в чем суть клеточного дыхания
Клеточное дыхание. Его роль и основное уравнение.
Определение и примеры гетеротрофных организмов. Их роль в экосистемах.
Роль гетеротрофных организмов в природных экологических системах огромна: в процессе дыхания гетеротрофные организмы высвобождают диоксид углерода, необходимый фотоавтотрофам для фотосинтеза; продукты жизнедеятельности и мертвые остатки гетеротрофных организмов после биологического разложения поступают в природные круговороты биогенных веществ. В трофической сети любой экосистемы гетеротрофные организмы являются либо консументами (использующими для питания готовое органическое вещество), либо редуцентами (превращающими органические остатки в неорганические вещества).
Фотосинтез. Его роль в экосистемах. Основное уравнение.
Фотосинтез — это образование органических веществ зелеными растениями и некоторыми бактериями с использованием энергии солнечного света. В ходе фотосинтеза происходит поглощение из атмосферы диоксида углерода и выделение кислорода.
В результате фотосинтеза из веществ, бедных энергией, образуется глюкоза, богатая энергией. Кроме того, при фотосинтезе образуется кислород, поступающий во внешнюю среду. Для синтеза органических веществ растения используют также азотистые, фосфорные, сернистые соединения. По современным представлениям сущность фотосинтеза заключается в превращении лучистой энергии солнечного света в химическую энергию в форме АТФ и восстановленного НАДФ.Н.
СО2 + Н2О + свет → углевод + О2
Хемосинтез. Его роль в экосистемах.
Хемосинтез можно определить как тип питания бактерий, основанный на усвоенииза счет окисления неорганических соединений. Хемосинтезом также можно назвать процесс синтеза органических соединений из неорганических за счет химической энергии, получаемой при окислении неорганических веществ (серы, сероводорода, железа, аммиака, нитритов).
Основное значение хемосинтеза заключается в том, что он обеспечивает круговорот важнейших элементов с переменной степенью окисления: железа, серы, азота и других.
Клеточное дыхание. Его роль и основное уравнение.
Суммарное уравнение процесса дыхания:
Образование и накопление энергии, доступной клетке, происходит в процессе клеточного дыхания. Для осуществления клеточного дыхания большинству организмов необходим кислород — в этом случае говорят об аэробном дыхании или аэробном высвобождении энергии. Однако некоторые организмы могут получать энергию из пищи без использования свободного атмосферного кислорода, т. е. в процессе так называемого анаэробного дыхания (анаэробного высвобождения энергии). Таким образом, исходными веществами для дыхания служат богатые энергией органические молекулы, на образование которых в свое время была затрачена энергия. Основным веществом, используемым клетками для получения энергии, является глюкоза.
30. Брожение. Его роль в экосистемах.
Брожение, процесс анаэробного расщепления органических веществ, преимущественно углеводов, происходящий под влиянием микроорганизмов или выделенных из них ферментов. В ходе Б. в результате сопряженных окислительно-восстановительных реакций освобождается энергия, необходимая для жизнедеятельности микроорганизмов, и образуются химические соединения, которые микроорганизмы используют для биосинтеза аминокислот, белков, органических кислот,жиров и др. компонентов тела. Одновременно накапливаются конечные продукты Б. В зависимости от их характера различают брожение спиртовое, молочнокислое, маслянокислое, пропионовокислое, ацетоно-бутиловое, ацетоно-этиловое и др. виды. Характер Б., его интенсивность, количественные соотношения конечных продуктов, а также направление Б. зависят от особенностей его возбудителя и условий, при которых Б. протекает (pH, аэрация, субстрат и др.).
31. Аэробные и анаэробные организмы.
Аэро́бы — организмы, которые нуждаются в свободном молекулярном кислороде для процессов синтеза энергии, в отличие от анаэробов. К аэробам относятся: подавляющее большинство животных, все растения, а также значительная часть микроорганизмов.
Анаэробы — микроорганизмы, способные существовать и нормально развиваться без доступа свободного кислорода.
В чем суть клеточного дыхания
Дыхание — это окисление органического вещества, являющегося субстратом дыхания. Субстратами для дыхания служат углеводы, жиры и белки.
Углеводы. При наличии углеводов большинство клеток использует в качестве субстратов именно их. Полисахариды (крахмал у растений и гликоген у животных и грибов) вовлекаются в процесс дыхания лишь после того, как они будут гидролизованы до моносахаридов.
Липиды (жиры или масла). Липиды составляют «главный резерв» и пускаются в дело в основном тогда, когда запас углеводов исчерпан. Предварительно они должны быть гидролизованы до глицерола и жирных кислот. Жирные кислоты богаты энергией и некоторые клетки, например мышечные, в норме получают именно от них часть необходимой им энергии.
Белки. Поскольку белки выполняют ряд других важных функций, они используются для производства энергии лишь после того, как будут израсходованы все запасы углеводов и жиров, например при длительном голодании (разд. 8.9.3). Белки предварительно гидролизуются до аминокислот, а аминокислоты дезаминируются (лишаются своих аминогрупп). Образовавшаяся в результате дезаминирования кислота вовлекается в цикл Кребса или превращается сначала в жирную кислоту, чтобы затем подвергнуться окислению.
Главную роль в клеточном дыхании играют два типа реакций — окисление и декарбоксилирование.
Окисление
В клетке происходят окислительные реакции трех типов.
1. ОКИСЛЕНИЕ МОЛЕКУЛЯРНЫМ КИСЛОРОДОМ.
2. ОТЩЕПЛЕНИЕ ВОДОРОДА (ДЕГИДРИРОВАНИЕ). При аэробном дыхании окисление глюкозы происходит путем последовательных реакций дегидрирования. Отщепляемый при каждом дегидрировании водород используется для восстановления кофермента, называемого в этом случае переносчиком водорода:
Большая часть этих реакций происходит в митохондриях, где переносчиком водорода служит обычно кофермент НАД (никотинамидадениндинуклеотид):
НАД*Н (восстановленный НАД) затем вновь подвергается окислению с высвобождением энергии. Ферменты, катализирующие реакции дегидрирования, называются дегидрогеназами. В ряде последовательных реакций дегидрирования весь отщепляемый от глюкозы водород передается переносчикам водорода. Этот водород окисляется затем кислородом до воды, а высвобождаемая при этом энергия используется для синтеза АТФ. Феномен выделения энергии при окислении (горении) водорода можно наблюдать, если поднести горящую свечку к пробирке с водородом. При этом раздастся легкий короткий хлопок, вроде миниатюрного взрыва. В клетке выделяется такое же количество энергии, но выделяется оно в ряде окислительно-восстановительных реакций при переходе водорода от одного переносчика к другому по так называемой дыхательной цепи.
3. ПЕРЕНОС ЭЛЕКТРОНОВ. Это происходит, например, при переходе одной ионной формы железа (Fe2+) в другую (Fe3+)
Электроны могут передаваться от одного соединения к другому, как водород в реакциях описанных выше. Соединения, между которыми совершается этот перенос, называются переносчиками электронов. Протекает этот процесс в митохондриях.
Декарбоксилирование
Декарбоксилирование — это отщепление углерода от данного соединения с образованием СО2. В молекуле глюкозы, помимо водорода и кислорода, содержится еще шесть атомов углерода. Поскольку для описанных выше реакций нужен только водород, углерод удаляется в реакциях декарбоксилирования. Образующийся при этом диоксид углерода представляет собой «побочный продукт» аэробного дыхания.
Клеточное дыхание
Упрощенная реакция: | C 6 H 12 O 6 (т) + 6 O 2 (г) → 6 CO 2 (г) + 6 H 2 O (л) + тепло |
ΔG = −2880 кДж на моль C 6 H 12 O 6 |
Отрицательный ΔG указывает на то, что реакция может происходить самопроизвольно.
Гликолиз
Глюкоза + 2 NAD + + 2 P i + 2 ADP → 2 пируват + 2 H + + 2 NADH + 2 ATP + 2 H + + 2 H 2 O + энергия
Начиная с глюкозы, 1 АТФ используется для передачи фосфата глюкозе с образованием глюкозо-6-фосфата. Гликоген также может быть преобразован в глюкозо-6-фосфат с помощью гликогенфосфорилазы. Во время энергетического обмена глюкозо-6-фосфат становится фруктозо-6-фосфатом. Дополнительный АТФ используется для фосфорилирования фруктозо-6-фосфата в фруктозо-1,6-бисфосфат с помощью фосфофруктокиназы. Затем 1,6-бифосфат фруктозы расщепляется на две фосфорилированные молекулы с тремя углеродными цепями, которые позже распадаются на пируват.
Окислительное декарбоксилирование пирувата
Цикл лимонной кислоты
Чистый выигрыш от одного цикла составляет 3 НАДН и 1 ФАДН 2 в качестве соединений, переносящих водород (протон плюс электрон), и 1 высокоэнергетический ГТФ, который впоследствии может быть использован для производства АТФ. Таким образом, общий выход из 1 молекулы глюкозы (2 молекул пирувата) составляет 6 НАДН, 2 ФАДН 2 и 2 АТФ.
Окислительного фосфорилирования
В таблице ниже описаны реакции, происходящие, когда одна молекула глюкозы полностью окисляется до диоксида углерода. Предполагается, что все восстановленные коферменты окисляются цепью переноса электронов и используются для окислительного фосфорилирования.
Шаг | выход кофермента | Выход АТФ | Источник АТФ |
---|---|---|---|
Подготовительный этап гликолиза | −2 | Фосфорилирование глюкозы и фруктозо-6-фосфата использует два АТФ из цитоплазмы. | |
Окупаемость гликолиза | 4 | Фосфорилирование на уровне субстрата | |
2 НАДН | 3 или 5 | Окислительное фосфорилирование: каждый НАДН производит чистое 1,5 АТФ (вместо обычных 2,5) из-за транспорта НАДН через митохондриальную мембрану. | |
Окислительное декарбоксилирование пирувата | 2 НАДН | 5 | Окислительного фосфорилирования |
Цикл Кребса | 2 | Фосфорилирование на уровне субстрата | |
6 НАДН | 15 | Окислительного фосфорилирования | |
2 FADH 2 | 3 | Окислительного фосфорилирования | |
Общая доходность | 30 или 32 АТФ | От полного окисления одной молекулы глюкозы до диоксида углерода и окисления всех восстановленных коферментов. |
Итак, наконец, на одну молекулу глюкозы
В сумме это дает 4 + 3 (или 5) + 20 + 3 = 30 (или 32) АТФ на молекулу глюкозы.
Анаэробное дыхание используется некоторыми микроорганизмами, у которых ни кислород (аэробное дыхание), ни производные пирувата (ферментация) не являются конечными акцепторами электронов с высокой энергией. Вместо этого используется неорганический акцептор, такой как сульфат (SO42-), нитрат (NO3–) или сера (S). [12] Такие организмы обычно встречаются в необычных местах, таких как подводные пещеры или около гидротермальных источников на дне океана.
В июле 2019 года научное исследование шахты Кидд в Канаде обнаружило дышащие серой организмы, которые живут на глубине 7900 футов под поверхностью и которые дышат серой, чтобы выжить. Эти организмы также примечательны тем, что они потребляют минералы, такие как пирит, в качестве источника пищи. [13] [14] [15]
Клеточное дыхание
Клеточное или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (АТФ и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание.
Содержание
Использование различных начальных субстратов
В качестве исходных субстратов дыхания могут выступать различные вещества, преобразуемые в ходе специфических метаболических процессов в Ацетил-КоА с высвобождением ряда побочных продуктов. Восстановление НАД (НАДФ) и образование АТФ может происходить уже на этом этапе, однако большая их часть образуется в цикле трикарбоновых кислот при переработке Ацетил-КоА.
Гликолиз
Гликолиз — путь ферментативного расщепления глюкозы — является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением. Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода.
Первый его этап протекает с расходом энергии 2 молекул АТФ и включает в себя расщепление молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата. На втором этапе происходит НАД-зависимое окисление глицеральдегид-3-фосфата, сопровождающееся субстратным фосфорилированием, то есть присоединением к молекуле остатка фосфорной кислоты и формированием в ней макроэргической связи, после которого остаток переносится на АДФ с образованием АТФ.
Таким образом, уравнение гликолиза имеет следующий вид:
Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:
Окислительное декарбоксилирование пирувата
Образовавшаяся в ходе гликолиза пировиноградная кислота (пируват) под действием пируватдегидрогеназного комплекса (сложная структура из 3 различных ферментов и более 60 субъединиц) распадается на углекислый газ и ацетальдегид, который вместе с Кофермент А образует Ацетил-КоА. Реакция сопровождается восстановлением НАД до НАД∙Н.
У эукариот процесс протекает в матриксе митохондрий.
β-окисление жирных кислот
Деградация жирных кислот (у некоторых организмов также алканов) происходит у эукариот в матриксе митохондрий. Суть этого процесса заключается в следующем. На первой стадии к жирной кислоте присоединяется кофермент А с образованием ацил-KoA. Он дегидрируется с последовательным переносом восстановительных эквивалентов на убихинон дыхательной ЭТЦ. На второй стадии происходит гидратирование по двойной связи С=С, после чего на третьей стадии происходит окисление полученной гидроксильной группы. В ходе этой реакции восстанавливается НАД.
Наконец, на четвёртой стадии образовавшаяся β-кетокислота расщепляется β-кетотиолазой в присутствии кофермента А на ацетил-КоА и новый ацил-КоА, в которой углеродная цепь на 2 атома короче. Цикл β-окисления повторяется до тех пор, пока вся жирная кислота не будет переработана в ацетил-КоА.
Цикл трикарбоновых кислот
Ацетил-КоА под действием цитратсинтазы передаёт ацетильную группу оксалоацетату с образованием лимонной кислоты, которая поcтупает в цикл трикарбоновых кислот (цикл Кребса). В ходе одного оборота цикла лимонная кислота несколько раз дегидрируется и дважды декарбоксилируется с регенерацией оксалоацетата и образованием одной молекулы ГТФ (способом субстратного фосфорилирования), трёх НАДН и ФАДН2.
Суммарное уравнение реакций:
Ацетил-КоА + 3НАД + + ФАД + ГДФ + Фн + 2H2O + КоА-SH = 2КоА-SH + 3НАДH + 3H + + ФАДН2 + ГТФ + 2CO2
У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.
Окислительное фосфорилирование
Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН2, восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т. д.. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот — в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН2 — 1.5 молекулы.
Конечным акцептором электрона в дыхательной цепи аэробов является кислород.
Анаэробное дыхание
Общее уравнение дыхания, баланс АТФ
Стадия | Выход кофермента | Выход АТФ (ГТФ) | Способ получения АТФ |
---|---|---|---|
Первая фаза гликолиза | −2 | Фосфорилирование глюкозы и фруктозо-6-фосфата с использованием 2 АТФ из цитоплазмы. | |
Вторая фаза гликолиза | 4 | Субстратное фосфорилирование | |
2 НАДН | 3 (5) | Окислительное фосфорилирование. Только 2 АТФ образуется из НАДН в электронтранспортной цепи, поскольку кофермент образуется в цитоплазме и должен быть транспортирован в митохондрии. При использовании малат-аспартатного челнока для транспорта в митохондрии из НАДН образуется 3 моль АТФ. При использовании же глицерофосфатного челнока образуется 2 моль АТФ. | |
Декарбоксилирование пирувата | 2 НАДН | 5 | Окислительное фосфорилирование |
Цикл Кребса | 2 | Субстратное фосфорилирование | |
6 НАДН | 15 | Окислительное фосфорилирование | |
2 ФАДН2 | 3 | Окислительное фосфорилирование | |
Общий выход | 30 (32) АТФ [2] | При полном окислении глюкозы до углекислого газа и окислении всех образующихся коферментов. |
Примечания
См. также
Полезное
Смотреть что такое «Клеточное дыхание» в других словарях:
клеточное дыхание — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN cell respiration … Справочник технического переводчика
Дыхание — Диафрагмальный (брюшной) тип дыхания у человека У этого термина существуют и другие значения, см. Клеточное дыхание … Википедия
ДЫХАНИЕ — Обычно дыхание ассоциируется с вдохом и выдохом, т.е. дыхательными движениями, необходимыми для вентиляции легких у наземных позвоночных. Однако у большинства организмов ни этих движений, ни самих легких нет, поэтому более общее определение… … Энциклопедия Кольера
ДЫХАНИЕ — ДЫХАНИЕ, совокупность процессов, обеспечивающих поступление в организм кислорода и удаление диоксида углерода (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии,… … Современная энциклопедия
ДЫХАНИЕ — совокупность процессов, обеспечивающих поступление в организм кислорода и удаление углекислого газа (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии, необходимой для… … Большой Энциклопедический словарь
Дыхание — ДЫХАНИЕ, совокупность процессов, обеспечивающих поступление в организм кислорода и удаление диоксида углерода (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии,… … Иллюстрированный энциклопедический словарь
ДЫХАНИЕ — ДЫХАНИЕ, я, ср. 1. Процесс поглощения кислорода и выделения углекислого газа живыми организмами. Органы дыхания. Клеточное д. (спец.). 2. Втягивание и выпускание воздуха лёгкими. Ровное д. Сдерживать д. Д. весны (перен.). • Второе дыхание прилив… … Толковый словарь Ожегова
дыхание — ДЫХАНИЕ, ДЫХАНЬЕ, я; ср. 1. Вбирание и выпускание воздуха лёгкими или (у некоторых животных) иными соответствующими органами как процесс поглощения кислорода и выделения углекислого газа живыми организмами. Органы дыхания. Шумное, тяжёлое,… … Энциклопедический словарь
Дыхание — в общеупотребительном смысле обозначает ряд беспрерывно чередующихся во время жизни движений грудной клетки в форме вдоха и выдоха и обусловливающих, с одной стороны, прилив свежого воздуха в легкие, а с другой выведение из них уже испорченного… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Дыхание — I Дыхание (respiratio) совокупность процессов, обеспечивающих поступление из атмосферного воздуха в организм кислорода, использование его в биологическом окислении органических веществ и удаление из организма углекислого газа. В результате… … Медицинская энциклопедия
Этапы клеточного дыхания
Итак, клеточное дыхание происходит в клетке.
Но где именно? Какая органелла осуществляет этот процесс?
АТФ — это молекула — синоним энергии в биологии. Расшифровывется как Аденозинтрифосфат или Аденозинтрифосфорная кислота. Как видно из рисунка формулы, в составе молекулы есть:
Этапы клеточного дыхания:
1 Этап клеточного дыхания — подготовительный
Каким образом вещества попадают в клетки? В процессе пищеварения организма. Суть процесса пищеварения — расщепление полимеров, поступающих в организм с пищей, до мономеров:
Т.е. в клетку поступают уже мономеры.
Дальше мы рассмотрим путь превращения именно глюкозы.
2 Этап клеточного пищеварения
Гликолиз — ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ.
Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (ПВК) (пирувата),
гликолиз в анаэробных условиях (бескислородных или при недостатке кислорода) ведёт к образованию молочной кислоты (лактата).
Процесс идет с участием молекул фосфорной кислоты, поэтому называется окислительное фосфорилирование
Гликолиз является основным путём катаболизма глюкозы в организме животных.
Дальше образовавшаяся пировиноградная кислота поступает в митохондрии, где происходит ее дальнейшее окисление
3 Этап клеточного пищеварения (кислородный)
Поступая в митохондрию, происходит окисление: ПВК под действием кислорода расщепляется до углекислого газа (суммарное уравнение):
Вначале отщепляется один углеродный атом пировиноградной кислоты. При этом образуется углекислый газ, энергия (она запасается в одной молекуле НАДФ) и двухуглеродная молекула — ацетильная группа. Затем реакционная цепь поступает в метаболический координационный центр клетки — цикл Кребса.
Цикл Кребса
(цикл лимонной кислоты)
Цикл Кребса — это реакции, которые начинаются, когда определенная входящая молекула соединяется с другой молекулой, выполняющей функцию «помощника». Такая комбинация инициирует серию других химических реакций, в которых образуются молекулы-продукты и в конце воссоздается молекула-помощник, которая может начать весь процесс вновь.
Для переработки энергии, запасенной в одной молекуле глюкозы, цикл Кребса нужно пройти дважды
Процесс многостадийный, и в нем, помимо различных кислот с интересными названиями участвуют коферменты (КоА).
Что такое коферменты?
Приставка «ко-» — это как «со-» — сопродюсер, соотечественник и т.п. Т.е. «вместе, с «
Гликолиз — катаболический путь исключительной важности.
Он обеспечивает энергией клеточные реакции, в том числе и синтез белка.
Промежуточные продукты гликолиза используются при синтезе жиров.
Пируват также может быть использован для синтеза других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.