в чем опасность водородного топлива
Хуже тротила: какими бедами грозит миру водородная энергетика
Андрей Злобин, кандидат технических наук, математик
У водорода есть еще один крупный недостаток, который представляет собой фактор серьезной опасности. Вот что об этом говорится в «Прогнозе развития энергетики мира и России до 2040 года», подготовленном Институтом энергетических исследований Российской Академии наук и аналитическим центром при Правительстве РФ. «Главная проблема современных водородных автомобилей – их высокая пожаро- и взрывоопасность (молекулы водорода способны проникать в структуру металла кузова или бака, просачиваясь из автомобиля наружу, что может привести к детонации)».
И хотя пример приводится из области автомобилестроения, то же самое можно сказать об энергетике, авиации любой другой технике, использующей водород в качестве топлива. Даже сталь является для водорода дырявым решетом, и только ее специальные марки или значительное увеличение толщины металла немного снижают остроту проблемы. Эти лишние металлические тонны делают «игрушки на водороде» крайне опасными и дорогими.
Какие еще нужно привести аргументы, чтобы понять — лоббирование водорода на замену нефти и газу откровенно смахивает на авантюризм. Ну нельзя, образно говоря, отапливать жилища тротилом, ездить, летать или плавать верхом на взрывчатке. Все это очень плохо кончится. Сколько еще Фукусим и Челенджеров должно рвануть, чтобы пришло понимание преждевременности водородной эры? Где гарантии, что нашпиговав страну «водородными минами» мы однажды не получим что-то пострашнее Чернобыля?
Я считаю, что игру в водородную рулетку нужно немедленно прекратить. Научные исследования по линии водорода продолжать можно и нужно. А всерьез рассчитывать на водородную энергетику или транспорт в ближайшие несколько десятилетий — это авантюра. И не надо дуть в уши про «потепление климата». От водорода может «потеплеть» так, что мало не покажется. Думаю, следует величать карбонариями тех, кто излишне ретиво печется о декарбонизации. Пусть начинают декарбонизацию с себя. Россия, полагаю, слушать карбонариев не обязана. Глубоко сомневаюсь, что «тротиловая энергетика» является дорогой к процветанию.
Спасет ли водородное топливо экологию Земли?
Водородное топливо — сможет ли оно спасти экологию нашей планеты? Потенциал водородной энергетики. В конце — видео про добычу топлива из воды. Водородное топливо — сможет ли оно спасти экологию нашей планеты? Потенциал водородной энергетики. В конце — видео про добычу топлива из воды.
Для полноценного развития и активной жизнедеятельности современного общества необходима энергия, каковую сейчас поставляет нефть. Однако, используемая абсолютно во всех отраслях, она не является бесконечным ресурсом и стремительно приближается к исчезновению.
Большие надежды ученые возлагают на водород — самый лёгкий и обильный элемент на планете. Сможет ли он предотвратить экологическую и экономическую катастрофу на Земле?
Зарождение водородных технологий
Плотное изучение водорода как потенциального топлива началось в США в 70-х годах, когда впервые заговорили о скором истощении топливных ископаемых.
На несколько лет лучшие специалисты компании бросили все силы на работу над автомобилем с водородным двигателем, приостановив прочую деятельность, в том числе участие в престижной Формуле 1.
С конца 80-х годов японская корпорация серийно выпускает водородные автомобили, которые продемонстрировали и сравнимую с электрическими агрегатами экологичность, и достойную производительность. А в части технических характеристик они даже превосходят своих прямых конкурентов.
Единственным на сегодня недостатком водородных агрегатов по сравнению с электрическими является невозможность подзарядки — специальных заправочных водородных станций пока насчитывается лишь несколько десятков во всем мире.
Преимущества водородной энергии
При сгорании водорода с целью получения топлива из него выделяется исключительно вода, что делает такую энергетику наиболее выигрышной с точки зрения решения экологических проблем планеты. Именно поэтому правительства многих развитых государств, а также крупные частные компании инвестируют колоссальные денежные средства в развитие этой отрасли.
Среди преимуществ водорода — такие факторы, как:
При таком количестве достоинств минусом можно назвать лишь один – при безграничности элемента его добыча представляется процедурой очень трудоемкой как в части получения, так и хранения, а также последующей транспортировки.
Методы добычи водорода
Водород — не чистое «ископаемое», которое можно просто обнаружить и начать разрабатывать с помощью обычной техники, поэтому требует особой технологии переработки.
Наиболее распространенный метод производства водородного топлива носит название парового риформинга, отличающегося низким энергопотреблением.
Вследствие эндотермической реакции природный или сжиженный газ, сырая нефть и прочие легкие углеводороды преобразуются в чистый водород. Полученное топливо не имеет в своем составе вредных веществ, а потому не будет вредить окружающей среде в процессе эксплуатации.
Если это вещество настолько идеально, почему его до сих пор массово не применяют в разных сферах промышленности?
Аналогичным образом некоторые двигатели сконструированы таким образом, что могут самостоятельно перерабатывать водород в топливо. Но и они во время данной процедуры производят слишком большое количество углекислого газа, чтобы получить широкое распространение.
Вторым доступным методом является электролиз, заключающийся в воздействии тока на воду и распаде ее на водород и кислород. Он существенно экологичнее, позволяет дополнительно получить кислород, но при этом несоизмеримо дороже.
Наконец, третий способ, наиболее перспективный, заключается в переработке аммиака, который вследствие определенного химического воздействия распадается на азот и водород.
Этот способ дешевле электролиза и безопаснее риформинга. Кроме того, сам аммиак более пригоден для его транспортировки к перерабатывающему предприятию.
Водородный автотранспорт
Активное использование водорода на автомобилях в первую очередь связано с проблемой безопасного и одновременно компактного хранения вещества на борту.
Если большие его объемы, каковые встречаются в ракетно-космической или авиационной технике, хранятся в криогенном виде, то для транспорта такое решение не применимо. Для небольшого расхода в городском цикле более эффективным станет сжатый вид или металлопластиковые баллоны для природного газа (метана).
Вторая задача состоит в том, чтобы получать водород непосредственно на борту автомобиля, для чего сейчас проектируется и тестируется компактное бортовое оборудование для риформинга.
Сейчас практически все крупные компании-автомобилестроители занимаются изучением возможностей водородной энергии. В России такие работы ведет ОАО «АвтоВАЗ», однако вследствие недостаточного финансирования отечественные разработки отстают от зарубежных конкурентов как минимум на одно десятилетие.
Потенциал водородной энергии
При всех неоспоримых преимуществах переход на водородную энергию займет несколько десятков лет и многочисленные изыскания.
Например, для применения автотранспорта на водородных двигателях в городе-миллионнике потребуется производить около 500 т водорода в сутки. Если применять электролитический метод получения топлива, то энергетические затраты составят 15 млрд. кВт*ч в год или 30000 млрд. кВт*ч в год в мировом масштабе. Текущая же мировая выработка электроэнергии находится на уровне 15000 млрд. кВт*ч, что наглядно демонстрирует невозможность производства достаточного количества энергии при имеющихся мощностях.
Безусловно, хотя бы постепенный переход к освоению водорода для нужд автотранспортной системы необходим. Для его производства можно задействовать крупные электростанции (АЭС, ТЭС, ГЭС), что будет оправдано с экономической точки зрения.
Стоимость такого топлива с учетом затрат на электроэнергию, а также капитальных вложений в развитие соответствующей инфраструктуры составит примерно 93 руб./кг.
При этом в стоимость водорода следует заложить колоссальное снижение экологического ущерба, который оценен в мегаполисе с миллионным населением в 800-900 тыс. долл. в год.
То есть, при должных экономических механизмах капитальные затраты на развитие водородной энергетики окупятся за несколько лет благодаря экономии бензина и уменьшению вредных выбросов.
Заключение
Проводимые исследования показывают реальный технический и экономический потенциал для применения водородной энергии на основе избыточных электрических мощностей существующих станций, что позволит ощутимо улучшить экологическую обстановку в крупных городах.
Такие двигатели могут прослужить до 10 лет без обслуживания, превосходят по КПД классические бензиновые агрегаты и способны преодолевать до 500-600 км на одном баллоне.
Кроме того, водородные двигатели абсолютно бесшумны, что существенно оздоровит население мегаполисов, страдающих от дорожного шума. Автопроизводители даже устанавливают на свои модели «искусственный шум», чтобы автомобиль можно было заметить и избежать столкновения.
Безусловно, подобная перспектива вызывает определенное недовольство нефтяных компаний, которые опасаются снижения собственных доходов.
Даже глава Tesla Илон Маск называет подобный путь развития тупиковым, считая, что водородные ячейки в качестве мест для хранения энергии основательно уступают аккумуляторам из-за больших потерь в процессе преобразования химической энергии в электрическую.
Другие критики заявляют о небезопасности таких двигателей для жизни и здоровья, так как отсутствие запаха и цвета не позволят автомобилисту заметить утечку топлива.
Хотя Toyota и Honda, которые уже несколько лет поставляют на рынок водородные автомобили, единогласно акцентируют внимание на том, что вещество помещается в герметичные и ударопрочные углеволоконные контейнеры, угроза взрыва от удара во время ДТП остается слишком велика.
Широкомасштабные программы по изучению и развитию водородной энергетики, проводимые в разных странах, говорит о заинтересованности в переходе на новый вид топлива, который не только сэкономит природные ресурсы, но и восстановит уничтожаемую экосистему.
Видео про добычу топлива из воды:
Плюсы и минусы водородного топлива
Водородное топливо уже давно занимает ведущие позиции среди других источников энергии. Обладающий уникальными свойствами, водород по праву называют топливом ближайшего будущего. По сравнению с дизельным и бензиновым топливом, у него больший КПД, а также экологичность. Попытаемся разобраться, почему его до сих пор не используют?
История двигателя внутреннего сгорания на водороде
Применение водорода в качестве топлива началось еще в XIX веке, когда французский изобретатель Франсуа Исаака де Риваз в 1806 году разработал самый первый в мире ДВС, потребляющий водородное топливо. Необходимую электрическую энергию он получал методом электролиза воды. Позже бельгийский изобретатель Жан Жозеф Этьен Ленуар заставил самоходный экипаж двигаться с помощью энергии водорода. Так бы водород и служил бы человечеству в качестве основного топлива, но в 1870 году в ДВС стали применять бензин, сведя на нет первые опыты с водородным топливом.
Водородное топливо в блокадном Ленинграде
О водороде вспомнили только в блокадном Ленинграде в конце 1941 года, благодаря военному технику Б. И. Шелищу, который предложил использовать отработанный водородный газ для заправки автотранспорта. От налетов вражеской авиации Ленинград защищался зенитными орудиями, а также заградительными аэростатами, наполненными водородом, чтобы помешать прицельной бомбардировке города.
Когда водородные аэростаты спускались на землю, их использовали в качестве альтернативного источника топлива. Всего лишь за неделю группа техников переоборудовала на водородное топливо 600 грузовиков ГАЗ. После войны об этом изобретении снова забыли, перейдя опять на бензин.
В 1970 годах, когда произошел энергетический кризис, люди опять оценили необходимость альтернативных источников энергии. Так, Украинским ИПМ был переоборудован весь свой автомобильный парк водородное топливо, отлично справившись с топливным кризисом. Об успешных экспериментах снова забыли после распада советского союза.
Современные автомобили на водороде находятся пока в стадии проектирования, а вернее выпускать серийно опытные модели пока не собираются из-за неразвитой инфраструктуры заправок автотранспорта водородным топливом. В промышленных масштабах получить водород электролизом воды недешево, поэтому автокомпании пока не спешат на него переходить, ожидая более дешевый и простой способ получения топлива.
Преимущества водородных ДВС
Главное неоспоримое преимущество автомобилей на водороде – это высокая экологичность, так как продуктом горения водорода является водяной пар. Конечно, при этом сгорают еще различные масла, но токсичных выбросов гораздо меньше, чем у бензиновых выхлопов.
Отсутствие дорогостоящих систем топливоподачи, которые к тому же опасны и ненадежны.
КПД электродвигателя на водородном топливе намного выше, чем у ДВС.
Имеются и недостатки у автомобилей на водородном топливе:
Дорогой и сложный способ получений топлива в промышленных объемах.
Отсутствие водородной инфраструктуры заправок автотранспорта.
Не разработаны стандарты транспортировки, хранения и применения топлива на водороде.
Несовершенство технологий хранения такого топлива.
Дорогие водородные элементы.
Большой вес транспорта. Работа электродвигателя на водородном топливе требуют водородные преобразователи тока и мощные аккумуляторные батареи, которые весят не мало, а также обладают внушительными габаритами.
Существует опасность возгорания и взрыва при работе водорода с традиционным топливом.
Ознакомившись с достоинствами и недостатками водородного топлива можно понять, почему до сих пор откладывается серийный выпуск водородных автомобилей. Однако из-за ухудшающейся экологии этот альтернативный источник энергии может оказаться единственным решением проблемы.
Производители транспорта на водородном топливе
Мировые производители все же проводят испытание в этой сфере и даже выпускают автотранспорт на водородном топливе:
Toyota — модель Toyota Highlander FCHV;
Ford Motor Company проводит испытания с концептом Focus FCV;
Honda со своей моделью Honda FCX;
Hyundai выпускает Tucson FCEV;
Daimler AG отвечает за модель Mercedes-Benz A-Class;
Все же водород является единственной приемлемой экологической энергией с огромным будущим. От ученых зависит только разработать инфраструктуру, обнаружить способ добычи водорода, наладить порядок в инструкциях по эксплуатации топлива, и тогда навсегда уже забыть о выхлопных газах, нефтяных вышках и других проблемах бензиновой зависимости.
Перспективы и недостатки водородной энергетики
Для хранения и выработки энергии от водорода используются топливные элементы. Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах 19 века. Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.
В 1959 году Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовались правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.
В отличие от кислорода водород практически не встречается на земле в чистом виде и поэтому извлекается из других соединений с помощью различных химических методов.
По этим способам его разделяют на цветовые градации.
Зеленый — производится из возобновляемых источников энергии методом электролиза воды. Все, что необходимо для этого: вода, электролизер и большое снабжение электроэнергией.
Голубой — производится из природного газа, а вредные отходы улавливаются для вторичного использования. Тем не менее идеально чистым этот метод не назовешь.
Розовый или красный — произведенный при помощи атомной энергии.
Серый — водород получают путем конверсии метана. При его производстве вредные отходы выбрасываются в атмосферу.
Коричневый — водород получают в результате газификации угля. Этот метод также после себя оставляет парниковые газы.
Еще существуют технологии получения биоводорода из мусора и этанола, но их доля чрезвычайно мала.
Себестоимость производства по видам водорода, доллар за килограмм
Водородная энергетика
На переработку угля приходится 18% производства водорода, 4% обеспечивается за счет зеленого водорода и 78% — переработкой природного газа и нефти. Методы производства, основанные на ископаемом топливе, приводят к образованию 830 млн тонн выбросов CO2 каждый год, что равно выбросам Великобритании и Индонезии, вместе взятым. И тем не менее водород — это более чистая альтернатива традиционному топливу.
В мире три основных источника выбросов, способствующих потеплению климата: транспорт, производство электроэнергии и промышленность. Водород может использоваться во всех трех областях. При использовании в топливных элементах водородная энергия оставляет минимальные потери, а после использования в качестве побочного продукта остается только вода, из которой снова можно добывать водород.
Перспективы отрасли
Согласно докладу МЭА, к 2050 году мировой спрос на водород должен достичь 528 млн тонн — против 87 млн в 2020, — а его доля в мировом потреблении составит 18%, из них 10% будет приходиться на зеленый водород.
В июне 2020 года Германия объявила о реализации национальной водородной стратегии с инвестициями в 7 млрд евро, чтобы стать лидером в этой области.
Япония, Франция, Южная Корея, Австралия, Нидерланды и Норвегия начали свой курс на водород раньше Германии, а Япония сделала это раньше всех — в декабре 2017 года.
В июле 2020 года Минэнерго подготовило план развития в РФ водородной энергетики на период 2020—2024 годов. Производить водород собираются «Росатом», «Газпром» и «Новатэк». В дорожной карте предусмотрены следующие меры:
В 2021 году HydrogenOne Capital — первый в мире инвестиционный фонд, ориентированный на зеленый водород, заявил о листинге на Лондонской бирже. Фонд инвестирует в проекты мощностью 20—100 МВт с возможностью их расширения до 500 МВт.
Как сделать ремонт и не сойти с ума
Преимущества водородной энергетики
Высокая применимость. Электрификация транспорта поможет снизить выбросы в атмосферу, но авиацию, морские и грузовые перевозки на дальние расстояния трудно перевести на использование электроэнергии, потому что для этих секторов требуется топливо с высокой плотностью энергии. Зеленый водород может удовлетворить эти потребности. Например, Airbus представил концепции самолетов с водородным двигателем и надеется ввести его в эксплуатацию к 2035 году.
Nikola строит полуприцепы, работающие как на аккумуляторных батареях, так и на водороде. Компания заявляет, что ее топливные элементы могут работать при более низких температурах, чем батареи. И они легче, что делает их более практичными для грузовиков и другой тяжелой техники. Nikola также утверждает, что дальность хода такого грузовика составит 900 миль на баке с водородом. Для сравнения: у Tesla Semi с батарейным питанием, который может быть запущен в производство в конце этого года или в 2022 году, заявленная дальность — 200—300 миль.
Также свои аналогичные модели транспорта представили компании Toyota, Honda и BMW.
Время заправки электромобиля на топливных элементах в среднем составляет менее четырех минут. При этом в отличие от батарей они не нуждаются в перезарядке. Поскольку они могут работать независимо от сети, то могут использоваться как запасные генераторы электричества или тепла.
Важный элемент перехода на водород — его применение в ЖКХ. Кроме пилотных проектов в Великобритании Лидс станет первым городом, энергоснабжение которого будет полностью водородным. Согласно плану, все газовые сети и транспортное оборудование переведут на него.
Запасы водорода практически безграничны. Так как он встречается почти всюду, его можно использовать там, где он производится. В отличие от батарей, которые не могут хранить большое количество электроэнергии в течение продолжительного времени, водород можно производить из избыточной возобновляемой энергии и хранить в больших количествах.
Энергоэффективность. Водород содержит почти в три раза больше энергии, чем ископаемое топливо, поэтому для выполнения какой-либо работы его требуется гораздо меньше. Например, по сравнению с электростанцией, работающей на сжигании топлива с КПД от 33 до 35%, водородные топливные элементы выполнят ту же функцию с КПД до 65%. Для примера, у солнечных элементов КПД — 20%, а у ветряных — 40%.
Весной 2020 года в городе Фукусима была запущена самая крупная в мире электростанция, работающая на водороде. Для питания электролизных установок на ней размещены солнечные батареи общей мощностью 20 МВт. Всего станция вырабатывает 1,2 тысячи кубических метров водорода в час.
В автомобилях топливные элементы используют 40—60% энергии топлива, а также обеспечивают сокращение его расхода на 50%.
Зеленый водород — отличная среда для хранения энергии. Например, у Германии существует проблема с энергосистемой. В ясные и ветреные дни солнечные экраны и ветряные турбины на севере производят больше электроэнергии, чем может потребить эта часть страны. Из-за этого Германия вынуждена продавать излишки электроэнергии соседним странам себе в убыток. Избыток электроэнергии из ВИЭ можно хранить в виде водорода, а затем сжигать для выработки электроэнергии, когда это необходимо.
Недостатки водородной энергетики
Стоимость зеленого водорода. Как уже говорилось выше, именно стоимость добычи самого чистого вида водорода ставит наиболее сильные препятствия в его развитии. По словам и прогнозам Минэнерго РФ, перспективы водородной энергетики связаны с удешевлением стоимости водорода, производимого электролизом воды. В качестве основных факторов обеспечения конкурентоспособности зеленого водорода рассматривается перспективное снижение капитальных затрат на электролизеры, а также стоимости электроэнергии из ВИЭ.
Как работает водородный двигатель и какие у него перспективы
С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.
Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.
История развития рынка водородных двигателей
Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.
Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.
В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.
В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.
Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].
Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.
В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.
В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.
Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.
Как работает водородный двигатель?
На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.
Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.
По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.
Где применяют водородное топливо?
Плюсы водородного двигателя
Минусы водородного двигателя
Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.
Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.
Водородный транспорт в России
В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.
В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.
Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.
Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».
В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.
Перспективы технологии
Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.
Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.
Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.
Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.
Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].
Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:
Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.