в чем измеряется радиус звезды

Размеры звёзд во Вселенной и как их вычисляют

Собственно говоря, небесные тела отличаются друг от друга по различным характеристикам. Одним из главных отличий звёзд между собой являются их размеры, масса и состав.

Как различают звёзды по размерам

Во Вселенной звёзды бывают разные по размеру — они могут быть маленькими, средними, большими и сверхбольшими или огромными.

Однако, в астрономии не группируют объекты таким образом. Их объединяют по другим общим характеристикам. Практически все параметры и свойства зависят друг от друга.

Для написания научно-исследовательской работы на эту и любую другую тему вы можете обратиться за помощью: https://peremena.com.ua/raboty/diplomnye-raboty-na-zakaz/

Классификация звёзд по размеру

На самом деле, по своим размерам звезды делятся на:

Правда, выделяют ещё гипергиганты — самые яркие, массивные, мощные светила. Но они очень редко встречаются в нашей Вселенной. Хотя они самые-самые, живут гипергиганты совсем недолго, поэтому их очень мало.

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды Красный гипергигант VY Большого Пса

Как определить размер звезды

Размеры звёзд определяют тремя способами:

Как связаны размеры звёзд и их светимость?

Поскольку светимость звёздного тела рассчитывается по формуле:

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звездыФормула светимости

где видно, что она связана с радиусом звезды.
Получается, эти два показателя важны друг для друга и созависимы.

Разумеется, нам сложно представить истинные величины космических объектов. Ведь они могут составлять от тысяч до млн тысяч километров.

Главным светилом для нас является Солнце, которое больше чем в миллион раз нашей планеты. Поэтому сравнение размеров звезд с размерами Земли просто затруднительно и неуместно.

Для удобства определения радиуса (размера) звёздных тел принято применять единицу измерения равную экваториальному радиусу Солнца (696 392 км).

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды Солнце в Солнечной системе

Каковы размеры самых маленьких звёзд?

Как известно, красные карлики имеют небольшие объемы и массу. Если говорить точнее, то в большинстве их масса равна половине солнечной, а радиус таких светил совсем небольшой.

Помимо этого, существуют белые карлики, чьи размеры сопоставимы с размерами Земли. Однако при этом их плотность больше земельной почти в миллион раз.

В конце концов, самые маленькие звёздные представители — нейтронные звёзды. Они меньше нашей планеты в сто миллионов раз! Хотя в сравнении с Землей, они выигрывают по массе и плотности.

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды Проксима Центавра (одна из самых маленьких звёзд)

Наша Вселенная, бесспорно, многообразна во всём. И это прекрасно и удивительно!
Светила представляют собой уникальный продукт вселенской природы. Они относятся к главным объектам космического пространства.

Источник

Звезды

Другие значения слова «звезда» см. в статье Звезда (значения).

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды

Ближайшей к Земле звездой (не считая Солнца) является Проксима Центавра. Она расположена в 4,2 св. лет от нашей Солнечной системы ( 4,2 св. лет = 39 Пм = 39 триллионов км = 3,9 × 10 13 км ). См. также список ближайших звёзд.

Невооружённым взглядом на небе видно около 6000 звёзд, по 3000 в каждом полушарии. Все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся в местной группе галактик.

Содержание

Единицы измерения

Большинство звёздных характеристик как правило выражается в СИ, но также используется и СГС (например, светимость выражается в эргах в секунду). Масса, светимость и радиус обычно даются в соотношении с нашим Солнцем:

солнечная масса: в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звездыкг
солнечная светимость: в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звездыВт
солнечный радиус: в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звездым

Для обозначения расстояния до звёзд приняты такие единицы как световой год и парсек

Большие расстояния, такие как радиус гигантских звёзд или большая полуось двойных звёздных систем часто выражаются с использованием астрономической единицы ( а. е. ) — среднее расстояние между Землёй и Солнцем ( 150 млн км ).

Физические характеристики

Массы подавляющего большинства современных звёзд лежат в пределах от 0,071 масс Солнца (75 масс Юпитера) до 100—150 масс Солнца, возможно, первые звёзды были ещё более массивными. Температура в недрах звёзд достигает 10—12 млн К.

Расстояние

Масса

Химический состав

Крайне важной характеристикой является ее химический состав, как с точки зрения звезды, так и с точки зрения наблюдателя. И хотя доля элементов тяжелее гелия исчисляется не более чем несколько процентов, но они играют важную роль в жизни звезды. Благодаря им ядерные реакции могут замедляться или ускорятся, а это отразиться как на яркости, звезды, так и на цвете, так и на продолжительности жизни. Так чем больше металличность массивной звезды, тем меньше будет остаток при взрыве сверхновой. Наблюдатель, зная химический состав звезды, может довольно уверенно сказать время образования звезды. Так как все те трагические изменения, происходящие со звездой на протяжении ее жизни, не касаются поверхности звезды. Это всегда так мало массивных и средне массивных звезд, и почти всегда для массивных звезд.

Строение звёзд

Возникновение и эволюция звёзд

Звезда начинает свою жизнь как холодное разреженное облако межзвёздного газа, сжимающееся под действием собственного тяготения. При сжатии энергия гравитации переходит в тепло, и температура газовой глобулы возрастает. Когда температура в ядре достигает нескольких миллионов Кельвинов, начинаются термоядерные реакции и сжатие прекращается. В таком состоянии звезда пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга — Рассела, пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра.

В этот период структура звезды начинает заметно меняться. Её светимость растёт, внешние слои расширяются, а внутрениие наоборот, сжимаются. И до поры до времени яркость звезды тоже понижается. Температура поверхности снижается — звезда становится красным гигантом. На ветви гигантов звезда проводит значительно меньше времени, чем на главной последовательности. Когда масса её изотермического гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; возрастающая при этом температура стимулирует термоядерное превращение гелия в более тяжёлые элементы.

Белые карлики и нейтронные звёзды

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 280 трлн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Чёрные дыры

У звёзд более массивных, чем предшественники нейтронных звёзд, ядра испытывают полный гравитационный коллапс. По мере сжатия такого объекта сила тяжести на его поверхности возрастает настолько, что никакие частицы и даже свет не могут её покинуть, — объект становится невидимым. В его окрестности существенно изменяются свойства пространства-времени; их может описать только общая теория относительности. Такие объекты называют чёрными дырами.

Схема эволюции одиночных звёзд

малые массы 0.08Msun 10Msun

горение водорода в ядре

спокойное горение гелия в ядре

горение углерода в ядре. C в O, Ne, Si, Fe, Ni..

O,Ne,Mg… белый карлик или нейтронная звезда

Продолжительность эволюции звёзд

Классификация звёзд

Звёзды классифицируют по светимости, массе, температуре поверхности, химическому составу, особенностям спектра (спектральному классу) и кратности.

Кратные звёзды

Обозначения звёзд

В нашей галактике более 100 млрд. звёзд. На фотографиях неба, полученных крупными телескопами, видно такое множество звёзд, что бессмысленно даже пытаться дать им всем имена или хотя бы сосчитать их. Около 0,01 % всех звёзд Галактики занесено в каталоги. Таким образом, подавляющее большинство звёзд, наблюдаемых в крупные телескопы, пока не обозначено и не сосчитано.

Самые яркие звёзды у каждого народа получили свои имена. Многие из ныне употребляющихся, например, Альдебаран, Алголь, Денеб, Ригель и др., имеют арабское происхождение; культура арабов послужила мостом через интеллектуальную пропасть, отделяющую падение Рима от эпохи Возрождения.

В прекрасно иллюстрированной Уранометрии (Uranometria, 1603) немецкого астронома И. Байера (1572—1625), где изображены созвездия и связанные с их названиями легендарные фигуры, звёзды были впервые обозначены буквами греческого алфавита приблизительно в порядке убывания их блеска: α — ярчайшая звезда созвездия, β — вторая по блеску, и т. д. Когда не хватало букв греческого алфавита, Байер использовал латинский. Полное обозначение звезды состояло из упомянутой буквы и латинского названия созвездия. Например, Сириус — ярчайшая звезда в созвездии Большого Пса (Canis Major), поэтому его обозначают как α Canis Majoris, или сокращённо α CMa; Алголь — вторая по яркости звезда в Персее обозначается как β Persei, или β Per. Байер, однако, не всегда следовал введенному им правилу, и в байеровских обозначениях есть большое количество исключений.

Джон Флемстид (1646—1719), первый Королевский астроном Англии, ввёл систему обозначения звёзд, не связанную с их блеском. В каждом созвездии он обозначил звёзды номерами в порядке увеличения их прямого восхождения, то есть в том порядке, вкотором они пересекают меридиан. Так, Арктур, он же a Волопаса (α Bootes), обозначен как 16 Bootes.

Некоторые необычные звёзды иногда называют именами астрономов, впервые описавших их уникальные свойства. Например, звезда Барнарда названа в честь американского астронома Э. Барнарда (1857—1923), а звезда Каптейна — в честь нидерландского астронома Я. Каптейна (1851—1922). На современных картах звёздного неба обычно нанесены древние собственные имена ярких звёзд и греческие буквы в системе обозначений Байера (его латинские буквы используют редко); остальные звёзды обозначают согласно Флемстиду. Но не всегда на картах хватает места для этих обозначений, поэтому обозначения остальных звёзд нужно искать в звёздных каталогах.

Для переменных звёзд используется свой способ обозначения. Такие звёзды обозначают в порядке их обнаружения в каждом созвездии. Первую обозначают буквой R, вторую — S, затем T и т. д. После Z идут обозначения RR, RS, RT и т. д. После ZZ идут AA и т. д. (Букву J не используют, чтобы не было путаницы с I.) Когда все эти комбинации истощаются (всего их 334), то продолжают нумерацию цифрами с буквой V (variable — переменный), начиная с V335. Например: S Car, RT Per, V557 Sgr.

Реакции термоядерного синтеза в недрах звёзд

Реакции термоядерного синтеза элементов — основной источник энергии большинства звёзд.

Источник

Звезда (астрономия)

Другие значения слова «звезда» см. в статье Звезда (значения).

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды

Ближайшей к Земле звездой (не считая Солнца) является Проксима Центавра. Она расположена в 4,2 св. лет от нашей Солнечной системы ( 4,2 св. лет = 39 Пм = 39 триллионов км = 3,9 × 10 13 км ). См. также список ближайших звёзд.

Невооружённым взглядом на небе видно около 6000 звёзд, по 3000 в каждом полушарии. Все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся в местной группе галактик.

Содержание

Единицы измерения

Большинство звёздных характеристик как правило выражается в СИ, но также используется и СГС (например, светимость выражается в эргах в секунду). Масса, светимость и радиус обычно даются в соотношении с нашим Солнцем:

солнечная масса: в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звездыкг
солнечная светимость: в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звездыВт
солнечный радиус: в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звездым

Для обозначения расстояния до звёзд приняты такие единицы как световой год и парсек

Большие расстояния, такие как радиус гигантских звёзд или большая полуось двойных звёздных систем часто выражаются с использованием астрономической единицы ( а. е. ) — среднее расстояние между Землёй и Солнцем ( 150 млн км ).

Физические характеристики

Массы подавляющего большинства современных звёзд лежат в пределах от 0,071 масс Солнца (75 масс Юпитера) до 100—150 масс Солнца, возможно, первые звёзды были ещё более массивными. Температура в недрах звёзд достигает 10—12 млн К.

Расстояние

Масса

Химический состав

Крайне важной характеристикой является ее химический состав, как с точки зрения звезды, так и с точки зрения наблюдателя. И хотя доля элементов тяжелее гелия исчисляется не более чем несколько процентов, но они играют важную роль в жизни звезды. Благодаря им ядерные реакции могут замедляться или ускорятся, а это отразиться как на яркости, звезды, так и на цвете, так и на продолжительности жизни. Так чем больше металличность массивной звезды, тем меньше будет остаток при взрыве сверхновой. Наблюдатель, зная химический состав звезды, может довольно уверенно сказать время образования звезды. Так как все те трагические изменения, происходящие со звездой на протяжении ее жизни, не касаются поверхности звезды. Это всегда так мало массивных и средне массивных звезд, и почти всегда для массивных звезд.

Строение звёзд

Возникновение и эволюция звёзд

Звезда начинает свою жизнь как холодное разреженное облако межзвёздного газа, сжимающееся под действием собственного тяготения. При сжатии энергия гравитации переходит в тепло, и температура газовой глобулы возрастает. Когда температура в ядре достигает нескольких миллионов Кельвинов, начинаются термоядерные реакции и сжатие прекращается. В таком состоянии звезда пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга — Рассела, пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра.

В этот период структура звезды начинает заметно меняться. Её светимость растёт, внешние слои расширяются, а внутрениие наоборот, сжимаются. И до поры до времени яркость звезды тоже понижается. Температура поверхности снижается — звезда становится красным гигантом. На ветви гигантов звезда проводит значительно меньше времени, чем на главной последовательности. Когда масса её изотермического гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; возрастающая при этом температура стимулирует термоядерное превращение гелия в более тяжёлые элементы.

Белые карлики и нейтронные звёзды

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 280 трлн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Чёрные дыры

У звёзд более массивных, чем предшественники нейтронных звёзд, ядра испытывают полный гравитационный коллапс. По мере сжатия такого объекта сила тяжести на его поверхности возрастает настолько, что никакие частицы и даже свет не могут её покинуть, — объект становится невидимым. В его окрестности существенно изменяются свойства пространства-времени; их может описать только общая теория относительности. Такие объекты называют чёрными дырами.

Схема эволюции одиночных звёзд

малые массы 0.08Msun 10Msun

горение водорода в ядре

спокойное горение гелия в ядре

горение углерода в ядре. C в O, Ne, Si, Fe, Ni..

O,Ne,Mg… белый карлик или нейтронная звезда

Продолжительность эволюции звёзд

Классификация звёзд

Звёзды классифицируют по светимости, массе, температуре поверхности, химическому составу, особенностям спектра (спектральному классу) и кратности.

Кратные звёзды

Обозначения звёзд

В нашей галактике более 100 млрд. звёзд. На фотографиях неба, полученных крупными телескопами, видно такое множество звёзд, что бессмысленно даже пытаться дать им всем имена или хотя бы сосчитать их. Около 0,01 % всех звёзд Галактики занесено в каталоги. Таким образом, подавляющее большинство звёзд, наблюдаемых в крупные телескопы, пока не обозначено и не сосчитано.

Самые яркие звёзды у каждого народа получили свои имена. Многие из ныне употребляющихся, например, Альдебаран, Алголь, Денеб, Ригель и др., имеют арабское происхождение; культура арабов послужила мостом через интеллектуальную пропасть, отделяющую падение Рима от эпохи Возрождения.

В прекрасно иллюстрированной Уранометрии (Uranometria, 1603) немецкого астронома И. Байера (1572—1625), где изображены созвездия и связанные с их названиями легендарные фигуры, звёзды были впервые обозначены буквами греческого алфавита приблизительно в порядке убывания их блеска: α — ярчайшая звезда созвездия, β — вторая по блеску, и т. д. Когда не хватало букв греческого алфавита, Байер использовал латинский. Полное обозначение звезды состояло из упомянутой буквы и латинского названия созвездия. Например, Сириус — ярчайшая звезда в созвездии Большого Пса (Canis Major), поэтому его обозначают как α Canis Majoris, или сокращённо α CMa; Алголь — вторая по яркости звезда в Персее обозначается как β Persei, или β Per. Байер, однако, не всегда следовал введенному им правилу, и в байеровских обозначениях есть большое количество исключений.

Джон Флемстид (1646—1719), первый Королевский астроном Англии, ввёл систему обозначения звёзд, не связанную с их блеском. В каждом созвездии он обозначил звёзды номерами в порядке увеличения их прямого восхождения, то есть в том порядке, вкотором они пересекают меридиан. Так, Арктур, он же a Волопаса (α Bootes), обозначен как 16 Bootes.

Некоторые необычные звёзды иногда называют именами астрономов, впервые описавших их уникальные свойства. Например, звезда Барнарда названа в честь американского астронома Э. Барнарда (1857—1923), а звезда Каптейна — в честь нидерландского астронома Я. Каптейна (1851—1922). На современных картах звёздного неба обычно нанесены древние собственные имена ярких звёзд и греческие буквы в системе обозначений Байера (его латинские буквы используют редко); остальные звёзды обозначают согласно Флемстиду. Но не всегда на картах хватает места для этих обозначений, поэтому обозначения остальных звёзд нужно искать в звёздных каталогах.

Для переменных звёзд используется свой способ обозначения. Такие звёзды обозначают в порядке их обнаружения в каждом созвездии. Первую обозначают буквой R, вторую — S, затем T и т. д. После Z идут обозначения RR, RS, RT и т. д. После ZZ идут AA и т. д. (Букву J не используют, чтобы не было путаницы с I.) Когда все эти комбинации истощаются (всего их 334), то продолжают нумерацию цифрами с буквой V (variable — переменный), начиная с V335. Например: S Car, RT Per, V557 Sgr.

Реакции термоядерного синтеза в недрах звёзд

Реакции термоядерного синтеза элементов — основной источник энергии большинства звёзд.

Источник

§ 13. Физические характеристикм звезд

Измерение расстояний до звезд

Звезды находятся в миллионы раз дальше, чем Солнце, поэтому горизонтальные параллаксы звезд соответственно в миллионы раз меньше, и измерить такие малые углы еще никому не удавалось. Для измерения расстояний до звезд астрономы вынуждены определять годичные параллаксы, связанные с орбитальным движением Земли вокруг Солнца (рис. 13.1).

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды

Рис. 13.1. Годичный параллакс определяет угол, под которым было бы видно от звезды большую полуось земной орбиты (1 а. е.) в перпендикулярном к лучу зрения направлении

В точке С находится Солнце; А, В — положение Земли на орбите с интервалом 6 месяцев; ВС = 1 а. е. — расстояние от Земли до Солнца (большая полуось земной орбиты); S — звезда, до которой нужно определить расстояние; угол BSC = р — годичный параллакс звезды.

Расстояние от Земли до звезды определяется из прямоугольного треугольника CBS:

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды(13.1)

Годичный параллакс можно измерять только в течение нескольких месяцев, пока Земля, а вместе с ней и телескоп, двигаясь вокруг Солнца, не переместится в космическом пространстве.

Годичные параллаксы звезд астрономы пытались определять еще во времена Коперника, что могло стать неоспоримым доказательством обращения Земли вокруг Солнца и подтверждением гелиоцентрической системы мира. Но только в 1837 г. В. Струве в Пулковской астрономической обсерватории (Россия) определил годичный параллакс звезды Вега ( Лиры). Самый большой параллакс у ближайшей к нам звезды Проксимы Кентавра р = 0,76″, но ее в Европе не видно. Из ярких звезд, которые можно наблюдать в Украине, ближе всего к нам находится звезда Сириус ( Большого Пса), годовой параллакс которой р = 0,376″.

Расстояние до звезд измеряют в световых годах (см. § 1), но в астрономии еще используют единицу парсек (пк) — расстояние, для которого годичный параллакс р = 1″ (парсек — сокращение от параллакс-секунда).

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды(13.2)

Соотношение между парсеком и световым годом следующее: 1 пк 3,26 св. года. Если годичный параллакс измеряется угловыми секундами, то расстояние до звезд в парсеках можно выразить следующей формулой:

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды(13.3)

Видимые звездные величины

Впервые термин звездная величина был введен для определения яркости звезд во II в. до н. э. греческим астрономом Гиппархом. Тогда астрономы полагали, что звезды находятся на одинаковом расстоянии от Земли, поэтому их яркость зависит от размеров этих светил. Сейчас мы знаем, что звезды даже в одном созвездии располагаются на разных расстояниях (рис. 2.2), поэтому видимая звездная величина определяет только некоторое количество энергии, которую регистрирует наш глаз за какой-то промежуток времени. Гиппарх разделил все видимые звезды по яркости на 6 своеобразных классов — 6 звездных величин. Самые яркие звезды были названы звездами первой звездной величины, более слабые — второй, а самые слабые, еле видные на ночном небе,— шестой. В XIX в. английский астроном Н. Погсон (1829—1891) дополнил определение звездной величины еще одним условием: звезды первой звездной величины должны быть в 100 раз ярче звезды шестой величины (рис. 13.2).

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды

Рис. 13.2. Звезды вблизи Полярной, которые используют как стандарт для определения видимых звездных величин

Видимую звездную величину обозначают буквой т. Для любых звездных величин, будет справедливо такое отношение их яркости Е1 и Е2:

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды(13.4)

Абсолютные звездные величины и светимость звезды

Хотя Солнце является самым ярким светилом на нашем небе, это не значит, что оно излучает больше энергии, чем другие звезды. Из курса физики известно, что освещенность, создаваемая источниками энергии, зависит от расстояния до них, так небольшая лампочка в вашей комнате может казаться гораздо ярче, чем дальний прожектор. Для определения светимости, или общей мощности излучения, астрономы вводят понятие абсолютной звездной величины М. Звездную величину, которую имела бы звезда на стандартном расстоянии r0=10 пк, называют абсолютной звездной величиной. Примерно на таком расстоянии (11 пк, или 36 световых лет) от нас находится звезда Арктур, она имеет видимую звездную величину, почти равную абсолютной. Солнце на расстоянии 10 пк имело бы ‘вид достаточно слабой звезды пятой звездной величины, то есть абсолютная звездная величина Солнца

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды

Абсолютная звездная величина М определяет яркость, которую имела бы звезда на стандартном расстоянии в 10 пк.

Светимость звезды определяет мощность излучения звезды. За единицу светимости принимается мощность излучения Солнца 4-10 26 Вт

Светимость звезды определяет количество энергии, излучаемое звездой за единицу времени, то есть мощность излучения звезды. За единицу светимости в астрономии принимают мощность излучения Солнца 4-10 26 Вт. Если известна абсолютная звездная величина звезды М, то ее светимость определяется при помощи такой формулы:

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды(13.6)

Цвет и температура звезд

Температуру звезды можно определить при помощи законов излучения черного тела (см. § 6). Самый простой метод измерения температуры звезды заключается в определении ее цвета. Правда, невооруженным глазом можно определить только цвет ярких звезд, так как чувствительность нашего глаза к восприятию цветов при слабом освещении очень мала. Цвет слабых звезд можно определить при помощи бинокля или телескопа, которые собирают больше света, поэтому в окуляре телескопа звезды кажутся нам более яркими.

За температурой звезды разделили на 7 спектральных классов (рис. 13.3), которые обозначили буквами латинского алфавита: О, В, A, F, G, К, М (английская пословица: «Oh, Be A Fine Girl, Kiss Me» — «будь хорошей девушкой, поцелуй меня»)/

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды

Рис. 13.3. Цвета звезд определяют 7 основных спектральных классов. Самые горячие звезды голубого цвета относятся к спектральному классу О, холодные красные звезды — к спектральному классу М. Солнце имеет температуру фотосферы +5780 К, желтый цвет и относится к спектральному классу G

Самую высокую температуру на поверхности имеют голубые звезды спектрального класса О, которые излучают больше энергии в синей части спектра (рис. 13.4). Каждый спектральный класс делится на 10 подклассов: АО, А1..А9.

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды

Рис. 13.4. Интенсивность излучения космических тел с разной температурой. Горячие звезды излучают больше энергии в синей части спектра, холодные звезды — в красной. Планеты излучают энергию преимущественно в инфракрасной части спектра

Обычно в спектре каждой звезды есть темные линии поглощения, которые образуются в разреженной атмосфере звезды и в атмосфере Земли и показывают химический состав этих атмосфер. Оказалось, что все звезды имеют почти одинаковый химический состав, так как основные химические элементы во Вселенной — водород и гелий, а основное отличие различных спектральных классов обусловлено температурой звездных фотосфер.

Радиусы звезд

Для определения радиуса звезды нельзя использовать геометрический метод, потому что звезды находятся настолько далеко от Земли, что даже в большие телескопы еще до недавнего времени невозможно было измерить их угловые размеры — все звезды имеют вид одинаковых светлых точек. Для определения радиуса звезды астрономы используют закон Стефана-Больцмана:

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды(13.7)

где Q — энергия, излучаемая единицей поверхности звезды за ециницу времени; σ — постоянная Стефана-Больцмана; Т — абсолютная температура поверхности звезды.

Радиус звезды можно определить, измеряя ее светимость и температуру поверхности

Мощность, которую излучает звезда с радиусом R, определяется площадью ее поверхности, то есть:

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды(13.8)

С другой стороны, такое же соотношение мы можем записать для энергии, которую излучает Солнце:

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды(13.9)

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды(13.10)

где — L светимость звезды в единицах светимости Солнца.

Оказалось, что существуют звезды, которые имеют радиус в сотни раз больший радиуса Солнца, и звезды, имеющие радиус меньший, чем радиус Земли (рис. 13.5).

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды

Рис. 13.5. Радиусы некоторых звезд по сравнению с Солнцем

Диаграмма спектр-светимость

Солнце по физическим параметрам относится к средним звездам — оно имеет среднюю температуру, среднюю светимость и т. д. По статистике, среди множества различных тел больше всего таких, которые имеют средние параметры. Например, если измерить рост и массу большого количества людей различного возраста, то больше будет людей со средними величинами этих параметров. Астрономы решили проверить, много ли в космосе таких звезд, как наше Солнце. Для этой цели Э. Герцшпрунг (1873—1967) и Г. Рессел (1877—1955) предложили диаграмму, на которой можно обозначить место каждой звезды, если известны ее температура и светимость. Ее назвали диаграмма спектр-светимость, или диаграмма Герцшпрунга-Рессела. Она имеет вид графика, на котором по оси абсцисс отмечают спектральный класс или температуру звезды, а по оси ординат — светимость (рис. 13.6).

в чем измеряется радиус звезды. Смотреть фото в чем измеряется радиус звезды. Смотреть картинку в чем измеряется радиус звезды. Картинка про в чем измеряется радиус звезды. Фото в чем измеряется радиус звезды

Рис. 13.6. Диаграмма Герцшпрунга-Рессела. По оси абсцисс отмечена температура звезд, по оси ординат — светимость. Солнце имеет температуру 5780 К и светимость 1. Холодные звезды на диаграмме расположены справа (красного цвета), а более горячие — слева (синего цвета). Звезды, излучающие больше энергии, находятся выше Солнца, а звезды-карлики — ниже. Большинство звезд, к которым относится и Солнце, находятся в узкой полосе, которую называют главной последовательностью звезд

Если Солнце — средняя звезда, то на диаграмме должно быть скопление точек вблизи того места, которое занимает Солнце. То есть большинство звезд должны быть желтого цвета с такой же светимостью, как Солнце. Каково же было удивление астрономов, когда оказалось, что в космосе не нашли звезды, которую можно считать копией Солнца. Большинство звезд на диаграмме оказались в узкой полосе, которую называют главной последовательностью. Диаметры звезд главной последовательности отличаются в несколько раз, а их светимость по закону Стефана-Больцмана (см. § 13) определяется температурой поверхности. В эту полосу вошли Солнце и Сириус. Существенная разница в температуре на поверхности звезд различных спектральных классов объясняется разной массой этих светил: чем больше масса звезды, тем больше ее светимость. Например, звезды главной последовательности спектральных классов О и В в несколько раз массивнее Солнца, а красные карлики имеют массу в десятки раз меньшую, чем солнечная.

Белые карлики — звезды, имеющие радиус в сотни раз меньший солнечного и плотность в миллионы раз большую плотности воды.

Красные карлики — звезды с массой меньшей, чем у Солнца, но большей, чем у Юпитера. Температура и светимость этих звезд остаются постоянными на протяжении десятков миллиардов лет.

Красные гиганты — звезды, имеющие температуру 3000-4000 К и радиус в десятки раз больший солнечного. Масса этих звезд не намного больше массы Солнца. Такие звезды не находятся в состоянии равновесия

Отдельно от главной последовательности на диаграмме находятся белые карлики (слева внизу) и красные сверхгиганты (справа сверху), которые имеют примерно одинаковую массу, но значительно отличаются по размерам. Гиганты спектрального класса М имеют почти такую же массу, как белые карлики спектрального класса В, поэтому средние плотности этих звезд существенно различаются. Например, радиус красного гиганта Бетельгейзе в 400 раз больший радиуса Солнца, но масса этих звезд почти одинакова, поэтому красные гиганты спектрального класса М имеют среднюю плотность в миллионы раз меньшую, чем плотность земной атмосферы. Типичным представителем белых карликов является спутник Сириуса.

Для любознательных

Главная загадка диаграммы спектр-светимость заключается в том, что в космосе астрономы еще не нашли хотя бы две звезды с одинаковыми физическими параметрами — массой, температурой, светимостью, радиусом. Наверное, в течение эволюции звезды меняют свои физические параметры, поэтому маловероятно, что мы сможем отыскать в космосе еще одну звезду, которая зародилась одновременно с нашим Солнцем, имея тождественные начальные параметры.

Выводы

Физические характеристики звезд: светимость, температура, радиус, плотность — существенно разнятся между собой. Между этими характеристиками существует взаимосвязь, отражающая эволюционный путь звезды. Солнце по своим параметрам относится к желтым звездам, находящимся в состоянии равновесия, и не меняющим своих размеров в течение миллиардов лет. В космосе существуют звезды-гиганты, которые в тысячи раз больше Солнца, и звезды-карлики, радиус которых меньший радиуса Земли.

Тесты

Ключевые понятия и термины:

Абсолютная звездная величина, видимая звездная величина, диаграмма спектр-светимость, парсек, северный полярный ряд, светимость звезды, спектральные классы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *