в чем разница скалярного и векторного произведения

Скалярное, смешанное и векторное произведения

Скалярное произведение.

Под углом между векторами мы понимаем угол между векторами, равными данным и имеющими общее начало. В некоторых случаях мы будем указывать, от какого вектора и в каком направлении угол отсчитывается. Если такого указания не сделано, углом между векторами считается тот из углов, который не превосходит \(\pi\). Если угол прямой, то векторы называются ортогональными.

Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними. Если хоть один из векторов нулевой, то угол не определен, и скалярное произведение по определению равно нулю.

Необходимо подчеркнуть следующее принципиальное обстоятельство: скалярное произведение может быть определено только после того, как будет выбрана определенная единица измерения длин векторов. Иначе приведенное выше определение не имеет смысла.

Скалярное умножение имеет следующие очевидные свойства.

Аналогично вычисляются и остальные компоненты.

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведенияРис. 4.1

Легко показать, что такая же формула справедлива и для линейной комбинации любого числа векторов. Используя коммутативность скалярного умножения, мы получаем тождество
$$
(\boldsymbol, \beta\boldsymbol + \gamma\boldsymbol) = \beta(\boldsymbol, \boldsymbol) + \gamma(\boldsymbol, \boldsymbol).\nonumber
$$

Отметим, что требование ортонормированности базиса очень существенно. В произвольном базисе выражение скалярного произведения через компоненты гораздо сложнее. Поэтому в задачах, связанных со скалярным произведением, чаще всего используются ортонормированные базисы.

Если почему-либо все же надо вычислить скалярное произведение в неортонормированном базисе, следует перемножить разложения сомножителей по базису и, раскрыв скобки, подставить в полученное выражение известные скалярные произведения базисных векторов.

Пусть задан вектор \(\overrightarrow\) и некоторая прямая \(l\). Опустим из точек \(A\) и \(B\) перпендикуляры на прямую и обозначим их основания \(A’\) и \(B’\) (рис. 4.2). Вектор \(\overrightarrow\) называется (ортогональной) векторной проекцией вектора \(\overrightarrow\) на прямую \(l\) и обозначается Пр\(_\overrightarrow\).

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведенияРис. 4.2

Из определения сразу следует, что векторные проекции равных векторов на параллельные прямые равны между собой.

Пусть \(\boldsymbol\) — ненулевой вектор на прямой \(l\). Тогда \(\overrightarrow = \alpha\boldsymbol\) при некотором \(\alpha\). Представим \(\overrightarrow\) в виде \(\overrightarrow = \overrightarrow = \alpha\boldsymbol + \boldsymbol\) и заметим, что вектор \(\boldsymbol = \overrightarrow\) ортогонален \(\boldsymbol\). Поэтому после скалярного умножения на \(\boldsymbol\) получаем \((\overrightarrow, \boldsymbol) = \alpha(\boldsymbol, \boldsymbol)\). Находя отсюда \(\alpha\), имеем
$$
\mbox<Пр>_\overrightarrow = \frac<(\overrightarrow, \boldsymbol)><|\boldsymbol|^<2>>\boldsymbol.\label
$$
Хотя на вид это выражение зависит от \(\boldsymbol\), фактически оно не меняется при замене \(\boldsymbol\) любым ненулевым вектором \(\lambda\boldsymbol\), коллинеарным \(\boldsymbol\).

Проекцию \(\overrightarrow\) можно представить в виде
$$
\frac<(\overrightarrow, \boldsymbol)><|\boldsymbol|> \frac<\boldsymbol><|\boldsymbol|>\nonumber
$$
и заметить, что \((\overrightarrow, \boldsymbol)/|\boldsymbol|\) — это компонента \(\overrightarrow\) по вектору \(\boldsymbol^ <0>= \boldsymbol/|\boldsymbol|\). Так как \(|\boldsymbol^<0>| = 1\), компонента по абсолютной величине равна длине \(\overrightarrow\). Она положительна, если направление \(\overrightarrow\) совпадает с направлением \(\boldsymbol\), и отрицательна в противоположном случае.

Величина \((\overrightarrow, \boldsymbol)/|\boldsymbol|\) не меняется при замене \(\boldsymbol\) на сонаправленный вектор \(\lambda\boldsymbol\), \(\lambda > 0\), и меняет знак при замене \(\boldsymbol\) на противоположно направленный вектор.

Прямая линия называется направленной прямой (употребляются также термины ориентированная прямая и ось), если на ней указано определенное направление. Подробнее это определение рассматривается в начале следующего раздела.

Число \((\overrightarrow, \boldsymbol)/|\boldsymbol|\) называется скалярной проекцией вектора \(\overrightarrow\) на ось \(l\), определяемую вектором \(\boldsymbol\) (или на вектор \(\boldsymbol\)), и обозначается Пр\(_\overrightarrow\) или Пр\(_<\boldsymbol>\overrightarrow\).

Из определения следует, что Пр\(_\overrightarrow = |\overrightarrow| \cos \varphi\), где \(\varphi\) — угол между \(\overrightarrow\) и \(\boldsymbol\). Компоненты вектора в ортонормированном базисе равны его скалярным проекциям на оси координат.

Ориентация прямой, плоскости и пространства.

Выше мы дали определение ориентированной прямой (оси). Скажем о нем подробнее, с тем чтобы аналогично ввести определение ориентированной плоскости и ориентированного пространства.

Все базисы (ненулевые векторы) на прямой разделяются на два класса: векторы из одного класса направлены одинаково, а векторы из разных классов направлены противоположно. Говорится, что прямая ориентирована или что на ней задана ориентация, если из двух классов базисов выбран один. Базисы выбранного класса называются положительно ориентированными или положительными.

Задать ориентацию можно, указав какой-либо базис и считая положительно ориентированными все базисы того же класса. Однако то, что прямая ориентирована, не означает, что на ней выбран какой-то определенный базис.

Два базиса на плоскости называются одинаково ориентированными, если в обоих базисах кратчайший поворот от первого вектора ко второму производится в одну сторону, и противоположно ориентированными в противном случае. Например, на рисунке ниже, базисы в левой части ориентированы одинаково, а на правой части — противоположно. Если фиксировать какой-то базис, то любой другой ориентирован с ним либо одинаково, либо противоположно, и, таким образом, все базисы распадаются на два класса: любые два базиса одного класса ориентированы одинаково, базисы разных классов ориентированы противоположно.

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведенияНа левом рисунке базисы ориентированы одинаково, а на правом — противоположно.

Плоскость ориентирована, если из двух классов базисов на ней выбран один класс.

Ориентацию можно задать, выбрав базис и считая положительно ориентированными все базисы одного с ним класса. Но, конечно, задание ориентации не предполагает выбор определенного базиса.

В планиметрии часто ориентируют плоскость, считая положительными те базисы, у которых кратчайший поворот от первого вектора ко второму производится против часовой стрелки. Для плоскости в пространстве это соглашение не имеет смысла, так как видимое направление поворота зависит от того, с какой стороны смотреть на плоскость. Но если выбрать одно из полупространств, ограничиваемых плоскостью, и смотреть на повороты именно из него, то класс базиса определяется видимым направлением поворота.

Базис в пространстве называется правым, если (считая векторы имеющими общее начало) с конца третьего вектора мы видим кратчайший поворот от первого вектора ко второму направленным против часовой стрелки. В противном случае базис называется левым (рис. 4.3).

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведенияРис 4.3. Левый базис (а), правый базис (б).

Представим себе, что на рис. 4.4 концы векторов лежат в плоскости рисунка, а их общее начало — за плоскостью. Тогда поворот от вектора \(\boldsymbol_<1>\) к вектору \(\boldsymbol_<2>\) и затем к \(\boldsymbol_<3>\) для правого базиса нам виден против часовой стрелки, а для левого — по часовой стрелке.

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведенияРис 4.3. Левый базис (а), правый базис (б).

Пространство называется ориентированным, если из двух классов базисов (правых или левых) выбран один. Базисы этого класса называются положительно ориентированными.

Далее мы всегда будем выбирать правую ориентацию пространства, считая положительными правые базисы. Но важно помнить, что выбор ориентации мог бы быть противоположным.

Аналогично, в ориентированном пространстве можно внешним образом задать ориентацию прямой линии. Для этого нужно задать ориентацию плоскости, перпендикулярной этой прямой. Положительным базисом на прямой будет такой базис, который вместе с положительным базисом плоскости составляет положительный базис пространства.

Площадь ориентированного параллелограмма, объем ориентированного параллелепипеда.

Если прямая ориентирована, то длине ненулевого вектора на ней можно приписать знак: считать длину положительной, если вектор ориентирован положительно, и отрицательной в противоположном случае. Именно так мы приписываем знак длине векторной проекции, когда определяем скалярную проекцию. Обобщим это определение.

Рассмотрим параллелограмм, построенный на двух векторах так, что две его смежные стороны являются векторами с общим началом. Параллелограмм называется ориентированным, если пара векторов, на которой он построен, упорядочена. На ориентированной плоскости параллелограмм считается положительно или отрицательно ориентированным, смотря по тому, как ориентирована определяющая его пара векторов.

На ориентированной плоскости принято считать площадь ориентированного параллелограмма числом со знаком: она равна площади параллелограмма (положительна), если параллелограмм ориентирован положительно, и равна той же площади со знаком минус, если отрицательно. Мы будем обозначать площадь ориентированного параллелограмма, построенного на векторах \(\boldsymbol\) и \(\boldsymbol\), через \(S_<\pm>(\boldsymbol, \boldsymbol)\).

Рассмотрим теперь параллелепипед, построенный на трех векторах так, что три его ребра, исходящие из одной вершины, являются векторами с общим началом. Параллелепипед называется ориентированным, если эти три ребра упорядочены. В ориентированном пространстве ориентация параллелепипеда положительна или отрицательна смотря по тому, какую тройку образуют векторы, на которых он построен.

В ориентированном пространстве объем ориентированного параллелепипеда — число со знаком: объем положительно ориентированного параллелепипеда считается положительным, а отрицательно ориентированного — отрицательным.

При выбранной нами правой ориентации пространства положительными считаются объемы ориентированных параллелепипедов, построенных на правых тройках векторов.

Смешанное произведение.

Если пространство ориентировано, мы можем ввести следующее определение.

Источник

Линейная алгебра для разработчиков игр

Эта статья является переводом цикла из четырёх статей «Linear algebra for game developers», написанных David Rosen и посвящённых линейной алгебре и её применению в разработке игр. С оригинальными статьями можно ознакомиться тут: часть 1, часть 2, часть 3 и часть 4. Я не стал публиковать переводы отдельными топиками, а объединил все статьи в одну. Думаю, что так будет удобнее воспринимать материал и работать с ним. Итак приступим.

Зачем нам линейная алгебра?

Одним из направлений в линейной алгебре является изучение векторов. Если в вашей игре применяется позиционирование экранных кнопок, работа с камерой и её направлением, скоростями объектов, то вам придётся иметь дело с векторами. Чем лучше вы понимаете линейную алгебру, тем больший контроль вы получаете над поведением векторов и, следовательно, над вашей игрой.

Что такое вектор?

Важно отслеживать единицы измерения. Допустим у нас есть вектор V (3,5,2). Это мало что говорит нам. Три чего, пять чего? В нашей игре Overgrowth расстояния указываются в метрах, а скорости в метрах в секунду. Первое число в этом векторе — это направление на восток, второе — направление вверх, третье — направление на север. Отрицательные числа обозначают противоположные направления, на запад, вниз и на юг. Местоположение, определяемое вектором V (3,5,2), находится в трёх метрах к востоку, в пяти метрах вверху и в двух метрах к северу, как показано на картинке ниже.

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Итак, мы изучили основы работы с векторами. Теперь узнаем как вектора использовать.

Сложение векторов

Чтобы сложить вектора, нам надо просто сложить каждую их составляющую друг с другом. Например:

Зачем нам нужно складывать вектора? Наиболее часто сложение векторов в играх применяется для физического интегрирования. Любой физический объект будет иметь вектора для местоположения, скорости и ускорения. Для каждого кадра (обычно это одна шестидесятая часть секунды), мы должны интегрировать два вектора: добавить скорость к местоположению и ускорение к скорости.

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Давайте рассмотрим первые кадры поподробнее, чтобы понять как всё происходит.

Обычно игрок контролирует ускорение игрового персонажа с помощью клавиатуры или геймпада, а игра, в свою очередь, рассчитывает новые значения для скоростей и местоположения, используя физическое сложение (через сложение векторов). Это та-же задача, которая решается в интегральном исчислении, просто мы его сильно упрощаем для нашей игры. Я заметил, что мне намного проще внимательно слушать лекции по интегральному исчислению, думая о практическом его применении, которое мы только что описали.

Вычитание векторов

Вычитание рассчитывается по тому-же принципу что и сложение — вычитаем соответствующие компоненты векторов. Вычитание векторов удобно для получения вектора, который показывает из одного местоположения на другое. Например, пусть игрок находится по координатам (1, 2) с лазерным ружьём, а вражеский робот находится по координатам (4, 3). Чтобы определить вектор движения лазерного луча, который поразит робота, нам надо вычесть местоположение игрока из местоположения робота. Получаем:

(4, 3) — (1, 2) = (4-1, 3-2) = (3, 1).

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Умножение вектора на скаляр

Когда мы говорим о векторах, мы называем отдельные числа скалярами. Например (3, 4) — вектор, а 5 — это скаляр. В играх, часто бывает нужно умножить вектор на число (скаляр). Например, моделируя простое сопротивление воздуха путём умножения скорости игрока на 0.9 в каждом кадре. Чтобы сделать это, нам надо умножить каждый компонент вектора на скаляр. Если скорость игрока (10, 20), то новая скорость будет:

0.9*(10, 20) = (0.9 * 10, 0.9 * 20) = (9, 18).

Длина вектора

Если у нас есть корабль с вектором скорости V (4, 3), нам также понадобится узнать как быстро он двигается, чтобы посчитать потребность в экранном пространстве или сколько потребуется топлива. Чтобы сделать это, нам понадобится найти длину (модуль) вектора V. Длина вектора обозначается вертикальными линиями, в нашем случае длина вектора V будет обозначаться как |V|.

Мы можем представить V как прямоугольный треугольник со сторонами 4 и 3 и, применяя теорему Пифагора, получить гипотенузу из выражения: x 2 + y 2 = h 2

В нашем случае — длину вектора H с компонентами (x, y) мы получаем из квадратного корня: sqrt(x 2 + y 2 ).

Итак, скорость нашего корабля равна:

|V| = sqrt(4 2 + 3 2 ) = sqrt(25) = 5

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Этот подход используется и для трёхмерных векторов. Длина вектора с компонентами (x, y, z) рассчитывается как sqrt(x 2 + y 2 + z 2 )

Расстояние

Расстояние = |P — E| = |(3, 3) — (1, 2)| = |(2, 1)| = sqrt(2 2 +1 2 ) = sqrt(5) = 2.23

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Нормализация

Вектор с длиной равной единице называется «нормализованным». Как сделать вектор нормализованным? Довольно просто. Мы делим каждый компонент вектора на его длину. Если, к примеру, мы хотим нормализовать вектор V с компонентами (3, 4), мы просто делим каждый компонент на его длину, то есть на 5, и получаем (3/5, 4/5). Теперь, с помощью теоремы Пифагора, мы убедимся в том, что его длина равна единице:

(3/5) 2 + (4/5) 2 = 9/25 + 16/25 = 25/25 = 1

Скалярное произведение векторов

Что такое скалярное произведение (записывается как •)? Чтобы рассчитать скалярное произведение двух векторов, мы должны умножить их компоненты, а затем сложить полученные результаты вместе

(a1, a2) • (b1, b2) = a1b1 + a2b2

Например: (3, 2) • (1, 4) = 3*1 + 2*4 = 11. На первый взгляд это кажется бесполезным, но посмотрим внимательнее на это:

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Здесь мы можем увидеть, что если вектора указывают в одном направлении, то их скалярное произведение больше нуля. Когда они перпендикулярны друг другу, то скалярное произведение равно нулю. И когда они указывают в противоположных направлениях, их скалярное произведение меньше нуля.
В основном, с помощью скалярного произведения векторов можно рассчитать, сколько их указывает в одном направлении. И хоть это лишь малая часть возможностей скалярного произведения, но уже очень для нас полезная.

Допустим у нас есть стражник, расположенный в G(1, 3) смотрящий в направлении D(1,1), с углом обзора 180 градусов. Главный герой игры подсматривает за ним с позиции H(3, 2). Как определить, находится-ли главный герой в поле зрения стражника или нет? Сделаем это путём скалярного произведения векторов D и V (вектора, направленного от стражника к главному герою). Мы получим следующее:

Так как единица больше нуля, то главный герой находится в поле зрения стражника.

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Мы уже знаем, что скалярное произведение имеет отношение к определению направления векторов. А каково его более точное определение? Математическое выражение скалярного произведения векторов выглядит так:

Где Θ (произносится как «theta») — угол между векторами A и B.

Это позволяет нам найти Θ (угол) с помощью выражения:

Как я говорил ранее, нормализация векторов упрощает нашу жизнь. И если A и B нормализованы, то выражение упрощается следующим образом:

Давайте опять рассмотрим сценарий со стражником. Пусть теперь угол обзора стражника будет равен 120 градусам. Получим нормализованные вектора для направления взгляда стражника (D’) и для направления от стражника к главному герою (V’). Затем определим угол между ними. Если угол более 60 градусов (половина от угла обзора), то главный герой находится вне поля зрения стражника.

Θ = acos(D’V’) = acos(0.71*0.89 + 0.71*(-0.45)) = acos(0.31) = 72

Угол между центром поля зрения стражника и местоположением главного героя составляет 72 градуса, следовательно стражник его не видит.

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Понимаю, что это выглядит довольно сложно, но это потому, что мы всё делаем вручную. В программе это всё довольно просто. Ниже показано как я сделал это в нашей игре Overgrowth с помощью написанных мной С++ библиотек для работы с векторами:

Векторное произведение

Допустим у нас есть корабль с пушками, которые стреляют в правую и в левую стороны по курсу. Допустим, что лодка расположена вдоль вектора направления (2, 1). В каких направлениях теперь стреляют пушки?

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

А что если мы хотим рассчитать это всё для трехмерной графики? Рассмотрим пример с кораблём.
У нас есть вектор мачты M, направленной прямо вверх (0, 1, 0) и направление ветра: север-северо-восток W (1, 0, 2). И мы хотим вычислить вектор направления паруса S, чтобы наилучшим образом «поймать ветер».

Для решения этой задачи мы используем векторное произведение: S = M x W.

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Подставим теперь нужные нам значения:

Для расчётов вручную довольно сложно, но для графических и игровых приложений я рекомендую написать функцию, подобную той, что указана ниже и не вдаваться более в детали подобных расчётов.

Векторное произведение часто используется в играх, чтобы рассчитать нормали к поверхностям. Направления, в которых «смотрит» та или иная поверхность. Например, рассмотрим треугольник с векторами вершин A, B и С. Как мы найдем направление в котором «смотрит» треугольник, то есть направление перпендикулярное его плоскости? Это кажется сложным, но у нас есть инструмент для решения этой задачи.

Используем вычитание, для определения направления из A в С (C — A), пусть это будет «грань 1» (Edge 1) и направление из A в B (B — A), пусть это будет «грань 2» (Edge 2). А затем применим векторное произведение, чтобы найти вектор, перпендикулярный им обоим, то есть перпендикулярный плоскости треугольника, также называемый «нормалью к плоскости».

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Вот так это выглядит в коде:

В играх основное выражение освещённости записывается как N • L, где N — это нормаль к освещаемой поверхности, а L — это нормализованный вектор направления света. В результате поверхность выглядит яркой, когда на неё прямо падает свет, и тёмной, когда этого не происходит.

Теперь перейдем к рассмотрению такого важного для разработчиков игр понятия, как «матрица преобразований» (transformation matrix).

Для начала изучим «строительные блоки» матрицы преобразований.

Базисный вектор

Допустим мы пишем игру Asteroids на очень старом «железе» и нам нужен простой двухмерный космический корабль, который может свободно вращаться в своей плоскости. Модель корабля выглядит так:

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Как нам рисовать корабль, когда игрок поворачивает его на произвольный градус, скажем 49 градусов против часовой стрелки. Используя тригонометрию, мы можем написать функцию двухмерного поворота, которая принимает координаты точки и угол поворота, и возвращает координаты смещённой точки:

Применяя эту функцию ко всем трём точкам, мы получим следующую картину:

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Операции с синусами и косинусами работают довольно медленно, но так как мы делаем расчёты лишь для трёх точек, это будет нормально работать даже на старом «железе» (прим. переводчика: в случаях, когда предполагается интенсивное использование тригонометрических функций, для ускорения вычислений, в памяти организуют таблицы значений для каждой функции и рассчитывают их во время запуска приложения. Затем при вычислении той или иной тригонометрической функции просто производится обращение к таблице).

Пусть теперь наш корабль выглядит вот так:

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Теперь старый подход будет слишком медленным, так как надо будет поворачивать довольно большое количество точек. Одно из элегантных решений данной проблемы будет звучать так — «Что если вместо поворота каждой точки модели корабля, мы повернём координатную решётку нашей модели?»

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Как это работает? Давайте посмотрим внимательнее, что собой представляют координаты.
Когда мы говорим о точке с координатами (3, 2), мы говорим, что её местоположение находится в трех шагах от точки отсчёта по координатной оси X, и двух шагах от точки отсчёта по координатной оси Y.

По-умолчанию координатные оси расположены так: вектор координатной оси X (1, 0), вектор координатной оси Y (0, 1). И мы получим расположение: 3(1, 0) + 2(0, 1). Но координатные оси не обязательно должны быть в таком положении. Если мы повернём координатные оси, в это-же время мы повернём все точки в координатной решётке.

Чтобы получить повернутые оси X и Y мы применим тригонометрические функции, о которых говорили выше. Если мы поворачиваем на 49 градусов, то новая координатная ось X будет получена путём поворота вектора (0, 1) на 49 градусов, а новая координатная ось Y будет получена путём поворота вектора (0, 1) на 49 градусов. Итак вектор новой оси X у нас будет равен (0.66, 0.75), а вектор новой оси Y будет (-0.75, 0.66). Сделаем это вручную для нашей простой модели из трёх точек, чтобы убедиться, что это работает так, как нужно:

Координаты верхней точки (0, 2), что означает, что её новое местоположение находится в 0 на новой (повёрнутой) оси X и 2 на новой оси Y:

0*(0.66,0.75) + 2*(-0.75, 0.66) = (-1.5, 1.3)

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Мы показали, как координаты корабля отображаются в другой координатной сетке с повернутыми осями (или «базисными векторами»). Это удобно в нашем случае, так как избавляет нас от необходимости применять тригонометрические преобразования к каждой из точек модели корабля.

Каждый раз, когда мы изменяем базисные вектора (1, 0) и (0, 1) на (a, b) и (c, d), то новая координата точки (x, y) может быть найдена с помощью выражения:

Обычно базисные вектора равны (1, 0) и (0, 1) и мы просто получаем x(1, 0) + y(0, 1) = (x, y), и нет необходимости заботиться об этом дальше. Однако, важно помнить, что мы можем использовать и другие базисные вектора, когда нам это нужно.

Матрицы

Матрицы похожи на двухмерные вектора. Например, типичная 2×2 матрица, может выглядеть так:

Когда вы умножаете матрицу на вектор, вы суммируете скалярное произведение каждой строки с вектором, на который происходит умножение. Например, если мы умножаем вышеприведённую матрицу на вектор (x, y), то мы получаем:

Будучи записанным по-другому, это выражение выглядит так:

Выглядит знакомо, не так-ли? Это в точности такое-же выражение, которые мы использовали для смены базисных векторов. Это означает, что умножая 2×2 матрицу на двухмерный вектор, мы тем самым меняем базисные вектора. Например, если мы вставим стандартные базисные вектора в (1, 0) и (0, 1) в колонки матрицы, то мы получим:

Это единичная матрица, которая не даёт эффекта, который мы можем ожидать от нейтральных базисных векторов, которые мы указали. Если-же мы повернём базисные вектора на 49-градусов, то мы получим:

Эта матрица будет поворачивать двухмерный вектор на 49 градусов против часовой стрелки. Мы можем сделать код нашей игры Asteriods более элегантным, используя матрицы вроде этой. Например, функция поворота нашего корабля может выглядеть так:

Однако, наш код будет ещё более элегантным, если мы сможем также включить в эту матрицу перемещение корабля в пространстве. Тогда у нас будет единая структура данных, которая будет заключать в себе и применять информацию об ориентации объекта и его местоположении в пространстве.

К счастью есть способ добиться этого, хоть это и выглядит не очень элегантно. Если мы хотим переместиться с помощью вектора (e, f), мы лишь включаем его в нашу матрицу преобразования:

И добавляем дополнительную единицу в конец каждого вектора, определяющего местоположение объекта, например так:

Теперь, когда мы перемножаем их, мы получаем:

(a, c, e) • (x, y, 1) + (b, d, f) • (x, y, 1) + (0, 0, 1) • (x, y, 1)

Что, в свою очередь, может быть записано как:

Теперь у нас есть полный механизм трансформации, заключённый в одной матрице. Это важно, если не принимать в расчёт элегантность кода, так как с ней мы теперь можем использовать все стандартные манипуляции с матрицами. Например перемножить матрицы, чтобы добавить нужный эффект, или мы можем инвертировать матрицу, чтобы получить прямо противоположное положение объекта.

Трехмерные матрицы

Матрицы в трехмерном пространстве работают так-же как и в двухмерном. Я приводил примеры с двухмерными векторами и матрицами, так как их просто отобразить с помощью дисплея, показывающего двухмерную картинку. Нам просто надо определить три колонки для базисных векторов, вместо двух. Если базисные вектора это (a,b,c), (d,e,f) and (g,h,i) то наша матрица будет выглядеть так:

Если нам нужно перемещение (j,k,l), то мы добавляем дополнительную колонку и строку, как говорили раньше:

И добавляем единицу [1] в вектор, как здесь:

Вращение в двухмерном пространстве

Так как в нашем случае у нас только одна ось вращения (расположенная на дисплее), единственное, что нам надо знать, это угол. Я говорил об этом ранее, упоминая, что мы можем применять тригонометрические функции для реализации функции двухмерного вращения наподобие этой:

Более элегантно это можно выразить в матричной форме. Чтобы определить матрицу, мы можем применить эту функцию к осям (1, 0) и (0, 1) для угла Θ, а затем включить полученные оси в колонки нашей матрицы. Итак, начнём с координатной оси X (1, 0). Если мы применим к ней нашу функцию, мы получим:

(1*cos(Θ) — 0*sin(Θ), 1*sin(Θ) + 0*cos(Θ)) = (cos(Θ), sin(Θ))

Затем, мы включаем координатную ось Y (0, 1). Получим:

(0*cos(Θ) — 1*sin(Θ), 0*sin(Θ) + 1*cos(Θ)) = (-sin(Θ), cos(Θ))

Включаем полученные координатные оси в матрицу, и получаем двухмерную матрицу вращения:

Применим эту матрицу к Сюзанне, мартышке из графического пакета Blender. Угол поворота Θ равен 45 градусов по часовой стрелке.

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Как видите — это работает. Но что если нам надо осуществить вращение вокруг точки, отличной от (0, 0)?
Например, мы хотим вращать голову мартышки вокруг точки, расположенной в её ухе:

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Это важный шаблон, который мы будем применять позднее — применение вращения для двух противоположных трансформаций позволяет нам вращать объект в другом «пространстве». Что очень удобно и полезно.

Теперь рассмотрим трёхмерное вращение.

Трёхмерное вращение

Вращение вокруг оси Z работает по тому-же принципу, что и вращение в двухмерном пространстве. Нам лишь нужно изменить нашу старую матрицу, добавив к ней дополнительную колонку и строку:

Применим эту матрицу к трехмерной версии Сюзанны, мартышки из пакета Blender. Угол поворота Θ пусть будет равен 45 градусов по часовой стрелке.

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

То-же самое. Вращение только вокруг оси Z ограничивает нас, как насчёт вращения вокруг произвольной оси?

Вращение, определяемое осью и углом (Axis-angle rotation)

Представление вращения, определяемого осью и углом, также известно как вращение в экспоненциальных координатах, параметризованное вращением двух величин. Вектора, определяющего вращение направляющей оси (прямая линия) и угла, описывающего величину поворота вокруг этой оси. Вращение осуществляется согласно правилу правой руки.

Итак, вращение задаётся двумя параметрами (axis, angle), где axis — вектор оси вращения, а angle — угол вращения. Этот приём довольно прост и являет собой отправную точку для множества других операций вращения, с которыми я работаю. Как практически применить вращение, определяемое осью и углом?

Допустим мы имеем дело с осью вращения, показанной на рисунке ниже:

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Мы знаем как вращать объект вокруг оси Z, и мы знаем как вращать объект в других пространствах. Итак, нам лишь надо создать пространство, где наша ось вращения будет являться осью Z. И если эта ось будет осью Z, то что будет являться осями X и Y? Займемся вычислениями сейчас.

Чтобы создать новые оси X и Y нам нужно лишь выбрать два вектора, которые перпендикулярны новой оси Z и перпендикулярны друг другу. Мы уже говорили ранее о векторном умножении, которое берёт два вектора и даёт в итоге перпендикулярный им вектор.

У нас есть один вектор сейчас, это ось вращения, назовём его A. Возьмём теперь случайный другой вектор B, который находится не в том-же направлении, что и вектор A. Пусть это будет (0, 0, 1) к примеру.

Теперь мы имеем ось вращения A и случайный вектор B, мы можем получить нормаль C, через векторное произведение A и B. С перпендикулярен векторам A и B. Теперь мы делаем вектор B перпендикулярным векторам A и C через их векторное произведение. И всё, у нас есть все нужные нам оси координат.

На словах это звучит сложно, но довольно просто выглядит в коде или будучи показанным в картинках.
Ниже показано, как это выглядит в коде:

Тут показана иллюстрация для каждого шага:

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Теперь, имея информацию о новых координатных осях, мы можем составить матрицу M, включив каждую ось как колонку в эту матрицу. Нам надо убедиться, что вектор A является третьей колонкой, чтобы он был нашей новой осью координат Z.

Теперь это похоже на то, что мы делали для поворота в двухмерном пространстве. Мы можем применить инвертированную матрицу M, чтобы переместиться в новую систему координат, затем произвести вращение, согласно матрице R, чтобы повернуть объект вокруг оси Z, затем применить матрицу M, чтобы вернуться в исходное координатное пространство.

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Вращение, определяемое осью и углом, возможно, самый интуитивно понятный способ. Применяя его, очень легко инвертировать поворот, поменяв знак у угла, и легко интерполировать, путём интерполяции угла. Однако тут есть серьёзное ограничение, и заключается оно в том, что такое вращение не является суммирующим. То есть вы не можете комбинировать два вращения, определяемых осью и углом в третье.
Вращение, определяемое осью и углом — хороший способ для начала, но оно должно быть преобразовано во что-то другое, чтобы использоваться в более сложных случаях.

Эйлеровские углы

Эйлеровские углы представляют собой другой способ вращения, заключающийся в трёх вложенных вращениях относительно осей X, Y и Z. Вы, возможно, сталкивались с их применением в играх, где камера показывает действие от первого лица, либо от третьего лица.

Допустим вы играете в шутер от первого лица и вы повернулись на 30 градусов влево, а затем посмотрели на 40 градусов вверх. В конце-концов в вас стреляют, попадают, и, в результате удара, камера поворачивается вокруг своей оси на 45 градусов. Ниже показано вращение с помощью углов Эйлера (30, 40, 45).

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Углы Эйлера — удобное и простое в управлении средство. Но у этого способа есть два недостатка.

Первый, это вероятность возникновения ситуации под названием «блокировка оси» или «шарнирный замок» (gimbal lock). Представьте, что вы играете в шутер от первого лица, где вы можете посмотреть влево, вправо, вверх и вниз или повернуть камеру вокруг зрительной оси. Теперь представьте, что вы смотрите прямо вверх. В этой ситуации попытка взглянуть налево или направо будет аналогична попытке вращения камеры. Всё что мы можем вы этом случае, это вращать камеру вокруг своей оси, либо посмотреть вниз. Как вы можете представить, это ограничение делает непрактичным применение углов Эйлера в лётных симуляторах.

Второе — интерполяция между двумя эйлеровскими углами вращения не даёт кратчайшего пути между ними.
Например, у вас две интерполяции между двумя одинаковыми вращениями. Первая использует интерполяцию эйлеровского угла, вторая использует сферическую линейную интерполяцию (spherical linear interpolation (SLERP)), чтобы найти кратчайший путь.

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Итак, что-же больше подойдет для интерполяции вращений? Может быть матрицы?

Вращение с помощью матриц

Как мы уже говорили ранее, матрицы вращения хранят в себе информацию о трёх осях. Это означает, что интерполяция между двумя матрицами лишь линейно интерполирует каждую ось. В результате это даёт нам эффективный путь, то так-же привносит новые проблемы. Например, тут показаны два вращения и одно интерполированное полу-вращение:

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Как вы можете заметить, интерполированное вращение значительно меньше, чем любое из исходных вращений, и две оси более не перпендикулярны друг другу. Это логично, если вдуматься — середина отрезка, соединяющего любые две точки на сфере будет расположена ближе к центру сферы.

Это в свою очередь порождает известный «эффект фантика» (candy wrapper effect), при применении скелетной анимации. Ниже показана демонстрация этого эффекта на примере кролика из нашей игры Overgrowth (прим. переводчика: обратите внимание на середину туловища кролика).

в чем разница скалярного и векторного произведения. Смотреть фото в чем разница скалярного и векторного произведения. Смотреть картинку в чем разница скалярного и векторного произведения. Картинка про в чем разница скалярного и векторного произведения. Фото в чем разница скалярного и векторного произведения

Вращение, основанное на матричных операциях, очень полезно, так как они могут аккумулировать вращения без всяких проблем, вроде блокировки оси (gimbal lock), и может очень эффективно применяться к точкам сцены. Вот почему поддержка вращения на матрицах встроена в графические карты. Для любого типа трёхмерной графики матричный формат вращения — это всегда итоговый применяемый способ.

Однако, как мы уже знаем, матрицы не очень хорошо интерполируются, и они не столь интуитивно понятны.

Итак, остался только один главный формат вращения. Последний, но тем не менее, важный.

Кватернионы

Что-же такое кватернионы? Если очень кратко, то это альтернативный вариант вращения, основанный на оси и угле (axis-angle rotation), который существует в пространстве.

Подобно матрицам они могут аккумулировать вращения, то есть вы можете составлять из них цепочку вращений, без опаски получить блокировку оси (gimbal lock). И в то-же время, в отличие от матриц, они могут хорошо интерполироваться из одного положения в другое.

Являются-ли кватернионы лучшим решением, нежели остальные способы вращений (rotation formats)?
На сегодняшний день они комбинируют все сильные стороны других способов вращений. Но у них есть два слабых места, рассмотрев которые, мы придём к выводу, что кватернионы лучше использовать для промежуточных вращений. Итак, каковы недостатки кватернионов.

Во-первых кватернионы непросто отобразить на трёхмерном пространстве. И мы вынуждены всегда реализовывать вращение более простым способом, а затем конвертировать его. Во-вторых, кватернионы не могут эффективно вращать точки, и мы вынуждены конвертировать их в матрицы, чтобы повернуть значительное количество точек.

Это означает, что вы скорее всего не начнете или не закончите серию вращений с помощью кватернионов. Но с их помощью можно реализовать промежуточные вращения более эффективно, нежели при применении любого другого подхода.

«Внутренняя кухня» механизма кватернионов не очень понятна и не интересна мне. И, возможно, не будет интересна и вам, если только вы не математик. И я советую вам найти библиотеки, которые работают с кватернионами, чтобы облегчить вам решение ваших задач с их помощью.

Математические библиотеки «Bullet» или «Blender» будут хорошим вариантом для начала.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *