в чем противоречие квантовой механики и теории относительности

Квантовая механика против СТО

Аннотация
Утверждения о «мирном сосуществовании» квантовой теории и специальной теории относительности необоснованны. Взгляды этих двух теорий на скорость передачи взаимодействия являются непримиримыми и взаимоисключающими. Одна из этих двух теорий (или обе) требует пересмотра.

Ключевые слова: нелокальность, корреляция, мгновенная скорость передачи взаимодействия в пространстве, синхронизация

СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

Рассмотрим пример. Два одинаковых поезда движутся навстречу друг другу. В момент, когда поравняются их локомотивы, все часы в поездах устанавливаются в нулевые показания (в рамках своих ИСО). При этом для наблюдателей в хвостовых вагонах поездов часы хвостового вагона другого поезда будут установлены в будущее. Например, в поезде А часы в хвостовом вагоне сброшены в ноль, но по мнению наблюдателя в этом вагоне часы в хвостовом вагоне поезда В будут установлены в «будущее», например, в показания 60 минут. И наоборот. В процессе сближения часов они будут взаимно отставать и при встрече их показания сравняются. Получается, что часы в хвостовых вагонах действительно были установлены в «будущее».

Мы не можем дважды совместить двое относительно движущихся часов без того, чтобы привести их в ускоренное движение и тем самым выйти за рамки СТО. Вот если бы можно было сравнить показания часов, не расположив их дважды рядом, а сняв показания с разнесенных на расстояние часов мгновенно. Вот если бы можно было мгновенно «слетать» в удаленную точку и посмотреть, что показывают часы там! Что они показывают «на самом деле» в данный момент времени по нашим часам? С точки зрения СТО это означает путешествие в будущее! Может быть, такую возможность может предоставить квантовая корреляция запутанных частиц? Очевидно, что сам факт мгновенной передачи информации в любом виде опровергнет один из постулатов СТО и, следовательно, саму СТО.

Квантовая теория утверждает, что при измерении одной из запутанных частиц, вторая мгновенно и на любом расстоянии проецируется в собственное состояние, которое строго и однозначно соответствует состоянию первой измеренной частицы. Конечно, узнать о том, что эти частицы ведут себя синхронно, одинаково, мы можем, лишь передав информацию от одной частицы к другой обычным способом – со скоростью, не превышающей скорость света. Квантовая теория утверждает, что передачи информации при коллапсе волновой функции не происходит, поэтому формально мгновенная скорость «распространения» корреляции не противоречит СТО. Можно ли использовать корреляцию для проверки СТО? Если удастся показать, что квантовая корреляция может использоваться для передачи информации с мгновенной скоростью, то признание истинности СТО потребует признать ошибочность положения квантовой теории о нелокальности.

КВАНТОВО-РЕЛЯТИВИСТСКИЙ МЫСЛЕННЫЙ ЭКСПЕРИМЕНТ

Рассмотрим экспериментальный комплекс на рисунке: Экспериментальный комплекс для рассмотрения противоречия между квантовой механикой и СТО.

Источник запутанных фотонов S испускает равномерные последовательности фотонов v1…vN в противоположных направлениях к А и к B. Два объекта А и В, находящиеся на одинаковом удалении от источника S, сближаются с одинаковыми скоростями. В момент, когда объекты А, В и S поравнялись, часы на объектах А и В синхронизируются с часами неподвижной ИСО, в которой находится и источник S. Наблюдатели на объектах А и В пропускают полученные фотоны через одинаково ориентированные поляризаторы. Вследствие запутанности, фотоны будут одинаково зарегистрированы обоими наблюдателями: они либо оба пройдут через поляризаторы, либо оба будут ими задержаны. Записывающее устройство фиксирует интервалы времени между фотонами, прошедшими через поляризатор. Поскольку фотоны проходят поляризаторы случайным образом, то интервалы между регистрациями могут быть как минимальными (два подряд идущих фотона прошли поляризатор), так и кратными ему (если несколько идущих подряд фотонов были задержаны поляризаторами). Обозначим эти интервалы последовательными числами 0, 1, 2, 3 и так далее. Одновременно с регистрацией каждого фотона записывающее устройство фиксирует время его регистрации.

В идеальном случае (без потерь фотонов и нулевой погрешности установки поляроидов) – последовательности будут идентичными от первого до последнего символа. С точки зрения трех ИСО: неподвижной, А и В оба фотона каждой пары измерены на А и на В абсолютно одновременно. Чтобы убедиться в этом, рассмотрим этот процесс с точки зрения А. В момент измерения фотона А он находится на объекте А, с какой бы точки зрения мы его ни рассматривали – это место совершения события. Парный ему фотон В проецируется в собственное состояние на объекте В с точки зрения неподвижной ИСО. Следовательно, это также место совершения события и оно одно и то же для любой ИСО. Отметим это с еще большей определенностью: событие «ПРОЕЦИРОВАНИЕ ФОТОНА В СОБСТВЕННОЕ СОСТОЯНИЕ» с точки зрения неподвижной ИСО произошло в А (В). Место происхождения этого события пространственно строго определено, оно произошло именно в этой точке пространства и ни в какой другой. В соответствии со специальной теорией относительности – это событие произошло в этом месте и с точки зрения любой другой ИСО.

Таким образом, в момент измерения фотона на А исследователь точно уверен, что второй фотон пары находится на В. Если бы исследователь А сказал, что фотон был измерен на В по часам А уже давно (или просто в другое время), то фотон в этот момент по часам А не находится на В. Следовательно, уникальное мгновенное событие «ПРОЕЦИРОВАНИЕ» оказывается произошедшем в разных местах, что является абсурдом.

Противоречие между квантовой теорией и теорией относительности состоит в конфликте отношений к принципу предельности скорости передачи информации. Однако известны высказывания о «мирном сосуществовании» между КМ и СТО, поскольку при коллапсе волновой функции запутанных частиц нет передачи информации.

ЕСЛИ ПРАВА КВАНТОВАЯ ТЕОРИЯ

Через какое-то время мы прекращаем запись показаний поляризаторов и возвращаем объекты А и В в какое-то общее место. Просмотрим архивы записывающих устройств А и В.

Экспериментальный комплекс симметричен, поэтому к каждому из исследователей А и В фотоны будут поступать в одинаковой последовательности (очередности): из интервалов 0, 1, 2, 3 и так далее. Попробуем найти в записях последовательности интервалов (сигнатуру) вида, например, «000-111-000», которую назовем «меткой». Поскольку фотоны поступают случайным образом, то такая последовательность парных прохождений коррелированных фотонов вполне вероятна. Если же такую последовательность мы не обнаружим в наших архивах, то мы возьмем любую другую, достаточно редкую последовательность, поскольку нам нужна «опорная метка», то есть точка в записях, с которой мы начнем сравнивать их друг с другом. Допустим, мы нашли метку «000-111-000».

Если фотоны принимают собственные состояния в соответствии с квантовой теорией мгновенно на любом расстоянии, то мы имеем полные основания утверждать, что эти две последовательности – метки «сформировались» одновременно с точки зрения всех ИСО – А, В и S. Это означает, что записав показания собственных часов, наблюдатель А словно бы мгновенно «перепрыгнул» на В и посмотрел показания его часов. Можно сказать иначе: наблюдатель А как бы дистанционно сделал запись метки «000-111-000» в журнале В, против которой наблюдатель В поставил свое время. Эта метка является уникальной: она единственная (либо первая из нескольких возможных), она появилась на А и на В абсолютно одновременно (в противовес «относительности одновременности»), она является сигналом синхронизации. Хотя этот сигнал не был передан от одного наблюдателя к другому, он, безусловно, возник одновременно, и каждый из наблюдателей вправе считать, что именно он сгенерировал этот сигнал своим поляризатором.

Очевидно, что при последующем сравнении архивов записей, наблюдатель А ожидает увидеть в записях В против метки «000-111-000» время в соответствии с уравнением специальной теории относительности (1), то есть показания часов В, отличные от показаний часов А. То же самое ожидает увидеть и В в отношении записей А. Однако безусловно очевидно, что эти две записи будут идентичными. Таким образом, квантовая теория опровергает выводы специальной теории относительности об отставании часов: часы движущихся относительно ИСО идут синхронно.

ЕСЛИ ПРАВА СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

Специальная теория дает для показаний часов уравнение, но исключает возможность непосредственно сравнить эти показания дважды. Мы можем либо изначально синхронизировать часы, предполагая, что в дальнейшем каждые из них относительно отстают, либо совместить их в конце некоторого движения, заключив, что показания часов ранее были с некоторым опережением. СТО исключает возможность любого физического сопоставления интервалов времени, прошедшего в каждой из ИСО. Постулат об ограниченности скорости передачи сообщения приводит любое такое измерение в соответствие с формулой (1). Просмотрим архивы с точки зрения СТО.

Поскольку экспериментальный комплекс симметричен, то к каждому из исследователей А и В фотоны будут поступать в одинаковой последовательности (очередности): из интервалов 0, 1, 2, 3 и так далее. Попробуем найти в записях метку «000-111-000». Очевидно, нет никаких препятствий, что такая метка будет найдена. Поскольку фотоны запутаны, они явно будут давать одинаковые результаты при измерении каждым из поляризаторов. Допустим, мы нашли метку «000-111-000».

Если фотоны принимают собственные состояния вопреки квантовой теории без взаимной синхронности друг с другом, но строго одинаково, поскольку фотоны просто имеют одинаковые состояния, для чего расстояние значения не имеет, то мы имеем безусловные основания утверждать, что эти две последовательности – метки «сформировались» в строгом соответствии с положениями СТО и принципа «относительности одновременности». Это означает, что каждый из наблюдателей записывает показания собственных часов в момент получения своей метки. Однако эта метка не является уникальной: каждый из наблюдателей получает ее по своим собственным часам, метка не является сигналом синхронизации.

Очевидно, что при последующем сравнении архивов записей, наблюдатель А ожидает увидеть в записях В против метки «000-111-000» время, в точности совпадающее с собственными записями, поскольку он знает: эксперимент симметричен. При этом наблюдатель А знает, что время, когда наблюдатель В сделал свою запись в журнале определяется в соответствии с уравнением (1) и не совпадает со временем, когда такую же запись сделал наблюдатель А в своем журнале. Записи в архивах были сделаны в разное время с точки зрения обоих наблюдателей, но эти записи одинаковые. Таким образом, эти две записи будут идентичными по содержанию, но разновременными по созданию. Специальная теория относительности строго последовательно и логично следует своим принципам и дает согласующиеся выводы.

Итак, единственным пунктом доводов, который отвергается специальной теорией относительности, является предположение о мгновенном распространении корреляционной связи между частицами. Только отказ от этого предположения позволяет получить правильные выводы в рамках СТО. Все остальные доводы в этих рассуждений сделаны в строгом соответствии с СТО и не могут ставиться под сомнение. Следовательно, СТО явно требует непризнания положения квантовой теории о мгновенности коллапса вектора состояния запутанных частиц. В рамках СТО положение квантовой теории о мгновенности коллапса является ошибочным положением.

1. Между квантовой теорией и специальной теорией относительности существует неустранимое противоречие, касающееся скорости передачи взаимодействия и квантовой нелокальности.

2. Положение квантовой теории о мгновенности коллапса вектора состояния противоречит постулату СТО об ограниченности скорости передачи взаимодействия, поскольку существует способ использовать коллапс для формирования сигнала синхронизации, являющегося фактически информационным сигналом, мгновенно распространяющимся в пространстве.

3. Одна из теорий – квантовая или специальная теория относительности, либо обе теории требуют пересмотра в вопросе о скорости передачи взаимодействия. Для квантовой теории – это отказа от квантовой корреляции запутанных частиц (нелокальности) с мгновенностью коллапса волновой функции на любом расстоянии, для СТО – это предельность скорости передачи взаимодействия.

Источник

Почему квантовая механика и теория относительности несовместимы?

в чем противоречие квантовой механики и теории относительности. Смотреть фото в чем противоречие квантовой механики и теории относительности. Смотреть картинку в чем противоречие квантовой механики и теории относительности. Картинка про в чем противоречие квантовой механики и теории относительности. Фото в чем противоречие квантовой механики и теории относительности

Несмотря на то, что мы достигли определенных успехов в понимании внутреннего устройства вселенной (бозон Хиггса, ага), в наших знаниях все еще есть зияющие пробелы. В конце концов, почему у нас до сих пор нет Теории Великого Объединения и Теории Всего. И почему Общая теория относительности Эйнштейна никак не может подружиться с квантовой механикой?

Кстати говоря, а зачем нам их вообще дружить?

Все наши знания о законах вселенной можно разделить на две большие группы. В одной окажется квантовая механика, из которой выросла Стандартная Модель вместе со всеми своими фундаментальными частицами и тремя взаимодействиями: электромагнитным, сильным и слабым. В другую группу попадет ОТО, разработанная Эйнштейном, описывающая четвертое фундаментальное взаимодействие — гравитацию, а также черные дыры, расширение вселенной и даже путешествия во времени.

Могут ли они сосуществовать вместе?

Вы наверно уже догадались, что мы точно не знаем, как квантовая механика и ОТО могут объединиться в квантовую гравитацию. Не смотря на больше количество любопытных теорий о том, как это можно сделать, я не буду сейчас на них останавливаться, а просто попытаюсь объяснить, зачем это вообще нужно.

Квантовая механика и ОТО обычно применяются на очень различных масштабах. Например, квантовая механика долгое время оставалась загадкой для ученых потому, что ее эффекты становятся значимыми лишь на масштабах отдельных атомов. Если у вас хорошее воображение, вы сможете представить, как с помощью квантовой механики можно описать плотность, скажем, кота, но сделать это можно лишь с большой натяжкой.

Эффекты ОТО, в свою очередь, становится заметными в сильных гравитационных полях. Например, время возле поверхности Земли течет медленнее, а свет огибает скопления галактик. Эти явления могут быть, в целом, проигнорированы, но только до тех пор, пока мы не захотим разобраться, к примеру, что происходит на поверхности нейтронных звезд. Одним словом, ОТО работает на больших масштабах, начиная от звездных систем и заканчивая всей Вселенной.

Но существуют очень интересные места, где ОТО и квантовая механика пересекаются.

Например, в черных дырах, отличных астрофизических лабораториях. При сравнительно небольших размерах они обладают чрезвычайно сильным гравитационным полем. Более того, первые попытки совместить гравитационные и квантовые эффекты впервые были предприняты как раз на границе черных дыр. Например, известное Излучение Хоккинга, которое, кстати говоря, через миллиарды лет должно испарить даже самые массивные черные дыры и неизбежно привести к тепловой смерти вселенной.

В общем, описывать их снаружи у нас более-менее получается. Но чем глубже мы приближаемся к их центру, тем меньше мы понимаем, что же там происходит на самом деле.

Если вы бросите что-либо за горизонт событий черной дыры, то оно никогда не вернется назад. Более того, в мире, где гравитация — главный игрок, все, что попадает в черную дыру, в конце концов, окажется заключенным в буквальном смысле точку — так называемую «сингулярность». В момент большого взрыва существовала такая же проблема: невероятно большая плотность заключенная в невероятно малом пространстве. В первое мгновение, вероятно, бесконечно малом.

Мы никогда не наблюдали «чистую сингулярность» напрямую — и есть серьёзные причины полагать, что никогда и не будем. Это довольно печально с точки зрения ее изучения, но, тем не менее, не так плохо, учитывая, что нас не разорвет гравитационными силами.

Согласно предсказаниям ОТО, черные дыры имеют буквально нулевой радиус, но в квантовой механике происходит нечто совсем другое. В ней существует принцип неопределенности, который, помимо всего прочего, утверждает, что мы принципиально не сможем определить абсолютно точное положение какой-бы то ни было частицы материи. На практике это означает, что те сущности, которые мы называем «частицами» не могут быть сколь угодно малы. Согласно квантовой механике, как бы мы не старались, массу равную массе солнца не удастся заключить в область размером меньше 10^-73 метра. Этот размер умопомрачительно мал, но, тем не менее, не равен нулю.

Если бы это была единственная нестыковка между квантовым миром и гравитацией (которая, к тому же, наверно, уже была известна читателям), можно было бы простить их за скептицизм по отношению к масштабам трагедии.

Но настоящие проблемы между ОТО и квантовой механикой начинаются гораздо раньше этих масштабов в 10^-73 метра.

Классическая и Квантовая Теории.

ОТО — это классическая теория поля, которая описывает вселенную как непрерывное распределение чисел — абсолютно детерминированных чисел — если, конечно, у вас есть достаточно точные инструменты для их измерения. Эти числа могут рассказать все об искривлении пространства-времени, везде и всегда. Само же искривление, в свою очередь, всецело описывается массой и энергией. Джон Уилер точно заметил:

Масса говорит пространству-времени как изгибаться, пространство-время говорит массе как двигаться

Но квантовые теории абсолютно другие! В квантовом мире частицы взаимодействуют друг с другом с помощью других частиц — переносчиков взаимодействия. Электромагнитные силы, к примеру, используют фотоны, сильное взаимодействие — глюоны, слабое — W и Z бозоны.

Нам не нужно нырять в черные дыры, чтобы увидеть конфликт между классической и квантовой теориями. Вспомните известный «Эксперимент с двумя щелями». В нем луч с электронами (или фотонами, или любыми другими частицами) проходит сквозь экран с двумя узкими прорезями. Ввиду квантовой неопределённости не существует способа определить конкретную прорезь, через которую пролетает электрон. Он в буквальном смысле проходит через обе щели одновременно. Даже само по себе это явление довольно странно, но в контексте гравитации оно становится абсолютно непонятным. Если электрон проходит в одно отверстие, он должен создавать слегка иное гравитационное поле, чем если бы он прошел через другое.

Еще более странным является то, что согласно эксперименту Уиллера с отложенным выбором, возможно создать такие условия, при которых электрон выберет щель в прошлом, после ретроспективных наблюдений по окончанию эксперимента. С ума сойти, правда?

Другими словами, мир гравитации должен быть абсолютно детерминированный; в квантовой механике этого как раз и не происходит.

Есть еще более глубокая проблема. В отличии, скажем, от электричества, которое взаимодействует только с заряженными частицами, гравитация, похоже, взаимодействует со всем. Все виды масс и энергий поддаются влиянию гравитации и создают гравитационные поля. Также, в отличие от электричества, не существует отрицательных масс, которые бы смогли нейтрализовать положительные.

Мы можем представить квантовую теорию гравитации, по крайней мере, в принципе. Так же, как и у основных сил, у нас будет частица-переносчик взаимодействия, заочно названная гравитоном, которая и будет передавать сигнал.

Мы даже можем представить эксперименты, проводимые на все меньших и меньших масштабах, в которых мы будем наблюдать все больше и больше виртуальных гравитонов между частицами. Проблема в том, что на малых масштабах энергии становятся все больше и больше. Например, ядро атома разрушить гораздо сложнее, чем оторвать от него электрон.

На самых малых расстояниях рой гравитонов с огромной энергией должен создавать невероятную плотность энергии, и вот тут-то начинаются проблемы. Гравитация в теории должна взаимодействовать со всеми формами энергии, а так как мы генерируем бесконечно больше количество высокозаряженных частиц, они должны создавать сильнейшее гравитационное поле. Наверно, вы уже видите, в чем проблема. В конце концов, все подсчеты заканчиваются веером бесконечностей, лезущих отовсюду.

В электромагнетизме и других квантовых взаимодействиях, при переходе к очень малым масштабам результаты расчетов становятся крайне обескураживающими. Это расстояние, известное также как планковая длина, во много раз меньше атома — всего 10^-35м. Я в очередной раз замечу, что сейчас абсолютно непонятно, как же законы природы должны работать в масштабах меньше этого расстояния. Квантовая механика говорит, что в этом микромире могут то и дело абсолютно случайно возникать и исчезать крошечные черные дыры, таким образом предполагая, что пространство-время само по себе далеко не равномерно, если присмотреться к нему поближе.

Мы пытаемся избежать этих нестыковок теорий с помощью процесса, который называется перенормировкой. Перенормировка — это просто заковыристый способ сказать, что мы делаем расчеты только до определенного предела. Она позволяет избавиться от бесконечностей в большинстве теорий и спокойно жить дальше. Т.к. большинство взаимодействий включают в себя лишь разницу двух энергий, не имеет значения, сложили ли вы или вычли константу из всех данных (даже, по всей видимости, если эта константа — бесконечность), результат все равно получается удовлетворительным.

Не все, конечно, с этим согласны. Великий Ричард Фейнман сказал:

Этот трюк который мы делаем… Технически он называется перенормировкой. Но неважно, насколько умным словом он назван, я бы назвал его сумасшествием! Обращение к таким фокус-покусам не дает нам права утверждать, что теория квантовой электродинамики математически консистентна. Удивительно, что до сих пор толком не удалось это доказать; Я думаю, перенормировка c точки зрения математики не может считаться верной в полном смысле этого слова.

Даже не смотря на эти возражения, с гравитацией дела обстоят еще печальнее. Так как гравитация воздействует на все частицы (в отличие от электромагнетизма), эти бесконечные энергии тянут за собой бесконечную кривизну пространства-времени. И даже перенормировка не позволяет нам от нее избавиться.

Не смотря на то, что у нас нет теории квантовой гравитации, у нас есть некоторое представление о том, как она должна выглядеть. Например, в ней точно должен быть гравитон, и поскольку гравитация, кажется, может распространятся повсюду, гравитон (как и фотон) должен обладать нулевой массой, ведь тяжелые переносчики взаимодействия (такие как W и Z бозоны) могут взаимодействовать только на очень небольших расстояниях.

Что ж, ура нам. Мы все-таки знаем что-то о том, как должен выглядить гравитон. Но касательно всех этих бесконечностей — черт, у нас нет ни малейшего представления о том, что же все-таки происходит на самом деле!

Источник

# чтиво | В чем конфликт ОТО и квантовой механики?

Несмотря на наши успехи в описании работы внутренних механизмов вселенной, в наших знаниях зияют некоторые дыры. Где теория великого объединения или общая теория всего? Почему общая теория относительности Эйнштейна противоречит квантовой механике? Почему мы при всем этом хотим их объединить?

в чем противоречие квантовой механики и теории относительности. Смотреть фото в чем противоречие квантовой механики и теории относительности. Смотреть картинку в чем противоречие квантовой механики и теории относительности. Картинка про в чем противоречие квантовой механики и теории относительности. Фото в чем противоречие квантовой механики и теории относительности

Практически все, что мы знаем о физике, можно положить в два тазика. В одном будет квантовая механика, на основе которой мы разработали Стандартную модель, включающую все фундаментальные частицы, которые мы обнаружили, а также три из четырех взаимодействий: электромагнетизм, слабые и сильные ядерные силы.

В другом тазике лежит эйнштейновская общая теория относительности, которая описывает четвертую силу, гравитацию, и дает нам черные дыры, расширение Вселенной и потенциал для путешествий во времени.

Могут эти тазики объединиться в один? Мы частенько говорим о том, что общая теория относительности не работает с квантовой механикой. Недалекие люди вовсе говорят, что «Эйнштейн ошибался» и начинают делать выводы, «а значит, скорость света не максимальна». Почему все так?

Заранее отметим, что пока никто не знает, как именно квантовая механика и общая теория относительности объединятся в теорию «квантовой гравитации». И хотя есть некоторые интересные идеи, о которых мы постараемся рассказать, начнем с того, зачем вообще нужна теория квантовой гравитации.

Два царства

Квантовая механика и теория относительности работают на совершенно разных масштабах. Квантовая механика, например, была неизвестна науке так долго потому, что приобретает важное значение только в атомарных масштабах. Если вы умны, вы можете вообразить, когда квантовая механика управляет судьбой кошки, но это будет пример с большой натяжкой.

Относительность, с другой стороны, становится важной только в сильных гравитационных полях. Время, например, замедляется вблизи поверхности Земли по сравнению со временем далекого космоса; свет искривляется вокруг скоплений галактик. Эти эффекты в значительной степени игнорируются, если только мы не говорим о поверхности нейтронных звезд и тому подобных вещах. Другими словами, общая теория относительности распространяется в пределах космоса и ее эффекты измеряются в соответствующих масштабах — от звезды до всей вселенной.

Тем не менее существуют очень интересные уголки пространства-времени, где ОТО и квантмех сталкиваются.

Черные дыры, как правило, являются отличными астрофизическими лабораториями, в первую очередь потому, что они одновременно малы и обладают мощным гравитационным полем. Первые попытки успешного соединения гравитационных и квантовых эффектов проявились на границах черных дыр в виде знаменитого излучения Хокинга, которое полностью испарит любую черную дыру (за квадриллионы лет) и приведет к неизбежной тепловой смерти Вселенной.

Снаружи у нас все хорошо. Но по мере того, как мы продвигаемся все дальше и дальше в центр черной дыры, у нас все меньше и меньше знаний о том, как работает физика на самом деле.

Сингулярности

Как только вы уроните что-нибудь в черную дыру за горизонт событий, оно не только не сможет выбраться, но и будет неумолимо засосано внутрь. Результатом этого становится то, что в мире с единственным королем — гравитацией — все, что попадает в черную дыру, стягивается в бесконечно малую и бесконечно плотную буквальную точку, так называемую сингулярность. У момента Большого взрыва та же проблема: была невероятно высокая плотность (из-за сильной гравитации), заключенная в очень небольшом пространстве. В тот самый первый момент, как предполагается, бесконечно малом пространстве.

Мы никогда не видели так называемую «голую сингулярность» напрямую (и есть веские основания полагать, что никогда не увидим), что не очень хорошо для понимания этого явления, но достаточно хорошо с точки зрения не быть разорванным под влиянием приливных гравитационных сил.

Из картины общей теории относительности вытекает то, что ядра черных дыр буквально обладают нулевым радиусом, но квантовая механика говорит нечто совершенно иное. В квантовой механике есть «принцип неопределенности», который, ко всему прочему, гласит, что вы никогда не сможете определить точное положение чего-либо. На практике это означает, что даже то, что мы называем «частицами» не может быть сколь угодно малым. Согласно квантовой механике, масса, например, нашего Солнца никогда не сможет быть заключена в область меньшую, чем 10^-73 м.

Бесконечно малую, но не нулевую.

Если бы это было единственное столкновение между квантовой механикой и гравитацией (да многие из вас и так это знали), можно было бы простить людям разочарование от масштаба проблемы. Но самый суровый конфликт между квантмехом и ОТО начинается глубже, чем 10^-73 м.

Классическая и квантовая теории

Общая теория относительности известна как классическая теория поля, которая описывает вселенную как непрерывное распределение цифр — точных цифр, если ваши инструменты достаточно точны, чтобы измерить их, — которые расскажут вам все о кривизне пространства и времени. Кривизы, в свою очередь, полностью описываются распределением и движением массы и энергии. Как говорил Джон Уилер:

«Масса говорит пространству-времени, как искривляться, а пространство-время говорит массе, как двигаться».

Но квантовая теория совершенно другая. В квантовой теории частицы взаимодействуют, посылая между собой частицы. Электричество, например, посылает фотоны между заряженными частицами, сильное взаимодействие задействуют глюоны, а слабое — W- и Z-бозоны.

Нам даже не надо нырять в черную дыру, чтобы увидеть конфликт между классической и квантовой теориями. Рассмотрим знаменитый эксперимент «с двумя щелями». Пучок электронов (или фотонов, или других частиц) пролетает сквозь экран с двумя тонкими щелями на нем. Из-за квантовой неопределенности невозможно предсказать, сквозь какую из щелей пролетит электрон. И он пролетает сразу через две щели. Это похоже на обман, но в контексте гравитации он еще более хитроумный. Если электрон проходит сквозь одну щель, он наверняка создает гравитационное поле, отличное от того, которое возникает при прохождении через другую щель.

Все станет еще более странным, когда вы поймете, что согласно эксперименту Уилера с задержкой выбора, становится возможным настроить эксперимент так, что когда вы уже запустите его, вы сможете ретроспективно наблюдать систему и заставить электрон проходить через одну или другую щель (хоть вы и не можете выбрать, сквозь какую).

Мир гравитации должен быть полностью детерминированным, но квантовая механика — совсем наоборот.

Есть и другая глубокая проблема. В отличие от электричества, которое влияет только на заряженные частицы, гравитация влияет на все. Все формы массы и энергии взаимодействуют с гравитацией и создают гравитационные поля. И в отличие от электричества, не существует негативной массы, которая свела бы на нет положительную.

Мы можем представить квантовую теорию гравитации в принципе. Как и с другими силами, будет частица-посредник под названием гравитон, которая переносила бы сигнал.

Мы могли бы представить меньшие масштабы и увидеть, как все больше и больше виртуальных гравитонов снуют между частицами. Проблема в том, что на меньших масштабах возрастают энергии. Ядро атома требует больше энергии, чтобы разбиться на части, чем снятие электрона с орбиты, например.

На малых масштабах рой высокоэнергетических виртуальных гравитонов будет производить невероятно плотную энергию, и вот тут начнутся проблемы. Гравитация вроде бы должна наблюдать все формы энергии, но здесь мы будем производить бесконечное число высокоэнергетических частиц, которые будут создавать мощное гравитационное поле. Возможно, вы видите, в чем сложность. К концу дня, все вычисления утыкаются в целый букет бесконечностей, витающих вокруг.

В электромагнетизме и других квантовых взаимодействиях вычисления начинают спотыкаться на очень малых масштабах, известных как «планковская длина», примерно 10^-35 м — намного меньше атома. Отдавая дань традиции, отметим, что физики не имеют никакого понятия о том, как работает физика на масштабах меньше планковской длины. На этих масштабах, говорит квантовая механика, могут возникать черные дыры, там царит случайность, и само пространство-время покрывается рябью, когда вы смотрите на него так близко. Там дивный новый мир.

Мы стараемся избежать этих столкновений теорий с помощью процесса, известного как «перенормировка». Перенормировка — это просто забавный способ выражения того, что мы проводим вычисления до определенного масштаба, а потом останавливается. Это позволяет избавиться от бесконечностей в большинстве теорий и спокойной вздохнуть. Поскольку большинство сил включают только различия между двумя энергиями, не имеет особого значения, вычислите вы полное число или нет.

Однако не все так оптимистично смотрели на это. Великий Ричард Фейнман отмечал:

«Игра, в которую мы играем, технически называется «перенормировка». Но каким бы умным словом она не называлась, я считаю, это бредовый процесс. Прибегая к такому фокусу-покусу, мы не можем доказать даже сами себе, что теория квантовой электродинамики математически самодостаточна. Удивительно то, что эта самодостаточность не доказана к настоящему моменту, и я подозреваю, что перенормировка не является математически легитимной»

Опустим эти возражения. Все становится еще хуже, когда мы говорим о гравитации. Дело в том, что поскольку (в отличие от электромагнетизма) гравитация влияет на все частицы, бесконечные энергии будут означать разные кривые. Перенормировка даже в самом лучшем случае не подойдет. Мы не избавимся от бесконечностей.

Что мы знаем?

У нас нет теории квантовой гравитации, но есть некоторые идеи о том, какой должна быть успешная теория. Например, должен быть гравитон, и поскольку гравитация, похоже, распространяется на все пространство, гравитон (как и фотон) должен быть безмассовым. Переносчики массы (как W- и Z-бозоны) действуют только на небольшом расстоянии.

Но и это еще не все. Оказывается, существует единственная связь между классической и квантовой теорией. К примеру, электромагнетизм порождают электрические заряды и токи. Источники математически описываются как векторы, и выясняется, что векторы порождают частицу-посредник со спином 1. Получается, посредники с нечетным спином будут производить силы, которые будут отталкивать одинаковые частицы. И действительно, два электрона отталкиваются друг от друга.

ОТО, с другой стороны, известна как «тензорная теория», потому что в ней есть все виды источников, относящиеся к давлению, расходу и плотности распределения энергии. Квантовые версии тензорной теории будут обладать частицами-посредниками со спином 2. Как вы догадываетесь, у гравитона будет спин 2. И как вы догадались, эти частицы будут притягиваться. Как ни странно, частицы притягиваются гравитационно.

Мы знаем немного о том, какими должны быть гравитоны. Но что делать со всеми этими бесконечностями, никто не знает.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *