в чем измеряют электрическую емкость

Электрическая емкость

Электрическая емкость

Классическая электродинамика
в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость
Магнитное поле соленоида
Электричество · Магнетизм

Электростатика
Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал
Магнитостатика
Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Электродинамика
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле
Электрическая цепь
Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс
Ковариантная формулировка
Тензор электромагнитного поля
Тензор энергии-импульса
4-ток · 4-потенциал
Известные учёные
Генри Кавендиш
Майкл Фарадей
Андре-Мари Ампер
Густав Роберт Кирхгоф
Джеймс Клерк (Кларк) Максвелл
Генри Рудольф Герц
Альберт Абрахам Майкельсон
Роберт Эндрюс Милликен

Электрическая ёмкость — характеристика проводника, характеризующая его способность накапливать электрический заряд. Ёмкость определяется как отношение величины заряда проводника к потенциалу проводника. Ёмкость обозначается как C.

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость

где Q — заряд, в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость — потенциал.

В системе СИ ёмкость измеряется в фарадах. В системе СГС в сантиметрах.

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удаленной точки принят равным нулю. Она определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость в вакууме проводящего шара радиуса R равна (в системе СИ):

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость

Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком — конденсатору. В этом случае взаимная ёмкость этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость

Полезное

Смотреть что такое «Электрическая емкость» в других словарях:

ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ — (С) величина, характеризующая способность проводника удерживать электрический заряд. Для уединенного проводника С = Q/j, где Q заряд проводника, j его потенциал. Электрическая емкость конденсатора С = Q/(j1 j2), где Q абсолютная величина заряда… … Большой Энциклопедический словарь

ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ — электроемкость, величина, характеризующая способность тела воспринимать электр. заряды и представляющая собой количество электричества, к рым нужно зарядить тело для того, чтобы потенциал его повысить на единицу (1 в). Э. е. проводящего тела,… … Технический железнодорожный словарь

электрическая емкость — elektrinė talpa statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, išreiškiamas laidininko ar laidininkų sistemos elektros krūvio q ir jo (jos) potencialo u dalmeniu: C = q/u. Priklauso nuo laidininkų pavidalo, matmenų, tarpusavio … Penkiakalbis aiškinamasis metrologijos terminų žodynas

электрическая емкость — elektrinė talpa statusas T sritis chemija apibrėžtis Dydis, apibūdinantis laidininko gebėjimą sukaupti elektros krūvį. atitikmenys: angl. electric capacitance; electrical capacitance rus. электрическая емкость … Chemijos terminų aiškinamasis žodynas

электрическая емкость (знакосинтезирующего индикатора) — C Статическая емкость знакосинтезирующего индикатора, измеренная при отсутствии свечения в элементах отображения. [ГОСТ 25066 91] Тематики индикаторы знакосинтезирующие … Справочник технического переводчика

Электрическая емкость проводника — скалярная величина, характеризующая способность проводника накапливать электрический заряд, равная отношению электрического заряда проводника к его электрическому потенциалу в предположении, что все другие проводники бесконечно удалены и что… … Официальная терминология

(электрическая) емкость конденсатора — 112 (электрическая) емкость конденсатора Электрическая емкость между электродами электрического конденсатора Источник: ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа … Словарь-справочник терминов нормативно-технической документации

электрическая емкость (знакосинтезирующего индикатора) — 89 электрическая емкость (знакосинтезирующего индикатора); С: Статическая емкость знакосинтезирующего индикатора, измеренная при отсутствии свечения в элементах отображения. Источник: ГОСТ 25066 91: Индикаторы знакосинтезирующие. Термины,… … Словарь-справочник терминов нормативно-технической документации

(Электрическая) емкость конденсатора — 1. Электрическая емкость между электродами электрического конденсатора Употребляется в документе: ГОСТ Р 52002 2003 Электротехника. Термины и определения основных понятий … Телекоммуникационный словарь

Источник

Что такое электрическая ёмкость?

Одним из важных параметров, учитываемых в электрических цепях, является электрическая емкость – способность проводников накапливать заряды. Понятие емкости применяется как для уединенного проводника, так и для системы, состоящей из двух и более проводников. В частности, емкостью обладают конденсаторы, состоящие из двух металлических пластин, разделенных диэлектриком или электролитом.

Для накопления зарядов широко применяютсяаккумуляторы, используемые в качестве источников постоянного тока для питания различных устройств. Количественной характеристикой, определяющей время работы аккумулятора, является его электроемкость.

Определение

Если диэлектрик, например, эбонитовую палочку, наэлектризовать трением то электрические заряды сконцентрируются в местах соприкосновения с электризующим материалом. При этом, другой конец палочки можно насытить зарядами противоположно знака и такая наэлектризованность будет сохраняться.

Совсем по-другому ведут себя проводники, помещенные электрическое поле. Заряды распределяются по их поверхности, образуя некий электрический потенциал. Если поверхность ровная, как у палочки, то заряды распределятся равномерно. Под действием внешнего электрического поля в проводнике происходит такое распределение электронов, чтобы внутри его сохранялся баланс взаимной компенсации негативных и позитивных зарядов.

Внешнее электрическое поле притягивает электроны на поверхность проводника, компенсируя при этом положительные заряды ионов. По отношению к проводнику имеет место электростатическая индукция, а заряды на его поверхности называются индуцированными. При этом на концах проводника плотность зарядов будет несколько выше.

На металлическом шаре заряды распределяются равномерно по всей поверхности. Наличие полости любой конфигурации абсолютно не влияет на процесс распределения.

Однако, если проводник убрать из зоны действия поля, то его заряды перераспределятся таким образом, что он снова станет электрически нейтральным.

На рисунке 1 изображена схема заряженного разнополюсного диэлектрика и проводника, удалённого из зоны действия электростатического поля. Благодаря тому, что диэлектрик сохраняет полученные заряды, уединенный проводник восстановил свою нейтральность.

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкостьРис. 1. Распределение зарядов

Интересное явление наблюдается с двумя проводниками, разделенными диэлектриком. Если одному из них сообщить положительный заряд, а другому – отрицательный, то после убирания источника электризации заряды на поверхности проводников сохранятся. Заряженные таким образом проводники обладают разностью потенциалов.

Заряды, накопившиеся на диэлектрике, уравновешивают внутренние взаимодействие в каждом из проводников, не позволяя им разрядиться. Величина заряда зависит от площади поверхности параллельных проводников и от свойства диэлектрика, расположенного между ними.

Свойство сохранять накопленный заряд называется электроемкостью. Точнее говоря, – это характеристика проводника, физическая величина определяющая меру его способности в накоплении электрического заряда.

Накопленное электричество можно снять с проводников путем короткого замыкания их или через нагрузку. С целью увеличения емкости на практике применяют параллельные пластины или же длинные полоски тонкой фольги, разделённой диэлектриком. Полоски сворачивают в тугой цилиндр для уменьшения объема. Такие конструкции называют конденсаторами.

На рисунке 2 изображена схема простейшего конденсатора с плоскими обкладками.

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкостьРис. 2. Схема простого конденсатора

Существуют конденсаторы других типов:

Важной характеристикой конденсатора, как и других накопительных систем, является его электрическая емкость.

Формулы

На рисунке 3 наглядно показано формулы для определения емкости, в т. ч. и для сферы.

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость Рис. 3. Электроёмкость проводника

По отношению к конденсатору, для определения его емкости применяют формулу: C = q/U. То есть, эта величина прямо пропорциональна заряду одной из обкладок и обратно пропорциональна разнице потенциалов между обкладками (см. рис. 4).

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость Ёмкость конденсатора

О других способах определения ёмкости конденсатора читайте в нашей статье: https://www.asutpp.ru/kak-opredelit-emkost-kondensatora.html

Единицы измерения

За единицу измерения величины электроемкости принято фараду: 1 Ф = 1 Кл/1В. Поскольку фарада величина огромная, то для измерения емкости на практике она мало пригодна. Поэтому используют приставки:

Например, электрическая емкость 1 мкф = 0,000001 Ф. Параметр зависит от геометрических размеров, конфигурации проводника и материала диэлектрика.

Уединенный проводник и его емкость

Уединенным называют проводник, влиянием на который других элементов цепей можно пренебречь. Предполагается, что все другие проводники бесконечно удалены от него, а как известно, потенциал точки, бесконечно удаленной в пространстве, равен 0.

Электрическую емкость C уединенного проводника, определяют как количество электричества q, которое требуется для повышения электрического потенциала на 1 В: С = q/ϕ. Параметр не зависит от материала, из которого изготовлен проводник.

Конденсаторы постоянной и переменной емкости

Эра накопителей электричества началась с воздушных конденсаторов. Благодаря плоскому конденсатору с большой площадью обкладок физики смогли понять, как взаимная емкость регулируется площадями пластин, что позволило им создать конденсаторы с переменной емкостью (см. рис. 5).

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкостьРис. 5. Конденсатор переменной емкости

Идея изменения емкости состояла в том, чтобы путем поворота плоской обкладки изменять площадь поверхности, которая располагается напротив другой пластины. Если обкладки располагались точно друг против друга, то напряженность поля между ними была максимальной. При смещении одной из пластин на некоторый угол, напряженность уменьшалась, что приводило к изменению емкости. Таким образом, можно было плавно управлять накопительной способностью конденсатора.

Детали с переменной емкостью нашли применение в первых радиоприемниках для поиска частоты нужной станции. Данный принцип используется по сегодняшний день в различных аналоговых электрических схемах.

Большую популярность приобрели электролитические конденсаторы. В качестве одной из обкладок у них используется электролит, обладающий высокими показателями диэлектрической проницаемости. Благодаря диэлектрическим свойствам электролитов такие конденсаторы обладают большими емкостями.

Главные их преимущества электролитического конденсатора:

Недостатки:

Высокую электрическую прочность имеют плоские конденсаторы, у которых в качестве диэлектрического материала применяется керамика. Они используются в цепях с переменным током и выдерживают большие напряжения.

Сегодня промышленность поставляет на рынок множество конденсаторов различных типов, с высокими показателями проницаемости диэлектриков.

Аккумуляторы и электроемкость

Накопители электричества большой емкости (аккумуляторы) состоят из положительных и негативных пластин, погруженных в электролит. Во время зарядки часть атомов электролита распадается на ионы, которые оседают на пластине. Образуется разность потенциалов между пластинами, что является причиной возникновения ЭДС при подключении нагрузки.

С целью увеличения напряжения аккумуляторы последовательно соединяют в батареи. Разница потенциалов одной секции около 2 В. Для получения аккумулятора на 6 В необходимо создать батарею из трех секций, а на 12 В – батарею из 6 секций.

Для характеристики аккумуляторов (батарей) используются параметры:

Единицей емкости аккумулятора является ампер-час (А*ч) или кратные ей миллиампер-часы (мА*ч). Емкость аккумулятора зависит от площади пластин. Увеличить емкость можно путем параллельного подключения нескольких секций, но такой способ почти не применяется, так как проще и надежнее создать аккумулятор с большими пластинами.

Источник

Электроемкость. Конденсаторы

Что такое электроемкость проводников

В рамках темы данной статьи нам больше всего интересна такая разность потенциалов между проводниками, когда их заряды противоположны по знаку, но равны друг другу по модулю. В таком случае мы можем ввести новое понятие – электрическая емкость (электроемкость).

Электрической емкостью системы, состоящей из двух проводников, называется отношение заряда одного проводника ( q ) к разности потенциалов между этими двумя проводниками.

Конфигурации и размеры проводников, а также свойства диэлектрика определяют величину электроемкости заданной системы. Наибольший интерес для нас представляют проводники особой формы, называемые конденсаторами.

Конденсатор – это проводник, конфигурация которого позволяет локализовать (сосредотачивать) электрическое поле в одной выделенной части пространства. Проводники, составляющие конденсатор, называются обкладками.

Если мы возьмем две плоские пластины из проводящего материала, расположим их на небольшом расстоянии друг от друга и проложим между ними слой диэлектрика, то мы получим простейший конденсатор, называемый плоским. При его работе электрическое поле будет располагаться преимущественно в промежутке между пластинами, но небольшая часть этого поля будет рассеиваться вокруг них.

Часть электрического поля вблизи конденсатора называется полем рассеяния.

Иногда в задачах мы можем не учитывать его и работать только с той частью электрического поля, которое расположено между обкладками. Однако пренебрегать полем рассеяния допустимо далеко не всегда, поскольку это может привести к ошибочным расчетам из-за нарушения потенциального характера электрического поля.

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость

Модуль напряженности электрического поля, которое создает каждая обкладка в плоском конденсаторе, выражается соотношением следующего вида:

Как рассчитать электроемкость конденсатора

Электрическая емкость плоского конденсатора – величина, обратно пропорциональная расстоянию между обкладками и прямо пропорциональная их площади.

Заполнение пространства между проводниками диэлектрическим материалом может увеличить электроемкость плоского конденсатора в число раз, кратное undefined.

Введем обозначение емкости в виде буквы С и запишем это в виде формулы:

Данная формула называется формулой электроемкости плоского конденсатора.

Конденсаторы бывают не только плоскими. Возможны и другие конфигурации, также обладающие специфическими свойствами.

Обозначим проницаемость диэлектрического материала как ε и запишем формулы, по которым можно найти электрическую емкость конденсаторов:

Как рассчитать электроемкость батареи конденсаторов

Если мы соединим несколько проводников между собой, то мы получим конструкцию, называемую батареей.

С = q 1 + q 2 U или C = C 1 + C 2

Если в батарее конденсаторов элементы соединены параллельно, то для нахождения общей электроемкости нам нужно сложить емкости ее отдельных элементов.

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость

C = q U 1 + U 2 или 1 C = 1 C 1 + 1 C 2

Если конденсаторы в батарее соединены последовательно, то для нахождения общей электроемкости нам нужно сложить величины, обратные емкостям каждого из них.

Справедливость обеих формул, приведенных выше, не зависит от количества конденсаторов в батарее.

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость

Источник

Как определить емкость конденсатора?

Основной характеристикой конденсатора является его емкость. Очень часто замеры емкости требуется проводить в электролитическом конденсаторе. В отличие от керамических и оксидных конденсаторов, которые редко выходят из строя (разве что в результате пробоя диэлектрика), электролитическим деталям свойственна потеря ёмкости из-за высыхания электролита. Поскольку работа электронных схем сильно зависит от емкостных характеристик, то необходимо знать, как определить емкость конденсатора.

Существуют разные способы определения ёмкости:

Измерить емкость проще всего с помощью измерителя C и ESR. Для этого контакты измерительных щупов подсоединяют к выводам конденсатора, соблюдая полярность электролитических деталей. При этом результаты измерений выводятся на дисплей. (Рисунок 1). Радиолюбители, которым часто приходится делать измерения, приобретают такой прибор или изготавливают его самостоятельно.

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость Рис. 1. Измерение ёмкости с помощью измерителя C и ESR

С использованием мультиметра и формул

Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкостьРежим «Сх» в мультиметре

Менее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис. 2).

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость Рис. 2. Схема подключения конденсатора

Алгоритм измерения следующий:

Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.

Осциллографом

С приемлемой точностью можно определить ёмкость конденсатора с помощью цифрового или обычного электронного осциллографа. Принцип похож на метод измерения ёмкости тестером. Разница только в том, что не потребуется секундомер, так как с высокой точностью время зарядки конденсатора отображается на экране осциллографа. Если применить генератор частоты и последовательную RC-цепочку (рис. 4), то ёмкость можно рассчитать по простой формуле: C = UR / UC* ( 1 / 2*π*f*R ).

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость Рис. 4. Простая схема

Алгоритм вычисления простой:

При измерении ёмкостей неполярных конденсаторов часто вместо RC-цепочки собирают мостовую схему с частотным генератором (показано на рис. 5), а также другие сборки. Сопротивления резисторов подбирают в зависимости от параметров номинальных напряжений измеряемых деталей. Ёмкость вычисляют из соотношения: r4 / Cx = r2 / C0.

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость Рисунок 5. Мостовая схема

Гальванометром

При наличии баллистического гальванометра также можно определить ёмкость конденсатора. Для этого используют формулу:

Из-за падения сопротивления утечки ёмкость конденсаторов уменьшается. Энергия теряется вместе с током утечки.

Описанные выше методики определения ёмкости позволяют определить исправность конденсаторов. Значительное отклонение от номиналов говорит, что конденсаторы неисправны. Пробитый электролитический радиоэлемент легко определяется путём измерения сопротивления. Если сопротивление стремится к 0 – изделие закорочено, а если к бесконечности – значит, есть обрыв.

Следует опасаться сильного электрического разряда при подключениях щупов к большим электролитам. Они могут накапливать мощный электрический заряд от постоянного тока, который молниеносно высвобождается током разряда.

По маркировке

Напомним, что единицей емкости в системе СИ является фарада ( обозначается F или Ф). Это очень большая величина, поэтому на практике используются дольные величины:

Мы перечислили название единиц и их сокращённое обозначение потому, что они часто встречаются в маркировке крупных конденсаторов (см. рис. 6).

Обратите внимание на маркировку плоского конденсатора (второй сверху): после трёхзначной цифры стоит буква М. Данная буква не обозначает единицы измерения «мегафарад» – таких просто не существует. Буквами обозначены допуски, то есть, процент отклонения от ёмкости, обозначенной на корпусе. В нашем случае отклонение составляет 20% в любую сторону. Надпись 102М на большом корпусе можно было бы написать: 102 нФ ± 20%.

Теперь расшифруем надпись на корпусе третьего изделия. 118 – 130 MFD обозначает, что перед нами конденсатор, ёмкость которого находится в пределах 118 – 130 микрофарад. В данном примере буква М уже обозначает «микро». FD – обозначает «фарады», сокращение английского слова «farad».

На этом простом примере видно, какая большая путаница в маркировке. Особенно запутана кодовая маркировка, применяемая для крохотных конденсаторов. Дело в том, что можно встретить конденсаторы, маркировка которых выполнена старым способом и детали с современной кодировкой, в соответствии со стандартом EIA. Одни и те же символы можно по-разному интерпретировать.

По стандарту EIA:

Возможна и такая надпись: «1B253». При расшифровке необходимо разбить код на две части – «1B» (значение напряжения) и 253 = 25 × 10 3 = 25 000 пФ = 0,025 мкФ.

В кодовой маркировке используются прописные буквы латинского алфавита, указывающие допуски. Один пример мы рассмотрели, анализируя маркировку на рис. 6.

Приводим полный список символов:

Изделия с кодовой маркировкой изображены на рис. 7.

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость Рис. 7. Пример кодовой маркировки

Если в кодировке отсутствует символ из приведённого выше списка, а стоит другая буква, то она может единицу измерения емкости.

Важным параметром является его рабочее напряжение конденсатора. Но так как в данной статье мы ставим задачу по определению ёмкости, то пропустим описание маркировки напряжений.

Отличить электролитический конденсатор от неполярного можно по наличию символа «+» или «–» на его корпусе.

Цветовая маркировка

Описывать значение каждого цвета не имеет смысла, так как это понятно из следующей таблицы (рис. 8):

в чем измеряют электрическую емкость. Смотреть фото в чем измеряют электрическую емкость. Смотреть картинку в чем измеряют электрическую емкость. Картинка про в чем измеряют электрическую емкость. Фото в чем измеряют электрическую емкость Рис. 8. Цветовая маркировка

Запомнить символику кодовой и цветовой маркировки довольно трудно. Если вам не приходится постоянно заниматься подбором конденсаторов, то проще пользоваться справочниками или обратиться к информации, изложенной в данной статье.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *