в чем заключается энергетический смысл уравнения бернулли
Уравнение Бернулли
Уравнение Бернулли для потока идеальной жидкости
Запишем для этого случая уравнение, связывающее между собой скорость движения жидкости и ее давление в каждом сечении.
Указанное уравнение называют законом или уравнением Бернулли для элементарной струйки идеальной несжимаемой жидкости.
Уравнение Бернулли можно записать и в другом виде, умножим обе части уравнения на g получим:
Физический смысл уравнения Бернулли
Составляющие уравнения Бернулли являются различными формами удельной (отнесенной к единице массы) механической энергии жидкости:
Физический и энергетический смысл уравнения Бернулли заключается в постоянстве полной удельной энергии вдоль элементарной струйки идеальной жидкости.
Уравнение Бернулли отражает закон сохранения механической энергии для идеальной несжимаемой жидкости.
Уравнение Бернулли для потока реальной вязкой жидкости
Если на участке между расчетными сечениями не совершается механическая работа, а движение является установившимся, без притока и отбора жидкости, и сама жидкость является несжимаемой, то для потока будут справедливы зависимости:
Иллюстрация уравнения Бернулли
Для иллюстрации закона Бернулли на координатной плоскости, совмещенной с принципиальной гидравлической схемой системы изображают напорную и пьезометрическую линии.
Уравнение Бернулли для горизонтальной трубы
Для горизонтальных трубопроводов и силовых гидроприоводов, в которых пьезометрический набор существенно превышает геометрический удобна следующая форма записи уравнения Бернулли:
Алгоритм решения задач с помощью уравнения Бернулли
Задачи с помощью уровнения Бернулли удобно решать в следующей последовательности:
Энергетический смысл уравнения Бернулли
Определения
Элементарная струйка – струйка жидкости, боковая поверхность которой образована линией тока, проходящей через бесконечно малый замкнутый контур. Распределение скоростей по поперечному сечению элементарной струйки считается равномерным, по причине малости площади поперечного сечения, поэтому коэффициент Кориолиса равен единице.
Идеальная жидкость – модель жидкости, применяемая для расчётов реальных гидродинамических процессов.
Для идеальной жидкости приняты следующие допущения:
· отсутствуют касательные напряжения между слоями жидкости, следовательно,
отсутствует вязкость жидкости, следовательно, отсутствует трение между слоями жидкости, следовательно, в жидкости отсутствуют потери напора;
· жидкость является не сжимаемой;
· в жидкости отсутствует теплопроводность, т.е. жидкость не изменяет свой объём при изменении температуры;
· поток жидкости является сплошным, т.е. в жидкости отсутствуют места пустот или переуплотнений.
Виды уравнения Бернулли
Для элементарной струйки идеальной жидкости
Для элементарной струйки коэффициент Кориолиса равен единице, в идеальной жидкости отсутствуют потери, поэтому уравнение Бернулли будет иметь вид:
(1)
Для потока реальной жидкости
Для потока жидкости коэффициент Кориолиса будет иметь значение отличное от единицы, и зависеть от режима течения, для ламинарного режима α = 2, для турбулентного режима α = 1,05-1,1. Реальная жидкость имеет вязкость, следовательно, в реальной жидкости будут потери напора, поэтому уравнение Бернулли будет иметь вид:
Геометрический смысл уравнения Бернулли
Рассмотрим уравнение Бернулли для элементарной струйки идеальной жидкости (1).
В уравнении (1) все три слагаемых имеют линейную размерность [м]. Соответственно каждую высоту можно представить в виде реальных отрезков:
геометрическая высота, представляет собой расстояние от оси элементарной струйки (трубопровода) до поверхности земли.
пьезометрическая высота, показывает на какую высоту, может подняться жидкость под действием избыточного давления в данной точке, при условии, что на свободную поверхность действует давление внешней газообразной среды (т.е. атмосферное давление).
скоростная высота, показывает высоту, при падении с которой, частица жидкости достигла бы скорости .
Рис. 1 Иллюстрация геометрического смысла уравнения Бернулли.
1 – элементарная струйка; 2 – пьезометр; 3 – трубка Пито (прибор для измерения скоростной высоты).
Геометрический смысл уравнения Бернулли заключается в следующем: по длине элементарной струйки сумма трёх слагаемых уравнения Бернулли остаётся величиной постоянной и равной величине полного напора Н [м].
(2)
Энергетический смысл уравнения Бернулли
Умножим каждое слагаемое уравнения (2) на величину ускорения свободного падения:
В итоге получаем слагаемые, который можно описать с точки зрения энергии:
где удельная потенциальная энергия положения, т.е. если поднять жидкость массой 1 кг на высоту , то она будет иметь потенциальную энергию ;
удельная потенциальная энергия давления;
удельная кинетическая энергия;
полная удельная механическая энергия элементарной струйки.
Энергетический смысл уравнения Бернулли заключается в следующем: по длине элементарной струйки сумма трёх удельных энергий остаётся величиной постоянной и равной величине полной удельной механической энергии Е [Дж]. Возможна и другая формулировка: уравнение Бернулли – это есть закон сохранения энергии для элементарной струйки (потока) жидкости, который отображает взаимный переход кинетической и потенциальной энергии.
Потери
В потоке реальной жидкости в уравнение Бернулли добавляется слагаемое , которое
представляет собой величину потерь напора. Запишем уравнение Бернулли для двух произвольных сечений потока жидкости:
С геометрической точки зрения потери отображаются отрезком, расположенным над скоростным напором, при этом потери отображаются во втором сечении.
Рис. 2. Иллюстрация потерь напора.
С энергетической точки зрения это величина, показывающая, сколько энергии жидкость тратит на преодоление различных сопротивлений при переходе из первого сечения во второе сечение.
6. Порядок проведения расчётов:
1. Определить величину расхода жидкости:
2. Поскольку диаметры d1=d3, дальнейшие расчёты для широких частей трубопровода будут одинаковы. Поэтому будем проводить расчёт для одной широкой части трубопровода, при этом параметры жидкости, обозначая через индекс 1-3
Определить площади поперечного сечения трубопроводов S1-3, S2 [м];
3. Определить скорость течения жидкости:
4. Определить режим течения жидкости:
5. Определить величины скоростного напора: ;
6. На листе А4 построить график, зависимости изменения пьезометрического напора от
длины сечения трубопровода.По оси Х откладываются расстояния между точками, к которым подключены пьезометры. Расстояния равны: А=25см, В=12,5 см
Рис. 3 Условное изображение исследуемого
трубопровода с точками подключения пьезометров.
По оси Y откладываются показания соответствующих пьезометров. В результате получится шесть точек, который соединяются ломаной линией. Поскольку экспериментальные исследования проводились для трёх различных случаев, поэтому в результате мы имеем три графика в одной системе координат.
7. На листе А4 построить график, зависимость изменения скоростного напора от длины
сечения трубопровода.По оси Х откладывается расстояние между точками, к которым подключены пьезометры. Расстояния равны: А=25см, В=12,5 см.
По оси Y откладываются значения скоростного напора. Поскольку экспериментальные исследования проводились для трёх различных случаев, поэтому в результате мы имеем три графика в одной системе координат.
8. Вывод о работе с описанием графиков
Таблица 1. Результаты опыта
ГЕОМЕТРИЧЕСКИЙ И ЭНЕРГЕТИЧЕСКИЙ СМЫСЛ УРАВНЕНИЯ БЕРНУЛЛИ
Уравнение Бернулли (2.26) при v = 0 принимает вид
,
т.е. переходит в основное уравнение гидростатики.
Таким образом, основное уравнение гидростатики является частным случаем уравнения Бернулли.
Определим размерность каждого члена уравнения Бернулли и его смысл. Первый член z имеет линейную размерность L и характеризует высоту положения струйки (потока) над горизонтальной плоскостью x0y. Таким образом, плоскость x0y является плоскостью сравнения. Величина z называется геометрической высотой положения или геометрическим напором.
Второй член p/rg также имеет линейную размерность:
.
Он называется пьезометрической высотой или пьезометрическим напором, соответствующим давлению (абсолютному или избыточному).
Третий член уравнения v 2 /2g, как и предыдущие два, тоже имеет линейную размерность
.
Он представляет собой высоту, на которую при отсутствии сопротивлений поднялся бы столб жидкости, начавший двигаться вертикально вверх со скоростью v. Поэтому этот член называется скоростной высотой или скоростным напором.
Рис. 2.4. Иллюстрация уравнения Бернулли
Энергетический смысл уравнения Бернулли вытекает из того, что каждый член уравнения представляет собой удельную энергию, т.е. энергию, отнесенную к единице веса жидкости. Для того чтобы доказать это, рассмотрим, например, второй член уравнения p/rg. Размерность этого члена, как было показано выше, является линейной. С другой стороны, можно показать, что размерность этого члена является размерностью удельной энергии. Действительно,
,
Энергетический смысл уравнения Бернулли для установившегося движения идеальной несжимаемой жидкости заключается в том, что сумма удельных потенциальных энергий положения и давления и удельной кинетической энергии есть величина постоянная. Очевидно, что уравнение является аналогом закона сохранения энергии.
Решение задач с использованием уравнения Бернулли выполняется в следующем порядке:
1) выбирается плоскость сравнения, т.е. плоскость, от которой отсчитывается величина z; плоскостью сравнения может служить любая горизонтальная плоскость;
2) принимаются два сечения по длине потока (струйки) жидкости, перпендикулярные направлению движения жидкости, причем второе сечение всегда должно быть после первого в направлении движения;
3) записывается уравнение Бернулли для двух сечений, заданные величины и искомая величина.
Для случая, когда из массовых сил на идеальную однородную жидкость действует только сила тяжести при установившемся движении, уравнение Бернулли можно вывести и менее громоздким методом, чем приведенный выше.
Рассмотрим участок элементарной струйки длиной dl (рис. 2.5) сечением dw. По длине струйки давление и скорость изменяются. На струйку действуют силы давления, тяжести и инерции.
Соответствующие составляющие, проектируемые на ось l, будут равны
Рис. 2.5. Элементарная струйка с действующими на нее силами
Знак минус в последнем выражении показывает, что сила инерции направлена в сторону, противоположную ускорению. Проекция силы тяжести положительна, так как она совпадает с направлением оси l, а проекция силы давления отрицательна, потому что в случае покоящейся жидкости эта сила должна уравновешивать силу тяжести. Уравнение равновесия будет иметь вид
. (2.28)
После сокращения на dl dw и деления каждого члена на r получим
. (2.29)
С учетом того, что ,
. (2.30)
Отсюда . (2.31)
Выражение (2.31) можно переписать в виде
. (2.32)
После интегрирования и деления на g получается уравнение Бернулли для установившегося движения несжимаемой идеальной жидкости
.
Дата добавления: 2014-11-13 ; просмотров: 253 ; Нарушение авторских прав
В чем заключается энергетический смысл уравнения бернулли
Уравнение Бернулли для реальной и идеальной жидкости
Уравнение Бернулли позволяет выполнить расчет водоснабжения и отопления: Подобрать диаметры и насосы. В этой статье будет расписан энергетический и геометрический смысл уравнения Бернулли.
График Бернулли и уравнение Бернулли для идеальной жидкости:
График Бернулли и уравнение Бернулли для реальной жидкости:
Смысл уравнения Бернулли
Смысл уравнения Бернули в том, чтобы показать, что внутри системы заполненной жидкостью (участка трубопровода) сохраняется общая энергия между разными точками. То есть на участке трубопровода необходимо выделить две точки, и эти две точки равны друг другу по значению полной энергии. Полная энергия состоит из потенциальной и кинетической энергии.
Назначение уравнения Бернули
Понять, как распределяется давление в системе трубопроводов. А также с помощью уравнения находить неизвестные параметры внутри системы. Например, найти давление в каждой течке пространства системы заполненной жидкостью.
Подробнее на видео: (для запуска видео кликните по окошку) На видео намного больше информации
Задача. Пример решения уравнения Бернулли
По решению задачи необходимо найти давление в точке 2 при известных параметрах: давление и расход.
Как понять уравнение Бернулли?
Для расчета уравнения Бернулли необходимо выбрать две точки в пространстве
Точка 1 – это место где известно давление
Точка 2 – это место где нужно узнать давление
Поймите, что каждый кусок формулы измеряется давлением: м.в.ст. (метр водяного столба)
То есть для того, чтобы быстро считать гидравлику систем водоснабжения и отопления, необходимо меньше всего выражаться в Барах, Паскалях и тому подобное.
Проще выражать давление в единице измерения: м.в.ст. (метр водяного столба)
Вы этим самым упростите себе жизнь… просто другая единица это еще один процесс, который отнимает время.
Сборка формулы уравнения Бернулли
Как избавится от минуса?
Как избавится от множителя (-1)?
Что такое идеальная жидкость?
Формула Бернулли для реальной жидкости
Коэффициент Кориолиса – это поправка кинетической энергии на реальную жидкость.
Потому что реальная жидкость движется не равномерно
У реальной жидкости серединная струйка воды движется быстрее остальных. При ламинарном режиме градиент: Чем ближе к стенке, тем медленнее движется поток воды.
Формула коэффициента Кориолиса
Что такое коэффициент Кориолиса?
Коэффициент Кориолиса характеризует отношение действительной кинетической энергии потока жидкости в данном сечении к той кинетической энергии потока, которую он имел бы, если бы все частицы двигались с одинаковой скоростью, равной средней скорости потока.
Чему равен коэффициент Кориолиса?
Нд.п. – Это динамические потери. Это потери вызванные движением воды.
Имеются дополнительные задачи с уравнением Бернули на реальную жидкость:
Посмотрите видеоурок по составлению уравнения Бернулли:
Как сделать гидравлический расчет погружного насоса?
Лекция 4
4.1. Уравнение Бернулли для жидкости
Рассмотрим поток жидкости, проходящий по трубопроводу переменного сечения (рис. 10). В первом сечении гидродинамический напор пусть равен H1. По ходу движения потока часть напора H1 необратимо потеряется из-за проявления сил внутреннего трения жидкости и во втором сечении напор уменьшится до H2 на величину потерь напора H.
Уравнение Бeрнýлли для жидкости в самом простейшем виде записывается так:
то есть это уравнение для двух сечений потока в направлении его течения, выраженное через гидродинамические напоры и отражающее закон сохранения энергии (часть энергии переходит в потери) при движении жидкости.
Уравнение Бeрнýлли в традиционной записи получим, если в последнем равенстве раскроем значения гидродинамических напоров H1 и H2 (м) :
.
Энергетический смысл уравнения Бeрнулли заключается в том, что оно отражает закон сохранения энергии: сумма потенциальной z+hp, кинетической v2/2g энергии и энергии потерь H остаётся неизменной во всех точках потока.
4.2. Геометрическая интерпретация уравнения Бернулли
Положение любой частицы жидкости относительно некоторой произвольной линии нулевого уровня 0-0 определяется вертикальной координатой Z. Для реальных гидравлических систем это может быть уровень, ниже которого жидкость из данной гидросистемы вытечь не может. Например, уровень пола цеха для станка или уровень подвала дома для домашнего водопровода.
· Как и в гидростатике, величину Z называют нивелирной высотой.
· Сумма первых двух членов уравнения ¾ гидростатический напор.
· Третье слагаемое в уравнения Бернулли называется скоростной высотой или скоростным напором. Данную величину можно представить как высоту, на которую поднимется жидкость, начавшая двигаться вертикально со скорость u при отсутствии сопротивления движению.
· Сумму всех трёх членов (высот) называют гидродинамическим или полным напором и, как уже было сказано, обозначают буквой Н.
Все слагаемые уравнения Бернулли имеют размерность длины и их можно изобразить графически.
4.3. Энергетическая интерпретация уравнения Бернулли
Выше было получено уравнение Бернулли с использованием энергетических характеристик жидкости. Суммарной энергетической характеристикой жидкости является её гидродинамический напор.
С физической точки зрения это отношение величины механической энергии к величине веса жидкости, которая этой энергией обладает. Таким образом, гидродинамический напор нужно понимать как энергию единицы веса жидкости. И для идеальной жидкости эта величина постоянна по длине. Таким образом, физический смысл уравнения Бернулли это закон сохранения энергии для движущейся жидкости.
.
Физический смысл слагаемых, входящих в уравнение следующий:
· — полная потенциальная энергия единицы веса жидкости;
4.4. Уравнение Бернулли для потока реальной жидкости
В реальных потоках жидкости присутствуют силы вязкого трения. В результате слои жидкости трутся друг об друга в процессе движения. На это трение затрачивается часть энергии потока. По этой причине в процессе движения неизбежны потери энергии. Эта энергия, как и при любом трении, преобразуется в тепловую энергию. Из-за этих потерь энергия потока жидкости по длине потока, и в его направлении постоянно уменьшается. Т. е. напор потока Hпотока в направлении движения потока становится меньше. Если рассмотреть два соседних сечения 1-1 и 2-2, то потери гидродинамического напора Δh составят:
,
где H1-1— напор в первом сечении потока жидкости,
С учётом потерь энергии уравнение Бернулли для потока реальной жидкости будет выглядеть
Индексами 1 и 2 обозначены характеристики потока в сечениях 1-1 и 2-2.
Если учесть, что характеристики потока V и α зависят от геометрии потока, которая для напорных потоков определяется геометрией трубопровода, понятно, что потери энергии (напора) в разных трубопроводах будут изменяться неодинаково. Показателем изменения напора потока является гидравлический уклон I, который характеризует потери напора на единице длины потока. Физический смысл гидравлического уклона – интенсивность рассеяния энергии по длине потока. Другими словами, величина I показывает, как быстро трубопровод поглощает энергию потока, протекающего в нём
.
Изменение энергии по длине потока удобно проследить на графиках. Из уравнения Бернулли для потока реальной жидкости (закона сохранения энергии) видно, что гидродинамическая линия для потока реальной жидкости (с одним источником энергии) всегда ниспадающая. То же справедливо и для пьезометрической линии, но только в случае равномерного движения, когда скоростной напор а уменьшение напора происходит только за счёт изменения потенциальной энергии потока, главным образом за счёт уменьшения давления P.
4.5. Разность напоров и потери напора
Различие в применении терминов «разность напоров» и «потери напора» с одним и тем же обозначениемH поясним на примерах.
Таким образом, «разность напоров» является причиной движения воды, а «потеря напора» — следствием. При установившемся движении жидкости они равны. Измеряются они в одних и тех же единицах СИ: метрах по высоте.
Обычно в гидравлических задачах при известных v или q определяемая величина H назывется потерей напора и, наоборот, при определении v или q известная H — разностью напоров.
4.6. Связь давления и скорости в потоке
Связь давления и скорости в потоке жидкости — обратная: если в каком-то месте потока скорость увеличивается, то давление здесь малó, и, наоборот, там, где скорости невелики, давление повышенное. Эту закономерность объясним на основе уравнения Бернýлли.
Рассмотрим работу водоструйного насоса (см. рис. 11). На подходе по нагнетательному трубопроводу 1 поток рабочей жидкости имеет относительно небольшую скорость v1 и высокое избыточное давление pизб1. Проходя через соплó 2, поток сужается, скорость его резко возрастает до v2. Для дальнейших рассуждений запишем уравнение Бернýлли так:
.
Здесь нет z1 и z2, так как труба горизонтальная, а величиной потерь напора DH» 0 пренебрегаем. Так как в правой части уравнения кинетическая составляющая энергии потока резко возросла из-за увеличения v2, то потенциальная составляющая, связанная с избыточным давлением после соплá pизб2, наоборот, уменьшится. Величину pизб2 можно выразить из этого уравнения и найти численное значение. Если pизб2 получается отрицательным, то, значит, возник вакуум (полное давление в струе стало меньше атмосферного). В последнем случае пьезометрическая линия опустится ниже отметки самой струи (см. рис 11).
Таким образом в струе рабочей жидкости после соплá образуется область пониженного давления или даже вакуум, что вызывает подсос транспортируемой жидкости по всасывающему трубопроводу 3 (см. рис. 11). Далее обе жидкости смешиваются в горловине 4 и транспортируются по отводящему трубопроводу 5.
Водоструйные насосы не имеют трущихся частей, в этом их преимущество перед механическими. По их принципу работают также эжекторы, гидроэлеваторы, насосы для создания вакуума.