс, как он используется в технике
Механический резонанс используется в акустике для анализа звуков и при их усилении. В сооружениях и устройствах, которые подвергаются периодически изменяющимся нагрузкам, резонанс весьма опасен, ведь он способен вызвать их разрушение вследствие значительного возрастания амплитуды колебаний.
Так, например, подвижные элементы двигателя внутреннего сгорания по типу шатунов действуют на валы с периодически изменяющимися силовыми нагрузками. Их период неразрывно связан с угловой скоростью вращения валов. Они вызывают колебательные движения коленчатого вала и при скорости вращения, которая соответствует резонансу, могут привести вал в негодность.
Важно! Учитывать механическое резонирование важно еще и в электронной аппаратуре, так как она часто подвергается вибрациям и ударам.
В технических моментах резонирование играет как положительные, так и отрицательные роли, то есть оно может как навредить, так и создать прибор. Например, явление механического резонирования используется в технических приборах типа частотомеров для подсчета частоты колебаний. В них элементом чувствительности предстает резонатор, собственная частота которого легко изменяется. Положительные стороны резонанс дает и в акустике, оптике или радиотехнике.
Таким образом, эффект резонирования присущ огромному количеству объектов планеты. Вне зависимости от его определения, он всегда означает одно и то же: система, на которую производят воздействие, повышает свою амплитуду. Определять резонирование можно огромным количеством методов. Все они зависят от вида и природы взаимодействий.