в чем выражается радиация

Нормы радиации в помещении

Радиоактивное излучение окружает нас повсюду, в какой-то мере его имеют все предметы и даже сам человек. Представляет опасность не сама радиация, а когда её значение превысит некоторые значения. Одно дело, если человек подвергся радиации кратковременно и совсем другое, когда она воздействует длительное время, например, проживает в заражённой квартире. Забегая вперёд скажем, что для человека безопасная норма радиации определена в пределах 30 микрорентген в час (мкР/ч). Существуют ещё несколько единиц измерения. Другие нормы и единицы её измерения обсудим ниже.

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация Что такое радиоактивность

Что такое радиация

Радиация — это вид излучения заряженными частицами. Такое излучение, воздействуя на окружающие предметы, ионизирует вещество. В случае с человеком она не только ионизирует клетки, но и разрушает их или вызывает раковые заболевания.

Большинство элементов таблицы Менделеева инертны и безвредны, но некоторая часть имеет нестабильное состояние. Не вдаваясь в подробности описать её, можно так. Атомы некоторых веществ из-за непрочных внутренних связей распадаются. Это распад сопровождается выбросом альфа, бета-частиц и гамма-излучением.

Такой выброс сопровождается высвобождением энергии с различной проникающей способностью и оказывающем разное воздействие на ткани организма.

Виды радиации

Существует несколько видов радиоактивности, которые можно разделить на неопасные, малоопасные и опасные. Подробно останавливаться на них не будем скорее это для понимания с, чем можно столкнуться в помещении. Итак, это:

Альфа-излучение, бета и нейтронное представляют собой облучение частицами. Гамма и рентгеновское — это электромагнитное излучение.

В быту вам вряд ли предстоит встретиться с рентгеновским и нейтронным, так как они специфичны, а вот с остальными можно. Каждое из этих видов излучений имеет разную степень опасности, но, кроме этого, должно учитываться, какое количество облучения получил человек.

В чём измеряется радиация

Единиц измерения радиации несколько, но в основном на пользовательском уровне предпочитается рентген, ассоциативно связанный с ней. На таблице ниже они приведены. Рассматривать подробно их не будем, так как при необходимости узнать радиоактивный фон в квартире будут нужны, пожалуй, только 2.

На практике больше в ходу системная единица Зиверт (Зв), мЗв – миллизиверт, мкЗв – микрозиверт, названная в честь учёного Рольфа Зиверта. Зиверт единица измерения эквивалентной дозы, выражается в количестве энергии полученной на килограмм массы Дж/кг.

Выражение радиации в Рентгенах также используется хоть и менее широко. Однако конвертировать рентгены в зиверты не составит труда.

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация Уровень радиации которую может получить человека на процедурах и жизни

Надзор и нормативные документы

Надзор в этой сфере осуществляет Роспотребнадзор специальными службами. Контроль за состоянием радиоактивного загрязнения окружающей природной среды осуществляется Федеральной службой России по гидрометеорологии и мониторингу окружающей среды, а за уровнем радиационной безопасности населения — органами Министерства здравоохранения РФ.

В России дозы радиации для человека устанавливает СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности НРБ-99/2009» и ОСПОРБ-99. По ним предельно допустимая доза радиации для человека составляет не более 5 мЗв или 0,5 БЭР, или 0,5 Р в год.

Нормы для человека

За длительные годы исследования радиации были определены безопасные и максимальные дозы. К сожалению, не только опытным путём, но и на практике. Такие события, как Хиросима и Чернобыль не прошли даром для планеты. Годы наблюдений за излучением показали, что превышение допустимой дозы радиации оставляет отпечаток на всех последующих поколениях.

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация Физические величины в которых измеряется радиация

Радиационный фон

С момента зарождения земли прошло 4,5 миллиарда лет, за это время радиоактивность, которая во время её формирования была просто гигантской, сошла почти на нет. Существующий естественный фон, который в нашей стране составляет 4–15 мкР в час, складывается из нескольких составляющих. Это:

Норма радиационного фона является значение до 0,20 мкЗв/час или 20 мкР/час. Допустимый фон считается уровень до 60 мкР/час или 0,6 мЗв. Для каждой страны он устанавливается свой, например, в Бразилии безопасный радиоактивный фон составляет 100 мкР в час.

Безопасная доза

Безопасной дозой радиации для человека является уровень, при котором можно жить и работать без последствий для организма. Этот уровень определён до 30 мкР/ч (0,3 мкЗв/час).

Допустимая доза

Допустимая доза радиации несколько больше безопасной и показывает уровень, при котором на организм оказывается воздействие радиации, но без негативных последствий для здоровья.

Допустимый уровень в год предполагает до 1 мЗв. Если это значение поделить на часы, то получим 0,57 мкЗв/ч.

Эта доза применяется и для расчёта среднего значения полученного излучения за несколько лет. Например, человек за 5 лет подряд должен получить 5 мЗв, но работая на вредном производстве, получил годовую в 3 мЗв. Следующие 4 года он не должен получить более 1 мЗв, чтобы выровнять значения и уменьшить риск заработать лучевую болезнь.

При полётах на высоте выше 10 км уровень излучения будет до 3 мкЗв/ч, что превышает норму в 10 раз. Получается, что за 4 часа можно получить максимальную, суммарную дозу до 12 мкЗв.

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация Излучение которое можно полечить в полёте

Смертельный уровень облучения

Опасной дозой можно принять уровень в 0,75 Зв. При таком значении происходит изменение в крови человека и хоть не бывает смертельных исходов сразу, но в будущем вероятность раковых заболеваний довольно высока.

Если исходить из статистики, то смертельной будет доза выше 7 Зиверт или 700 рентген.

Измерение радиации в квартире

Уровень радиации в помещении не должен превышать 0,25 мкЗв/час. Безопасным считаются помещение, в которых содержание радона не более 100 Бк на кубометр. При этом в производственных помещениях он может составлять до 300 Бк и 0,6 микроЗиверт.

Если нормы превышены, то принимаются меры к их снижению. При невозможности это сделать жильцы должны быть переселены, а помещение перепрофилировано в нежилое или идти под снос.

В СанПиН указано содержание тория, урана и калия-40 используемых на строительстве для возведения жилья. Общая доза от стеновых и отделочных материалов не должна быть выше 370 Бк/кг.

Материалы с повышенной радиоактивностью

При строительстве в советское время все материалы проходили проверку по ГОСТ. Поэтому разговоры о том что «хрущёвские» пятиэтажки имеют радиоактивность, не более чем миф. Основным источником радиации в квартире или любом другом помещении является газ радон.

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация Средняя радиоактивность некоторых строительных материалов

Основные строительные материалы: бетон, кирпич и дерево не представляют опасности и являются самыми безвредными. Однако в строительстве и в быте мы используем материалы, выделяющие довольно большое количество радона. К ним относятся:

Все материалы залегающие или добытые из земной коры могут иметь повышенный уровень радиации. Поэтому неплохо контролировать её самостоятельно.

Чем проверить наличие радиации

Проверить уровень радиации может возникнуть при покупке новой квартиры, квартиры в неблагополучном районе или использовании подозрительных материалов на строительстве дома. У человека нет органов чувств способных почувствовать радиацию и оценить опасность. Поэтому для её обнаружения необходимо наличие специализированных приборов — дозиметров.

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация Бытовые дозиметры для измерения радиации

Они могут быть бытовыми, профессиональными, промышленными или военными. В качестве чувствительного элемента могут использоваться различные датчики: газоразрядные, сцинтилляционные кристаллы, слюдяные счётчики Гейгера-Мюллера, термолюминесцентные лампы, пин-диоды.

Для замеров в домашних условиях нам доступны бытовые дозиметры. В зависимости от прибора он может выводить показания на дисплей в мкЗв/ч или мкР/ч. Некоторые приборы более близкие к профессиональным могут показывать в обоих вариантах. Следует учитывать, что бытовые дозиметры имеют довольно высокий уровень погрешности измерений.

Источник

Немножко про радиацию

Вред радиации

Каков ответ на вопрос «вредна ли радиация»? Такой же, как и на вопросы «вредна ли температура?» или «вреден ли свет?». Вредно не само явление, а выход его численных параметров за оптимальные для жизни пределы. Многочисленные опыты на животных показали небольшое увеличение средней продолжительности жизни, усиление иммунитета и т.д. при некотором дополнительном, относительно природного, облучении. Они же показали уменьшение всех этих параметров при дальнейшем увеличении дозы радиации. Разумеется, не было никакой универсальной для всех видов животных дозы, дающей оптимальный результат, у всех она разная. Никто не знает, какой уровень радиации был бы идеальным для человека, т.к. для этого пришлось бы поставить контролируемые опыты на десятках тысяч людей.

Какова чувствительность человека к радиационному облучению? Достаточно низкая. Природный уровень радиации в разных уголках планеты меняется крайне значительно. Если в среднем по всей Земле человек получает дозу 2,4 мЗв в год, то в некоторых местах — лишь 1 мЗв, а в других — 10, а то и 15-20 с лишним. Но никаких достоверных данных, показывающих, что этот разброс оказывает влияние на здоровье, не обнаружено. Так, например, повышенным дозам облучения подвергаются жители Швейцарии, которая славится высокой продолжительностью жизни своих граждан. Ещё больше дозы радиации получают космонавты — около 0,5 мЗв в… день! Т.е. за месяц они получают столько, сколько жители самых радиоактивных уголков планеты за год.

Конечно, это не повод лезть на экскурсию под саркофаг четвёртого энергоблока ЧАЭС. Там вы за минуту получите дозу больше, чем за месяц на МКС, а такое облучение совершенно достоверно оказывает крайне неблагоприятное влияние на продолжительность жизни. Но и бояться всего и вся тоже не стоит.

Единицы измерения радиации

В прошлом разделе я всюду использовал единицу «мЗв». Это — «миллизиверт». Давайте разберёмся, что это такое, и какие вообще единицы измерения тут есть.

Начнём с того, что на слуху — рентгена (Р). В рентгенах измеряется только исключительно рентгеновское и гамма-излучение. Этой единицей измеряют так называемую экспозиционную дозу, т.е. то, сколько ионов рождает излучение в сухом воздухе. Она предельно удобна при измерениях с помощью ионизационной камеры, т.к. этот тип датчика измеряет именно количество ионов (точнее — их суммарный заряд). Дозу в рентгенах можно получить напрямую, в то время как все остальные дозы измеряются опосредованно, оставляя простор для ошибок измерений. Но, с другой стороны, эта доза не указывает напрямую то, какой вред излучение наносит человеку, да и для бета- и альфа-излучения с прочими нейтронами ею пользоваться нельзя, она для них не определена.

Следующая единица — это рад. Рад — это единица поглощённой дозы любого излучения. Т.е. то, сколько энергии ионизирующего излучения поглотила единица массы вещества. Рад равен 100 эрг на 1 грамм или 0,01 Дж на 1 кг. Также в радах измеряется керма. Керма — это сколько кинетической энергии получают заряженные частицы вещества при поглощении этим веществом ионизирующего излучения, не несущего заряд (гамма, нейтроны). В большинстве случаев поглощённая доза и керма весьма точно совпадают, так что не забивайте себе этим голову. Если воздух поглотит 0,88 рад гамма-излучения, то в нём появится ионов на 1 Р. Можно условно сказать, что 1 Р = 0,88 рад, а 1 рад гамма-излучения равен 1,14 Р. Впрочем, т.к. всё равно воздух неточно соответствует тканям человека, да и ткани есть разные, плюс погрешность дозиметров редко бывает меньше 20%, обычно считают 1 Р = 1 рад. Недостатком рада, а точнее — поглощённой дозы, является то, что она не учитывает существенно разное действие на организм различных видов излучения.

Следующая единица — это биологический эквивалент рада (бэр). Бэр — это единица эквивалентной дозы. Т.е. тут учитывается, что быстрые нейтроны при той же энергии нанесут в 10, а альфа-частицы — в 20 раз больше вреда организму, чем гамма- или бета-излучение. Соответствующие коэффициенты есть (или могут быть получены) для абсолютно любых видов ионизирующего излучения. Также в бэрах измеряется эффективная доза, в которой учитывается различная чувствительность разных органов. Если человек облучается полностью равномерно, то эквивалентная и эффективная доза совпадают, но в случае, если какие-то части тела облучаются сильнее, а какие-то слабее, могут быть заметные различия. Так, например, руки выдерживают весьма большие дозы, а вот спинной мозг очень чувствителен к облучению. В бэрах также измеряется амбивалентный эквивалент дозы — такая «сферическая доза в вакууме». Без шуток, она определена для 30 см шара строго нормированного состава, используется для всяких тестов, моделирования и т.д.

Далее у нас идёт грей (Гр). Грей — это аналог рада в системе СИ. 1 Гр = 1 Дж/кг = 100 рад.

Ну и, наконец, зиверт (Зв). Это — аналог бэра в СИ. 1 Зв = 100 бэр. Соответственно, мЗв, который я использовал в первом разделе, равен 0,001 Зв или 0,1 бэр.

Кроме дозы есть ещё активность радиоактивного вещества. Т.е. то, сколько распадов в нём происходит за определённое время. Активность измеряют либо в кюри (Ки), либо в беккерелях (Бк). Кюри — активность одного грамма радия-226, очень большая величина. Беккерель — один распад в секунду, очень малая величина. 1 Ки = 37 ГБк.

Чтобы было проще ориентироваться, приведу некоторые числа:
— уровень гамма-радиации в моей комнате примерно 7 мкР/ч, 0,07 мкГр/ч и 0,07 мкЗв/ч (мощности соответственно экспозиционной, поглощённой и эквивалентной доз). Уровень гамма-радиации на отделанных гранитом платформах Московского метро примерно вдвое выше (плюс доза альфа-облучения лёгких от повышенного уровня радона);
— единовременная доза, при которой может начаться лучевая болезнь — 100 Р, 1 Гр и 1 Зв;
— активность природного радиоактивного калия-40 в банане составляет примерно 20 Бк, в килограмме бананов — 130 Бк.

Приборы измерения радиации

В принципе есть огромное количество разных приборов и методов измерения радиации, но я тут расскажу только о том, с чем в принципе может столкнуться человек, не работающий в соответствующих направлениях.

В магазинах вы можете встретить «индикаторы радиоактивности», «дозиметры» и «дозиметры-радиометры».

Первые — это приборы, которые не проходят сколько-нибудь существенных испытаний и вообще на точность измерений не претендуют. Почти всегда они сделаны на базе счётчика Гейгера типа СБМ-20. Реже — на базе миниатюрного СБМ-21 или на базе чувствительных к альфа-излучению счётчиков, например Бета-1 или Бета-2. Многие считают, что такие приборы могут занижать показания. Некоторые «профессионалы» заявляют, что при низкой энергии гамма-излучения, на уровне 30-100 кэВ, приборы на СБМ-20 и СБМ-21 занижают в разы, а ниже вообще не фиксируют. Мой же опыт показывает, что всё с точностью до наоборот: при низкой энергии гамма-излучения (опыты ставились с 59 кэВ) они в разы завышают свои показания. Конечно, гамма-излучение совсем низкой энергии они не зафиксируют, но оно и не представляет большой опасности, т.к. поглощается ещё в коже. Бета-1 и Бета-2 фиксируют все виды излучения, причём ещё сильнее завышают показания при низкой энергии гамма-излучения.

Дозиметром честный производитель обычно называет прибор, точности измерения которым уделялось какое-никакое внимание. Чаще всего они тоже сделаны на базе СБМ-20, но тот уже закрыт специальным съёмным фильтром, который ослабляет гамма-излучение низкой энергии и полностью поглощает бета-излучение. Это позволяет точно измерить уровень гамма-излучения в широком диапазоне энергий. Также эти приборы обычно умеют интегрировать показания за длительное время, показывая не только мощность дозы, но и саму дозу. Приборы по-лучше содержат датчики Бета-1, Бета-2 или другие со слюдяным окном для бета-излучения низкой энергии и альфа-излучения, тоже оснащены фильтрами. Совсем дорогие приборы могут использовать полупроводниковые или сцинтилляторные датчики, которые имеют огромную чувствительность к гамма-излучению и не просто фиксируют частицы, а измеряют их энергию. Это позволяет максимально точно измерить дозу, а некоторые модели даже умеют определять изотопы, которые вызывают облучение. Впрочем, полупроводники и сцинтилляторы могут сыграть злую шутку: у них чувствительность очень сильно зависит от энергии, так что измерять её не просто можно, а обязательно нужно. И нужно качественно учесть зависимость чувствительности от энергии. Если такой датчик воткнули в прибор только для громкой надписи «сцинтилляторный», то точность измерений у него может быть хуже, чем у дешёвых индикаторов радиоактивности.

Дозиметр-радиометр — это прибор, который кроме дозы гамма-излучения измеряет ещё и поток бета-частиц (при соответствующих датчиках — и альфа). Два предыдущих пункта тоже фиксируют бета-излучение (дозиметры — при снятом фильтре), но они продолжают пересчитывать показания в рентгены или зиверты, как если бы это было гамма-излучение. Результат получается абсолютно неправильным: если для гамма-излучения вероятность фиксации частицы счётчиком Гейгера прямо пропорциональна его энергии в довольно широком диапазоне (где-то от 0,3 до 1,5 МэВ), причём этот диапазон расширяется фильтрами вниз где-то до 0,03-0,05 МэВ, то для бета-излучения ничего подобного нет. В первом приближении выше определённой границы энергии датчик фиксирует почти все бета-частицы, а ниже — ни одной. Аналогично и с альфа-излучением (если счётчик его в принципе фиксирует). Радиометру же можно «сказать», что ты сейчас измеряешь бета-излучение, и тогда он будет пересчитывать показания в число частиц на квадратный сантиметр площади сечения датчика в единицу времени. Сначала измеряешь с фильтром, чтобы выяснить гамма-фон, потом без него, вычитаешь из второго первое — и вот поток бета-частиц. Для альфа всё тоже самое, только там ещё добавляется второй фильтр, который задерживает его, но пропускает бета-частицы. Иногда он встроен, иногда надо самому брать подручный, типа листа бумаги.

Есть ещё программные дозиметры для смартфонов, использующие закрытую непрозрачным материалом фотокамеру в роли эрзац детектора. Они реально работают, но по моему опыту ждать от них точности не приходится, могут ошибаться в разы в любую сторону.

Стоит также отметить, что при небольших уровнях радиации показания всех приборов оказываются не слишком точными: они фиксируют за цикл измерения лишь порядка десятка частиц, так что статистическая погрешность становится сравнимой с измеряемой величиной. Если сейчас прибор показывает 0,07 мкЗв/ч, а через минуту — 0,14 мкЗв/ч, это абсолютно не значит, что уровень радиации возрос в два раза. Скорее всего он как был 0,10 мкЗв/ч, так и остался.

Ещё замечание на счёт собственно измерений: нужно их проводить так, чтобы датчик прибора можно было считать точечным. Т.е. либо источник радиации, либо расстояние от него до датчика должно быть в разы больше самого датчика. Если вы тыкаете каплей радиевой краски на кончике тумблера в центр какой-нибудь Бета-2, то в разных точках датчика уровень радиации отличается на несколько порядков. Что датчик в таких условиях измеряет — «одному Богу известно». Измерения «на поверхности» допустимы либо для больших источников (загрязнённый грунт, например), либо когда мы не стремимся именно измерить, а лишь с максимальной чувствительностью зафиксировать факт наличия излучения.

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация
Индикатор радиоактивности на месте радиоактивного заражения

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация
Профессиональный сцинтилляторный дозиметр на месте радиоактивного заражения (уровень радиации — цифры внизу)

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация
Программный дозиметр. В данном конкретном случае в 3-4 раза занижает показания

Радиация в быту

Также эти все вещи совершенно законно использовать без специальных разрешений: лишь однажды мне попался манометр, уровень излучения которого выходил за допустимые для безлицензионного использования пределы (1 мкЗв/ч на расстоянии 10 см от поверхности), но он был от истребителя МИГ-21. Впрочем, законы у нас в стране выполняются не-очень… «Специалисты» запросто могут заявить, что всё, что имеет уровень радиации более 30 мкР/ч прямо на поверхности, необходимо изымать. А судьи не очень-то разбираются в таких тонкостях, как нормы радиационной безопасности… Имеется как минимум один прецедент, когда у человека суд отобрал объектив, и не посадили только потому, что он про его радиоактивность не знал. По всем официальным нормам этот объектив можно было использовать.

Реально большую опасность представляют только промышленные источники радиации, действующие рентгеновские аппараты и неконтролируемые аварийные выбросы. К счастью, столкнуться с ними простому человеку не так-то просто. Хотя история прецеденты знает…

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация
Плутониевый источник из датчика дыма РИД-1. Тот самый, про который рассказывают страшилки в статье, спровоцировавшей написание этого текста. Пока цел, существенной опасности не представляет.

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация
Относительно безопасный прибор с радиевой подсветкой

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация
Большое скопление относительно безопасных приборов может быть уже не таким безопасным

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация
Редкий пример прибора с радиевой подсветкой, в десяток с лишним раз выходящий за допустимые пределы

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация
Промышленный источник, который может представлять реальную опасность

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация
Заражённая местность

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация
Результат неконтролируемого аварийного выброса полвека назад

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация
Активная зона ядерного реактора

Источник

В чем выражается радиация

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация

Острое воздействие на здоровье, такое как ожог кожи, может возникнуть, когда доза облучения превышает определенные уровни. Низкие дозы ионизирующего излучения увеличивают риск развития более долгосрочных последствий, таких как рак. Впервые повреждающее действие ионизирующего излучения было описано в 1896, когда у ряда больных, которым делали рентгеновские снимки, а также у врачей, их выполнявших, были обнаружены рентгеновские дерматиты. Такая же картина поражения кожных покровов была выявлена после воздействия радия. Пьер Кюри, желая выяснить действие излучения радия на кожу, облучил собственную руку!

Воздействие ионизирующего излучения на организм человека может быть внутренним (когда радионуклиды попадают во внутренние среды организма) и внешним (когда радиоактивные частицы оседает на коже или одежде). Воздействие может также произойти в результате облучения от внешнего источника (например, от рентгеновского оборудования).

Радиационное повреждение тканей зависит от полученной дозы облучения. Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред и выражается в Зивертах (Зв). 1 Зв это очень существенная величина (пороговая доза острой лучевой болезни), поэтому обычно применяются меньшие ее единицы, такие как миллизиврет (мЗв) и микрозиверт (мкЗв). Соответственно, 1 Зв = 1000 мЗв, а 1 мЗв = 1000 мкЗв. Скажем, 10 мкЗв это средняя доза облучения космической радиации, которую получит пассажир авиалайнера в течение 3 часов полета. А 10 мЗв – доза от одной компьютерной томографии.

в чем выражается радиация. Смотреть фото в чем выражается радиация. Смотреть картинку в чем выражается радиация. Картинка про в чем выражается радиация. Фото в чем выражается радиация

Если доза является низкой или воздействует длительный период времени, риск развития различных патологий существенно снижается, поскольку увеличивается вероятность восстановления поврежденных тканей. Тем не менее, долгосрочные эффекты, такие как рак, могут проявиться даже спустя десятилетия. Этот риск выше у детей и подростков, так как они намного более чувствительны к воздействию радиации.

Радиационная безопасность населения достигается путем ограничения воздействия от всех основных видов облучения:

техногенные источники при их нормальной эксплуатации (различные производственные установки);

техногенные источники в результате радиационной аварии;

природные источники;

медицинские источники (рентгеновские аппараты).

Годовая доза облучения населения не должна превышать основные пределы доз, указанных в Нормах радиационной безопасности (НРБ-99/2009. СанПиН 2.6.1.2523-09). В настоящий момент эта величина равна 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в один год. Здесь учитывается радиологическая нагрузка на организм от потребляемых продуктов, атмосферного воздуха, условий проживания, а так же медицинские диагностические манипуляции с использованием ионизирующего излучения.

В целом, в условиях повседневности радиация не представляет для нас серьезной опасности. В бытовых условиях человек редко может столкнуться с опасными источниками радиации, а если такое происходит, то, как правило, в силу невежества или халатности работников предприятий, где используются источники ионизирующего излучения.

Помните, что, несмотря на легкодоступные диагностические сервисы, следует проводить радиологические исследования (КТ, рентген, флюорография) ТОЛЬКО по назначению врача.

Вопреки распространенному мнению, нет никаких научных доказательств способности алкоголя выводить радиацию из организма. То же самое касается препаратов йода – его применение оправдано только в случае радиационной аварии при нахождении пострадавших в 30 км зоне ЧС для защиты щитовидный железы от попадания радиоактивного йода. Однако йодопротекторы используются строго по инструкции и при вышеуказанных условиях. Вне зоны поражения пить таблетки или раствор йода, мазать шею может быть опасно!

Важным защитным приемом для укрепления организма при неблагоприятном радиологическом фоне (что актуально для некоторых биогеохимических провинций) является организация оптимального питания. Основными принципами построения рационов питания на загрязненной радиоактивными изотопами территории являются увеличение количества белков до 15% калорийности рациона и повышение в рационе на 20-50% по сравнению с рекомендуемыми возрастными нормами содержания витаминов-антиоксидантов: Е, С, А, биофлавоноидов, а пищевых волокон на 30%. Необходимо также обеспечить повышенное поступление минеральных веществ: кальция, калия, йода, магния, железа, селена. Для достижения этих задач необходимо достаточное содержание в рационе нежирных сортов мяса, птицы, рыбы, молочных продуктов, широкое использование свежих овощей, фруктов и зелени, добытых и выращенных в экологически благоприятных районах, так как сами по себе продукты накапливают радионуклиды, если выращиваются на загрязненной территории.

В своей жизни мы постоянно сталкиваемся с влиянием ионизирующего излучения, но волноваться не стоит — вред здоровью от «повседневных» природных источников значительно меньше вреда от беспокойства по этому поводу.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *