L 2 MT −3 I −2 (СИ); TL −1 (СГСЭ, гауссова система); LT −1 (СГСМ)
Классическая электродинамика
Электричество · Магнетизм
Электростатика
Закон Кулона Теорема Гаусса Электрический дипольный момент Электрический заряд Электрическая индукция Электрическое поле Электростатический потенциал
Магнитостатика
Закон Био — Савара — Лапласа Закон Ампера Магнитный момент Магнитное поле Магнитный поток
Электродинамика
Векторный потенциал Диполь Потенциалы Лиенара — Вихерта Сила Лоренца Ток смещения Униполярная индукция Уравнения Максвелла Электрический ток Электродвижущая сила Электромагнитная индукция Электромагнитное излучение Электромагнитное поле
Электрическая цепь
Закон Ома Законы Кирхгофа Индуктивность Радиоволновод Резонатор Электрическая ёмкость Электрическая проводимость Электрическое сопротивление Электрический импеданс
Ковариантная формулировка
Тензор электромагнитного поля Тензор энергии-импульса 4-потенциал 4-ток
Известные учёные
Генри Кавендиш Майкл Фарадей Никола Тесла Андре-Мари Ампер Густав Роберт Кирхгоф Джеймс Клерк (Кларк) Максвелл Генри Рудольф Герц Альберт Абрахам Майкельсон Роберт Эндрюс Милликен
См. также: Портал:Физика
Сопротивление (часто обозначается буквой R или r ) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как
R — сопротивление; U — разность электрических потенциалов на концах проводника; I — сила тока, протекающего между концами проводника под действием разности потенциалов.
Содержание
Единицы и размерности
Физика явления
Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.
В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.
Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.
Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:
где ρ — удельное сопротивление вещества проводника, l — длина проводника, а S — площадь сечения. Сопротивление однородного проводника также зависит от температуры.
Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади.
Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.
Сопротивление (электрическое сопротивление) — это свойство какого-либо проводника оказывать сопротивление электрическому току, проходящему через него. Вот так все просто!
Давайте проведем аналогию с гидравликой. В нашем случае получается, что проводник электрического тока — это шланг или труба. Теперь давайте подумаем, какой из предметов будет оказывать бОльшее сопротивление потоку воды: садовый шланг или нефтяная труба?
Понятное дело, что садовый шланг, так как его диаметр в разы меньше, чем диаметр нефтяной трубы.
Тогда другой вопрос. Какой шланг будет обладать бОльшим сопротивлением потоку воды с учетом того, что их длины и диаметры равны?
Разумеется, гофрированный. Вода будет «цепляться» за его стенки, что приведет к тому, что они будут мешать потоку воды.
Тогда еще вот такая задачка. Есть два абсолютно одинаковых шланга, но один длиннее, а другой короче. Какой из шлангов будет оказывать бОльшее сопротивление потоку воды?
Думаю тот, который длиннее. Ответ очевиден.
Сопротивление проводника
Так почему бы все эти свойства не применить также к проводнику? Чем тоньше и длиннее проводник, тем больше его сопротивление электрическому току. Большую роль играет также материал, из которого он изготовлен.
Поэтому, окончательная формула будет принимать вид
удельное сопротивление веществ
Как вы видите из таблицы выше, самым маленьким удельным сопротивлением обладает серебро, поэтому провод из серебра будет наилучшим проводником. Ну а самым распространенными и дешевыми проводниками являются медь и алюминий. Именно эти два металла в основном используются во всей электронной и электротехнической промышленности.
Вещества, которые оказывают наименьшее сопротивление электрическому току и обладают очень малым сопротивлением называются проводниками, а вещества, которые обладают ну очень большим сопротивлением электрическому току и почти его не пропускают через себя, называются диэлектриками. Между ними стоит класс полупроводников.
Что такое сопротивление 1 Ом?
Проводник обладает сопротивлением 1 Ом, если на его концах напряжение составляет 1 Вольт при силе тока, проходящей через него в 1 Ампер.
сопротивление 1 Ом
Как найти сопротивление в цепи?
Его можно узнать из закона Ома, который связывает силу тока, напряжение и сопротивление. В этом случае, оно рассчитывается по формуле
формула сопротивления через закон Ома
R — сопротивление, Ом
U — напряжение на концах проводника, Вольты
I — сила тока, текущая через проводник, Амперы
То есть нам достаточно замерить напряжение на концах какого-либо проводника и измерить силу тока, проходящую через него. После применить формулу и рассчитать сопротивление проводника. Давайте для закрепления решим простую задачу.
Задача
Рассчитать сопротивление проводника, если известно, что на него подают напряжение 5 Вольт и сила тока, проходящая через него 0,1 Ампер.
Решение
В электронике и электротехнике используют специальные радиоэлементы, которые обладают сопротивлением электрическому току — резисторы. Более подробно про них можно прочитать в этой статье.
постоянные резисторы
Также вот вам видео, где очень умный преподаватель объясняет, что такое сопротивление
Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.
Электрическое сопротивление определяется как коэффициент пропорциональности R между напряжением U и силой постоянного тока I в законе Ома для участка цепи.
Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом (1 Ом) — это сопротивление такого проводника, в котором при напряжении 1В сила тока равна 1А.
Удельное сопротивление.
Сопротивление однородного проводника постоянного сечения зависит от материала проводника, его длины l и поперечного сечения S и может быть определено по формуле:
,
Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.
Из формулы следует, что
,
Величина, обратная ρ, называется удельной проводимостьюσ:
.
Зависимость сопротивлений от температуры.
С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.
Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на 1 °С к величине его сопротивления при 0 ºС:
.
Зависимость удельного сопротивления проводников от температуры выражается формулой:
.
Зависимость сопротивления проводника от температуры используется в термометрах сопротивления.
В соответствии с законом Ома для участка цепи сила тока ($I$) на рассматриваемом участке пропорциональна напряжению ($U$) на концах участка:
Из формулы (2) следует, что сопротивление численно равно отношению напряжения на концах участка к силе тока, который в нем течет. Единицу измерения сопротивления можно определить как:
Единица измерения сопротивления в системе СГС
Между омом и единицей сопротивления в СГС следующее соотношения:
В другом расширении системы СГС, СГСМ сопротивление измеряют в абомах($ab<\mathbf \Omega >$). Абом соотносится с омом как:
В системе СГСМ выполняется равенство:
Примеры задач с решением
Решение. Схема подключения дополнительного сопротивления к вольтметру с целью увеличения напряжения, которое он может измерять указана на рис.1.
При этом падение напряжения на дополнительном сопротивлении составляет:
Падение напряжения на концах соединения AB. составляет:
Вычислим величину дополнительного сопротивления:
\[R=3\cdot 5=15\ \left(кОм\right).\]
Из равенства (2.1) не составляет труда выразить сопротивление:
Мощность измеряется в ваттах ($\left[P\right]=Вт$), сила тока в амперах ($\left[I\right]=A$). Ватт является производной единицей СИ, посмотрим, какой комбинацией единиц основных величин его можно заменить:
Ответ. Из какого закона не получали бы мы сопротивление, всегда в системе СИ единицами его измерения должен быть Ом.
Ом (Ом, Ω) — единица измерения электрического сопротивления. Ом равен электрическому сопротивлению проводника, между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер.
Ом — единица электрического сопротивления в системе СИ. Если проводник соединяет две точки с разными электрическими потенциалами, то через проводник течёт ток. Величина тока зависит от разности потенциалов, а также от сопротивления проводника этому току. Электрическое сопротивление является характеристикой цепи и измеряется в омах.
Что такое Ом?
Закон Ома
Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.
Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.
Формула закона Ома записывается в следующем виде:
U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];
Ом и зависимости от других величин
Еще на заре исследования электричества ученые заметили, что сила тока, проходящего через разные материалы, отличается, хотя эксперимент проводится в одинаковых условиях, образцы подключаются одинаково к одинаковым источникам. Было сделано предположение, что разные образцы обладают разным сопротивлением электрическому току, которое и определяет силу этого тока.
Был экспериментально получен закон, связывающий силу тока и напряжение (закон Ома). Коэффициент в этом законе назвали сопротивлением электрическому току.
Раньше ученые работали только с постоянным током и только со средами, чье сопротивление электричеству не зависит от силы тока, напряжения, времени и условий, то есть постоянно. Сейчас представления усложнились, но для постоянного тока и постоянного сопротивления по-прежнему верен закон Ома.
Определение омического сопротивления электрическому току:
Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.
Кратные
Дольные
величина
название
обозначение
величина
название
обозначение
10 1 Ом
декаом
даОм
daΩ
10 −1 Ом
дециом
дОм
dΩ
10 2 Ом
гектоом
гОм
hΩ
10 −2 Ом
сантиом
сОм
cΩ
10 3 Ом
килоом
кОм
kΩ
10 −3 Ом
миллиом
мОм
mΩ
10 6 Ом
мегаом
МОм
MΩ
10 −6 Ом
микроом
мкОм
µΩ
10 9 Ом
гигаом
ГОм
GΩ
10 −9 Ом
наноом
нОм
nΩ
10 12 Ом
тераом
ТОм
TΩ
10 −12 Ом
пикоом
пОм
pΩ
10 15 Ом
петаом
ПОм
PΩ
10 −15 Ом
фемтоом
фОм
fΩ
10 18 Ом
эксаом
ЭОм
EΩ
10 −18 Ом
аттоом
аОм
aΩ
10 21 Ом
зеттаом
ЗОм
ZΩ
10 −21 Ом
зептоом
зОм
zΩ
10 24 Ом
йоттаом
ИОм
YΩ
10 −24 Ом
йоктоом
иОм
yΩ
применять не рекомендуется не применяются или редко применяются на практике
Что такое резисторы?
Радиоэлектронные элементы, имеющие заданное постоянное омическое сопротивление, не проявляющие в разумных пределах индуктивность и емкость, называются в электронике резисторами.
В практике применяются резисторы от долей Ома до десятков мегаомов.