в чем заключается процесс амплитудной модуляции электрических колебаний
Вопросы.
1. Что называется радиосвязью?
Радиосвязью называют передачу или прием информации с помощью электромагнитных волн.
2. Приведите 2—3 примера использования линий радиосвязи.
Радиосвязь используется для передачи теле- и радиосигналов, в радиотелефонах, для связи со спутниками и для исследования космоса.
3. Пользуясь рисунками 154 и 155. расскажите о принципах осуществления радиотелефонной связи.
На рис. 154 а) изображена схема передающего устройства, состоящего из генератора высокочастотных колебаний, микрофона, модулирующего устройства и передающей антенны. В микрофон поступают звуковые колебания, которые преобразуются в электрические. Затем низкочастотные электрические колебания попадают в модулирующее устройство, где они модулируются с высокочастотными колебаниями. Далее сигнал попадает в передающую антенну и в ней возникает переменный ток высокой частоты. Это порождает вокруг антенны электромагнитное поле распространяющееся в пространстве.
На рис. 154 б) изображена схема радиоприемного устройства, состоящего из приемной антенны, приемного резонирующего колебательного контура, детектора и динамика. На приемную антенну поступают электромагнитные волны многих частот. Для выделения определенной частоты колебательный контур настраивается в резонанс с необходимой волной, по несущей частоте. Затем сигнал усиливается и детектируется, т.е. осуществляется процесс обратный модуляции. Полученные низкочастотные электрические колебания попадают в динамик и преобразуются в звуковые колебания.
4. Частота каких колебаний называется несущей?
Несущей частотой называется частота высокочастотных колебаний.
5. В чем заключается процесс амплитудной модуляции электрических колебаний?
Процесс амплитудной модуляции электрических колебаний заключается в изменении амплитуды высокочастотных колебаний с частотой, равной частоте звукового сигнала.
6. Почему в радиосвязи не используются электромагнитные волны звуковых частот?
Такие волны маломощны и очень быстро затухают.
7. В чем заключается процесс детектирования колебаний?
Процесс детектирования колебаний заключается в выделении из модулированного высокочастотного сигнала низкочастотных электрических колебаний звуковых частот. Сначала высокочастотного сигнала с помощью детектора получают пульсирующий ток, а затем он сглаживается.
Упражнения.
1. Период колебаний зарядов в антенне, излучающей радиоволны, равен 10-7с. Определите частоту этих радиоволн.
Амплитудная модуляция на пальцах
В недавней статье «Амплитудная модуляция произвольного сигнала» её автор довольно сумбурно попытался представить своё понимание формирования спектра при амплитудной модуляции. Но отсутствие иллюстраций и избыток математики с привлечением интегральных преобразований помешало сообществу понять мысли автора и оценить статью по достоинству; в то время как тема это достаточно простая — и рассмотреть которую мы попробуем ещё раз, на этот раз с картинками и привлечением Wolfram Mathematica.
Итак, идея амплитудной модуляции состоит в том, чтобы передавать низкочастотный сигнал — голос или музыку — модулируя высокочастотный (несущий) сигнал, многократно превышающий слышимый диапазон и занимающий узкую полосу частот в радиоэфире. Сама модуляция осуществляется простым умножением сигнала на несущий:
Здесь у нас в качестве несущей выступает синусоида с частотой 5:
А сам сигнал — с частотой 1:
Можно заметить, что сигнал смещён вверх и имеет только положительные значения. Это не случайно и является обязательным условием для возможности последующего его корректного восстановления. Как же его восстановить? Очень просто! Нужно сдвинуть фазу промодулированного сигнала на 90 градусов (операция, известная как преобразование Гильберта), и посчитать корень из суммы квадратов модулированного и преобразованного сигналов:
В более простом (но грубом) варианте преобразование Гильберта можно заменить задержкой сигнала на четверть периода несущий частоты, а итоговый сигнал дополнительно отфильтровать фильтром низких частот. В ещё более простом варианте можно вообще не считать корней и квадратов, а отфильтровать сигнал по абсолютному значению (что и применяется обычно в радиоприёмниках).
Теперь посмотрим, что у нас происходит со спектрами. Посчитаем преобразование Фурье от несущей:
Так как дельта-функция Дирака не является функцией в классическом смысле, её график нельзя построить стандартным способом; поэтому сделаем это вручную, используя общепринятое начертание:
Ожидаемо получили ту же частоту, что и в начальной формуле. Наличие ещё одной такой же частоты, но со знаком минус, не случайно — это явление называется Hermitian symmetry и является следствием того, что рассматриваемая функция сугубо действительная и в комплексном представлении имеет нулевую мнимую компоненту. Отсутствие мнимых компонент в спектре после преобразования обусловлено тем, что изначально наши функции ещё и чётные (симметричные относительно нуля).
Теперь сделаем преобразование Фурье для самого сигнала:
Здесь мы дополнительно получили дельта-функцию Дирака в центре координат — вследствие наличия в сигнале постоянной составляющей, которая не имеет колебаний по определению — что позволяет её рассматривать как нулевую частоту.
Что же будет со спектром, если их перемножить? Посмотрим:
Из теории мы знаем, что умножение во временном домене равносильно свертке в частотном (и наоборот, что широко используется при FIR-фильтрации). А поскольку один из подвергаемых свёртке сигналов состоял только из одной (положительной и отрицательной) частоты, то в результате свёртки мы получили просто линейный перенос сигнала вверх по частоте (в обе стороны). И так как симметрия осталась, сигнал у нас по-прежнему не имеет мнимой компоненты.
Приведём его теперь к комплексному (аналитическому) виду, обнулив отрицательную область частот:
и сделаем обратное преобразование Фурье:
Так как функция теперь комплексная, для построения её графика необходимо отдельно извлечь действительную и мнимую компоненты:
Теперь у нашего сигнала появилась мнимая компонента, представляющая собой сдвинутый на 90 градусов исходный сигнал. Это будет более очевидным, если представить полученную функцию в тригонометрическом виде:
Пока не очень очевидно. Попробуем упростить:
Теперь больше похоже на правду — и как видим, функция нашего исходного сигнала тоже упростилась. Попробуем её вернуть к оригинальному виду:
Множитель 1/2 появился не случайно — ведь обнулив половину спектра, мы соответственно и уменьшили мощность сигнала. Ну а теперь, имея модулированный комплексный сигнал, мы можем взять и этот модуль посчитать:
Модуль комплексного числа как раз и считается через корень суммы квадратов мнимого и действительных компонентов. И отсюда понятно, почему кодируемый сигнал должен состоять только из положительных значений — если он будет включать отрицательные значения, то после восстановления они также станут положительными, что и называется перемодуляцией:
Восстановление сигнала также возможно и при помощи квадратурного гетеродина — когда модулированный сигнал снова умножается на несущую частоту, но на этот раз — комплексную:
За счёт того, что комплексная частота в частотной области имеет только один импульс без дублирования его в отрицательной области частот — то в результате свёртки мы получим линейный перенос спектра, при которой отрицательная часть спектра встанет обратно в центр, а положительная — сдвинется ещё дальше, и её останется только отфильтровать фильтром нижних частот.
Заключение
Как видим, в рассмотрении амплитудной модуляции через преобразовании Фурье нет ничего сложного; если же рассматривать её исключительно на школьном уровне, то достаточно вспомнить, что произведение (несущей) суммы (представление сигнала в виде тригонометрического ряда) равнозначно сумме произведений (каждого члена ряда по отдельности на несущую частоту) — и, соответственно, каждое такое произведение раскладывается на сумму двух синусоид по уже озвученной автором исходной статьи формуле.
Внимательный читатель также мог заметить, что раз в результате модуляции мы получили симметричный относительно несущей частоты спектр — значит, имеет место быть избыточность данных и можно оставить только одну боковую полосу, сократив тем самым занимаемую полосу частот в радиоэфире. Такая технология действительно имеется, но это — уже совсем другая история.
Амплитудная модуляция: определение, графики, схемы, формулы
«Амплитудной модуляцией» называется изменение амплитуды несущего сигнала в соответствии с модулированным колебанием. Например, имеем высокочастотное несущее колебание (Формула) и первичный сигнал (Формула), где U0 — постоянная составляющая. Результирующий амплитудно-модулированный сигнал получим на основе перемножения несущего колебания и первичного сигнала:
Пусть x(t) является гармоническим колебанием с частотой Ω, т.е. х(t) = XcosΩt. Тогда (Формула). Здесь x(t) — медленно меняющаяся во времени функция по сравнению с высокочастотным колебанием ω0, т. е. Ω — максимальное приращение амплитуды огибающей.
ВременнЫе диаграммы, иллюстрирующие процесс амплитудной модуляции тональным колебанием, показаны на рис. 4.1.
Рис. 4.1. ВременнЫе диаграммы, иллюстрирующие амплитудную модуляцию:
а — первичный сигнал; б — высокочастотное несущее колебание; в — модулированный сигнал
Коэффициентом модуляции называется отношение амплитуды (Формула) огибающей к амплитуде (Формула) несущего колебания, т. е. (Формула). Обычно 0
Раскроем данное выражение, что позволит определить спектр АМ-сигнала:
Из этого выражения видно, что АМ-колебание, спектр которого при модуляции одним гармоническим сигналом изображен на рис. 4.2, содержит три составляющие.
Из сказанного можно сделать следующие выводы.
На практике однотональные АМ-сигналы используются крайне редко. Более реален случай, когда низкочастотный модулированный сигнал имеет сложный спектральный состав:
Здесь частоты (Формула) образуют упорядоченную возрастающую последовательность (Формула), а амплитуды Хk и фазы φk — произвольные.
В этом случае для АМ-сигнала можно записать следующее аналитическое соотношение:
где (Формула) — парциальные коэффициенты модуляции, представляющие собой коэффициенты модуляции соответствующих компонентов первичного сигнала.
Рис. 4.2. Спектр колебаний при амплитудной модуляции одним низкочастотным гармоническим сигналом
Спектральное разложение производится так же, как и для однотонального АМ-сигнала:
Из этого разложения видно, что в спектре кроме несущего колебания содержатся группы верхних и нижних боковых колебаний. При этом спектр верхних боковых колебаний является копией спектра модулирующего сигнала, сдвинутой в область высоких частот на значение ω0, а спектр нижних боковых колебаний располагается зеркально относительно ω0.
Спектры исходного полосового сигнала и амплитудно-модулированного сигнала показаны на рис. 4.3.
Амплитудная модуляция
Использование модуляции для определения требуемых свойств каналов, сокращения избыточности модулированных сигналов, расчета потенциальной помехоустойчивости и электромагнитной совместимости различных систем передачи информации. Виды амплитудной модуляции.
Исследование различных видов модуляции необходимо для определения требуемых свойств каналов, сокращения избыточности модулированных сигналов и улучшения использования мощности передающих устройств, определения потенциальной помехоустойчивости, помех соседним каналам и решения проблем электромагнитной совместимости различных систем передачи информации.
s(t) = Acos(щt + и) = A(t)cosш(t) (1.1),
то можно образовать три вида модуляции: амплитудную (АМ), частотную (ЧМ), фазовую (ФМ).
1. Применение в радиотехнике
Амплитудная модуляция исторически была первым видом модуляции примененным на практике.
Первый опыт передачи речи и музыки по радио методом амплитудной модуляции произвёл в 1906 году американский инженер Р. Фессенден. Несущая частота 50 кГц радиопередатчика вырабатывалась машинным генератором (альтернатором), для её модуляции между генератором и антенной включался угольный микрофон, изменяющий затухание сигнала в цепи.
С 1920 года вместо альтернаторов стали использоваться генераторы на электронных лампах. Во второй половине 1930-х годов, по мере освоения ультракоротких волн, амплитудная модуляция постепенно начала вытесняться из радиовещания и радиосвязи на УКВ частотной модуляцией.
С середины XX века в служебной и любительской радиосвязи на всех частотах внедряется модуляция с одной боковой полосой (ОБП), которая имеет ряд важных преимуществ перед АМ. Поднимался вопрос о переводе на ОБП и радиовещания, однако это потребовало бы замены всех радиовещательных приёмников на более сложные и дорогие, поэтому не было осуществлено. В конце XX века начался переход к цифровому радиовещанию с использованием сигналов с амплитудной манипуляцией.
В настоящее время АМ применяется в основном только для радиовещания на сравнительно низких частотах (не выше коротких волн) и для передачи изображения в телевизионном вещании. Это обусловлено низким КПД использования энергии модулированных сигналов.
2. Амплитудная модуляция (АМ)
Амплитудной модуляцией (АМ) называется образование сигнала путем изменения амплитуды гармонического колебания пропорционально мгновенным значением напряжения или тока другого электрического сигнала (сообщения); процесс изменения несущего колебания, соответствующего изменению непрерывного информационного сигнала.
В процессе амплитудной модуляции амплитуда U0 несущего колебания u0 (t) = U0 cos(щt+ц) перестает быть постоянной и изменяется по закону передаваемого сообщения. Амплитуда U(t) несущего колебания может быть связана с передаваемым сообщением соотношением:
Выражение для амплитудно-модулированного сигнала в общем случае имеет вид:
Простейший для анализа случай амплитудно-модулированного колебания получается, если в качестве модулирующего сигнала используется гармоническое колебание (такой случай называется тональной модуляцией):
Для упрощения анализа будем полагать начальные фазы колебаний равными нулю, что не повлияет на общность выводов. Тогда для тональной амплитудной модуляции можно записать:
Для определения спектра амплитудно-модулированного колебания выполним несложные преобразования выражения (1.4):
Рис. 1.1 Тональная амплитудная модуляция: а) несущее колебание и его спектр (б); в) модулирующий сигнал и его спектр (г); д) амплитудно-модулированное колебание и его спектр (е)
При отсутствии модуляции (МA = 0) амплитуды боковых составляющих равны нулю и спектр амплитудно-модулированного сигнала состоит только из несущего колебания с частотой щ0. При коэффициенте амплитудной модуляции МA 1 возникают искажения, называемые перемодуляцией (рисунок 1.2). Такие искажения могут приводить к потере информации и их стараются не допускать.
Рис. 1.2 Тональная амплитудная модуляция при коэффициенте МA > 1: а) модулирующий сигнал; б) амплитудно-модулированное колебание и его спектр (в)
Подобный подход можно применить и к анализу амплитудно-модулированных колебаний сложной формы. В этом случае периодический модулирующий сигнал может быть представлен набором гармонических составляющих, частота которых кратна периоду исходного сигнала. Каждая из гармоник модулирующего сигнала сформирует в спектре амплитудно-модулированного колебания две боковые составляющие, симметрично отстоящие от несущей на величину, равную частоте соответствующей гармоники. Для примера, если спектр модулирующего сигнала имеет вид, представленный на рисунке 1.3,а, то спектр амплитудно-модулированного колебания может быть представлен диаграммой, приведенной на рисунке 1.3,б.
Рис. 1.3 Спектры сигналов: а) модулирующего сигнала; б) амплитудно-модулированного колебания
В общем случае, ширина ПАМ спектра амплитудно-модулированного колебания равна
модуляция сигнал помехоустойчивость амплитудный
3. Виды амплитудной модуляции
В зависимости от того, передается весь ли спектр амплитудно-модулированного колебания или только его часть, различают два способа амплитудной модуляции: амплитудная модуляция с двумя боковыми (ФБП) и однополосная амплитудная модуляция (ОБП).
Амплитудная модуляция с боковыми полосами (ДБП)
Так как боковые составляющие отличаются от несущей на значение частоты сообщения FЩ, а между собой на 2FЩ (рис.а), то ширина полосы частот при ДБП равна удвоенной частоте передаваемого сообщения:
При этом в процессе амплитудной модуляции возникают уже не боковые частоты, а полосы частот: верхняя боковая и нижняя боковая (рис. б).
Схемы для осуществления АМ с ДБП:
Однополосная амплитудная модуляция (ОДП)
Передача на ОБП имеет ряд: преимуществ:
· полоса частот сокращается в 2 раза или более, что позволяет увеличить число передаваемых сообщений;
· т.к. при ОБП напряжение несущей частоты и одной из боковых полос частот подавляется, то это позволяет сосредоточить мощность передатчика только на одной боковой полосе и повысить уровень передаваемого сигнала (выигрыш по напряжению оказывается в 2 раза и по мощности в 4 раза). Более мощный сигнал обеспечивает большую помехоустойчивость передачи.
Схемы для осуществления АМ с ОДП:
Амплитудная модуляция (АМ) является наиболее простым и распространенным способом изменения параметров носителя информации. При АМ огибающая амплитуда гармонического колебания (переносчика) изменяется по закону, совпадающему с законом изменения передаваемого сообщения, частота и начальная фаза колебания поддерживаются неизменными.
В заключении отмечу, что идеальная амплитудная модуляция представляет собой перенос спектра передаваемого сообщения в область более высоких частот без нелинейных, частотных и фазовых искажений. Реально модуляция сопровождается искажениями, что приводит к увеличению ширины спектра модулированных сигналов, изменению законов распределения огибающей, фазы и т.д.
Амплитудная модуляция
Общие сведения об амплитудной модуляции
Амплитудная модуляция – это процесс формирования амплитудно-моду-лированного сигнала, т.е. сигнала, амплитуда которого изменяется по закону модулирующего сигнала (передаваемого сообщения). Этот процесс реализуется амплитудным модулятором.
Амплитудный модулятор должен формировать высокочастотное колебание, аналитическое выражение для которого в общем случае имеет вид
, (8.1)
где – огибающая модулированного колебания, описываемая функцией, которая характеризует закон изменения амплитуды;
– модулирующий сигнал;
и – частота и начальная фаза высокочастотного колебания.
Для получения такого сигнала необходимо осуществить перемножение высокочастотного (несущего) колебания и низкочастотного модулирующего сигнала таким образом, чтобы сформировалась огибающая вида . Наличие постоянной составляющей в структуре огибающей обеспечивает однополярность ее изменения, коэффициент исключает перемодуляцию, т.е. обеспечивает глубину модуляции . Понятно, что такая операция перемножения будет сопровождаться трансформацией спектра, что позволяет рассматривать амплитудную модуляцию как существенно нелинейный или параметрический процесс.
Структура амплитудного модулятора в случае использования нелинейного элемента представлена на рис. 8.4.
Рис. 8.4. Структурная схема амплитудного модулятора
Нелинейный элемент осуществляет преобразование несущего колебания и модулирующего сигнала, в результате чего формируется ток (или напряжение), в спектре которого содержатся составляющие в полосе частот от до , причем – наивысшая частота в спектре модулирующего сигнала. Полосовой фильтр выделяет эти составляющие спектра, формируя амплитудно-модулированный сигнал на выходе.
Перемножение двух сигналов можно осуществить с помощью нелинейного элемента, характеристика которого аппроксимируется полиномом, содержащим квадратичный член. Благодаря этому формируется квадрат суммы двух сигналов, содержащий их произведение.
Суть сказанного и общую идею формирования амплитудно-модулированного колебания иллюстрируют достаточно простые математические преобразования в предположении, что осуществляется тональная (одной частотой) модуляция.
1. В качестве нелинейного элемента используем транзистор, ВАХ которого аппроксимируется полиномом второй степени .
2. На вход нелинейного элемента подается напряжение, равное сумме двух колебаний: несущего и модулирующего, т.е.
.
Начальные фазы колебаний будем считать в дальнейшем равными 0, т.к. их величины не имеют принципиального значения для понимания процесса амплитудной модуляции.
3. Спектральный состав тока определяется следующим образом:
.
В полученном выражении спектральные составляющие расположены в порядке возрастания их частот. Среди них имеются составляющие с частотами , и , которые образуют амплитудно-модулированное колебание, т.е.
,
где и .
В передающих устройствах обычно совмещают процессы модуляции и усиления, что обеспечивает минимальные искажения модулированных сигналов. С этой целью амплитудные модуляторы строят по схеме резонансных усилителей мощности, в которых изменение амплитуды высокочастотных колебаний достигается изменением положения рабочей точки по закону модулирующего сигнала.
Схема и режимы работы амплитудного модулятора
Схема амплитудного модулятора на основе резонансного усилителя представлена на рис. 8.5.
Рис. 8.5. Схема амплитудного модулятора на основе резонансного усилителя
На вход резонансного усилителя, работающего в нелинейном режиме, подаются:
несущее колебание от автогенератора с помощью высокочастотной трансформаторной связи контура входной цепи с базой транзистора;
модулирующий сигнал с помощью низкочастотного трансформатора.
Конденсаторы и – блокировочные, обеспечивают развязку входных цепей по частотам несущего колебания и модулирующего сигнала, т.е. развязку по высокой и низкой частотам. Колебательный контур в цепи коллектора настроен на частоту несущего колебания, добротность контура обеспечивает полосу пропускания , где – наивысшая частота в спектре модулирующего сигнала.
Выбором рабочей точки определяется режим работы модулятора. Возможны два режима: режим малых и режим больших сигналов.
а. Режим малых входных сигналов
Этот режим устанавливается выбором рабочей точки в середине квадратичного участка ВАХ транзистора. Выбором амплитуды несущего колебания обеспечивается работа модулятора в пределах этого участка (рис. 8.6).
Рис. 8.6. Режим малых входных сигналов амплитудного модулятора
Амплитуда напряжения на колебательном контуре, резонансная частота которого равна несущей частоте, определяется амплитудой первой гармоники тока, т.е. , где — резонансное сопротивление контура. Учитывая, что средняя крутизна ВАХ в пределах рабочего участка равна отношению амплитуды первой гармоники к амплитуде несущего колебания, т.е. , можно записать
.
Под воздействием модулирующего напряжения, подаваемого на базу транзистора, будет изменяться положение рабочей точки, а значит, будет изменяться и средняя крутизна ВАХ. Так как амплитуда напряжения на колебательном контуре пропорциональна средней крутизне, то для обеспечения амплитудной модуляции несущего колебания необходимо обеспечить линейную зависимость крутизны от модулирующего сигнала. Покажем, что это возможно при использовании рабочего участка ВАХ, аппроксимируемого полиномом второй степени.
Итак, в пределах квадратичного участка ВАХ, описываемого полиномом, существует входное напряжение, равное сумме двух колебаний: несущего и модулирующего, т.е.
.
Начальные фазы колебаний будем считать в дальнейшем равными 0, т.к. их величины не имеют принципиального значения для понимания процесса амплитудной модуляции.
Спектральный состав тока коллектора определяется следующим образом:
.
Выделяем первую гармонику тока:
.
Таким образом, амплитуда первой гармоники равна:
.
Как видно из полученного выражения, амплитуда первой гармоники тока линейно зависит от модулирующего напряжения. Следовательно, средняя крутизна также будет линейно зависеть от модулирующего напряжения.
.
Тогда напряжение на колебательном контуре будет равно:
.
Следовательно, на выходе рассматриваемого модулятора формируется амплитудно-модулированный сигнал вида:
.
Здесь – коэффициент глубины модуляции;
– амплитуда высокочастотного колебания на выходе модулятора в отсутствие модуляции, т.е. при .
При проектировании передающих систем важным требованием является формирование амплитудно-модулированных колебаний большой мощности при достаточном КПД. Очевидно, что рассмотренный режим работы модулятора не может обеспечить эти требования, особенно первое из них. Поэтому наиболее часто используют так называемый режим больших сигналов.
б. Режим больших входных сигналов
Этот режим устанавливается выбором рабочей точки на ВАХ транзистора, при котором усилитель работает с отсечкой тока. В свою очередь, выбором амплитуды несущего колебания обеспечивается изменение амплитуды импульсов тока коллектора по закону модулирующего сигнала (рис. 8.7). Это приводит к аналогичному изменению амплитуды первой гармоники коллекторного тока и, следовательно, изменению амплитуды напряжения на колебательном контуре модулятора, так как
и .
Рис. 8.7. Режим больших входных сигналов амплитудного модулятора
Изменение амплитуды входного высокочастотного напряжения во времени сопровождается изменением угла отсечки, а значит, и коэффициента . Следовательно, форма огибающей напряжения на контуре может отличаться от формы модулирующего сигнала, что является недостатком рассмотренного метода модуляции. Для обеспечения минимальных искажений необходимо устанавливать определенные пределы изменения угла отсечки и работать при не слишком большом коэффициенте модуляции .
В схеме амплитудного модулятора, приведенной на рис. 8.8, модулирующий сигнал подается на базу транзистора генератора стабильного тока. Значение этого тока пропорционально входному напряжению. При малых значениях входных напряжений амплитуда выходного напряжения будет зависеть от модулирующего сигнала следующим образом
,
где – коэффициенты пропорциональности.
Характеристики амплитудного модулятора
Для выбора режима работы модулятора и оценки качества его работы используют различные характеристики, основными из которых являются: статическая модуляционная характеристика, динамическая модуляционная характеристика и частотная характеристика.
Рис. 8.8. Схема амплитудного модулятора с генератором тока
а. Статическая модуляционная характеристика
Статическая модуляционная характеристика (СМХ) – это зависимость амплитуды выходного напряжения модулятора от напряжения смещения при постоянной амплитуде напряжения несущей частоты на входе, т.е. .
При экспериментальном определении статической модуляционной характеристики на вход модулятора подается только напряжение несущей частоты (модулирующий сигнал не подается), изменяется величина (как бы имитируется изменение модулирующего сигнала в статике) и фиксируется изменение амплитуды несущего колебания на выходе. Вид характеристики (рис. 8.9,а) определяется динамикой изменения средней крутизны ВАХ при изменении напряжения смещения. Линейный возрастающий участок СМХ соответствует квадратичному участку ВАХ, так как на этом участке с ростом напряжения смещения средняя крутизна растет. Горизонтальный участок СМХ соответствует линейному участку ВАХ, т.е. участку с постоянной средней крутизной. При переходе транзистора в режим насыщения появляется горизонтальный участок ВАХ с нулевой крутизной, что и отражается спадом СМХ
Статическая модуляционная характеристика позволяет определить величину напряжения смещения и приемлемый диапазон изменения модулирующего сигнала с целью обеспечения его линейной зависимости от выходного напряжения. Работа модулятора должна происходить в пределах линейного участка СМХ. Величина напряжения смещения должна соответствовать середине линейного участка, а максимальное значение модулирующего сигнала не должна выходить за пределы линейного участка СМХ. Можно также определить максимальный коэффициент модуляции , при котором еще нет искажений. Его величина равна .
Рис. 8.9. Характеристики амплитудного модулятора
б. Динамическая модуляционная характеристика
Динамическая модуляционная характеристика (ДМХ) – это зависимость коэффициента модуляции от амплитуды модулирующего сигнала, т.е. . Получить эту характеристику можно экспериментальным путем, либо по статической модуляционной характеристике. Вид ДМХ представлен на рис. 8.9,б. Линейный участок характеристики соответствует работе модулятора в пределах линейного участка СМХ.
в. Частотная характеристика
Частотная характеристика – это зависимость коэффициента модуляции от частоты модулирующего сигнала, т.е. . Влияние входного трансформатора приводит к завалу характеристики на низких частотах (рис. 8.9,в). С ростом частоты модулирующего сигнала боковые составляющие амплитудно-модулированного колебания удаляются от несущей частоты. Это приводит к их меньшему усилению в силу избирательных свойств колебательного контура, что обусловливает завал характеристики на более высоких частотах . Если полоса частот, занимаемая модулирующим сигналом, находится в пределах горизонтального участка частотной характеристики, то искажения при модуляции будут минимальны.
Балансный амплитудный модулятор
Для эффективного использования мощности передатчика применяют балансную амплитудную модуляцию. При этом формируется амплитудно-модулированный сигнал, в спектре которого отсутствует составляющая на несущей частоте.
Схема балансного модулятора (рис. 8.10) представляет собой сочетание двух типовых схем амплитудных модуляторов с определенными соединениями их входов и выходов. Входы по частоте несущего колебания соединены параллельно, а выходы подключены с инверсией относительно друг друга, образуя разность выходных напряжений. Модулирующий сигнал подается на модуляторы в противофазе. В результате на выходах модуляторов имеем
и , а на выходе балансного модулятора
.
Рис. 8.10. Схема балансного амплитудного модулятора
Таким образом, в спектре выходного сигнала имеются составляющие с частотами и . Составляющей с частотой несущего колебания нет.