в чем измеряется осциллограф

Проведение измерений с помощью осциллографа

Именно она делает цифровой осциллограф недоступным для любительских целей, хотя существуют «карманные» осциллографы стоимостью всего в несколько тысяч рублей, которые продаются на Алиэкспресс, но пользоваться ими не особенно удобно. Ну, просто интересная игрушка. Поэтому пока речь пойдет об измерениях с помощью электронного осциллографа.

На тему выбора осциллографа для использования в домашней лаборатории в интернете можно найти достаточное количество форумов. Не отрицая достоинств цифровых осциллографов, на многих форумах советуют остановить выбор на простых малогабаритных и надежных осциллографах отечественной разработки С1-73 и С1-101 и подобных, с которыми мы ранее познакомились в этой статье.

При достаточно демократичной цене эти приборы позволят выполнить большинство радиолюбительских задач. А пока познакомимся с общими принципами измерений с помощью осциллографа.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 1. Осциллограф С1-73

Что измеряет осциллограф

Измеряемый сигнал подается на вход канала вертикального отклонения Y, который имеет большое входное сопротивление, как правило, 1MΩ, и малую входную емкость, не более 40pF, что позволяет вносить минимальные искажения в измеряемый сигнал. Эти параметры часто указываются рядом с входом канала вертикального отклонения.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 2. Осциллограф С1-101

Высокое входное сопротивление свойственно вольтметрам, поэтому можно с уверенностью сказать, что осциллограф измеряет напряжение. Применение внешних входных делителей позволяет снизить входную емкость и увеличить входное сопротивление. Это также снижает влияние осциллографа на исследуемый сигнал.

Здесь следует вспомнить, что существуют специальные высокочастотные осциллографы, входное сопротивление которых всего 50 Ом. В радиолюбительской практике такие приборы не находят применения. Поэтому далее речь пойдет об обычных универсальных осциллографах.

Полоса пропускания канала Y

При этом следует иметь в виду, что полоса пропускания канала вертикального отклонения Y д.б. не менее, чем в 5 раз выше частоты сигнала, который будет измеряться. То есть усилитель вертикального отклонения должен пропускать не ниже пятой гармоники исследуемого сигнала. Особенно это требуется при исследовании прямоугольных импульсов, которые содержат множество гармоник, как показано на рисунке 3. Только в этом случае на экране получается изображение с минимальными искажениями.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 3. Синтез прямоугольного сигнала из гармонических составляющих

Кроме основной частоты на рисунке 3 показаны третья и седьмая гармоники. С увеличением номера гармоники возрастает ее частота: частота третьей гармоники в три раза выше основной, пятой гармоники в пять раз, седьмой в семь и т.д. Соответственно амплитуда высших гармоник падает: чем выше номер гармоники, тем ниже ее амплитуда. Только если усилитель вертикального канала без особого ослабления сможет пропустить высшие гармоники, изображение импульса получится прямоугольным.

На рисунке 4 показана осциллограмма меандра при недостаточной полосе пропускания канала Y.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Примерно так выглядит меандр частотой 500 КГц на экране осциллографа ОМШ-3М с полосой пропускания 0…25 КГц. Как будто прямоугольные импульсы пропущены через интегрирующую RC цепочку. Такой осциллограф выпускался советской промышленностью для лабораторных работ на уроках физики в школах. Даже напряжение питания этого прибора в целях безопасности было не 220, а всего 42В. Совершенно очевидно, что осциллограф с такой полосой пропускания позволит почти без искажений наблюдать сигнал с частотами не более 5КГц.

У обычного универсального осциллографа полоса пропускания чаще всего составляет 5 МГц. Даже при такой полосе можно увидеть сигнал до 10 МГц и выше, но полученное на экране изображение позволяет судить лишь о наличии или отсутствии этого сигнала. О его форме что-либо сказать будет затруднительно, но в некоторых ситуациях форма не столь уж и важна: например есть генератор синусоиды, и достаточно просто убедиться, есть эта синусоида или ее нет. Как раз такая ситуация показана на рисунке 4.

Современные вычислительные системы и линии связи работают на очень высоких частотах, порядка сотен мегагерц. Чтобы увидеть столь высокочастотные сигналы полоса пропускания осциллографа должна быть не менее 500 МГц. Такая широкая полоса очень «расширяет» цену осциллографа.

В качестве примера можно привести цифровой осциллограф U1610A показанный не рисунке 5. Его полоса пропускания 100МГц, при этом цена составляет почти 200 000 рублей. Согласитесь, не каждый может позволить себе купить столь дорогой прибор.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Пусть читатель не сочтет этот рисунок за рекламу, поскольку все координаты продавца не закрашены: на месте этого рисунка мог оказаться любой подобный скриншот.

Виды исследуемых сигналов и их параметры

Наиболее распространенным видом колебаний в природе и технике является синусоида. Это та самая многострадальная функция Y=sinX, которую проходили в школе на уроках тригонометрии. Достаточно много электрических и механических процессов имеют синусоидальную форму, хотя достаточно часто в электронной технике применяются и другие формы сигналов. Некоторые из них показаны на рисунке 6.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 6. Формы электрических колебаний

Периодические сигналы. Характеристики сигналов

Универсальный электронный осциллограф позволяет достаточно точно исследовать периодические сигналы. Если же на вход Y подать реальный звуковой сигнал, например, музыкальную фонограмму, то на экране будут видны хаотично мелькающие всплески. Естественно, что детально исследовать такой сигнал невозможно. В этом случае поможет применение цифрового запоминающего осциллографа, который позволяет сохранить осциллограмму.

Колебания, показанные на рисунке 6, являются периодическими, повторяются, через определенный период времени T. Подробнее это можно рассмотреть на рисунке 7.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 7. Периодические колебания

Колебания изображены в двухмерной системе координат: по оси ординат отсчитывается напряжение, а по оси абсцисс время. Напряжение измеряется в вольтах, время в секундах. Для электрических колебаний время чаще измеряется в миллисекундах или микросекундах.

Кроме компонентов X и Y осциллограмма содержит еще компонент Z – интенсивность, или попросту яркость (рисунок 8). Именно она включает луч на время прямого хода луча и гасит на время обратного хода. Некоторые осциллографы имеют вход для управления яркостью, который так и называется вход Z. Если на этот вход подать импульсное напряжение от образцового генератора, то на экране можно увидеть частотные метки. Это позволяет точнее отсчитывать длительность сигнала по оси X.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 8. Три компонента исследуемого сигнала

Современные осциллографы имеют, как правило, калиброванные по времени развертки, позволяющие точно отсчитывать время. Поэтому пользоваться внешним генератором для создания меток практически не приходится.

В верхней части рисунка 7 располагается синусоида. Нетрудно видеть, что начинается она в начале координатной системы. За время T (период) выполняется одно полное колебание. Далее все повторяется, идет следующий период. Такие сигналы называются периодическими.

Ниже синусоиды показаны прямоугольные сигналы: меандр и прямоугольный импульс. Они также периодические с периодом T. Длительность импульса обозначена как τ (тау). В случае меандра длительность импульса τ равна длительности паузы между импульсами, как раз половина периода T. Поэтому меандр является частным случаем прямоугольного сигнала.

Скважность и коэффициент заполнения

В англоязычной терминологии как раз все наоборот. Там импульсы характеризуются коэффициентом заполнения, соотношением длительности импульса к периоду следования Duty cycle: D=τ/T. Коэффициент заполнения выражается в %%. Таким образом, для меандра D=50%. Получается, что D=1/S, коэффициент заполнения и скважность величины взаимно обратные, хотя характеризуют собой один и тот же параметр импульса. Осциллограмма меандра показана на рисунке 9.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 9. Осциллограмма меандра D=50%

Здесь вход осциллографа подключен к выходу функционального генератора, показанного тут же в нижнем углу рисунка. И вот тут внимательный читатель может задать вопрос: «Амплитуда выходного сигнала с генератора 1В, чувствительность входа осциллографа 1В/дел., а на экране прямоугольные импульсы с размахом 2В. Почему?»

Дело в том, что функциональный генератор выдает двухполярные прямоугольные импульсы относительно уровня 0В, примерно так же, как синусоида, с положительной и отрицательной амплитудой. Поэтому на экране осциллографа наблюдаются импульсы с размахом ±1В. На следующем рисунке изменим коэффициент заполнения Duty cycle, например, до 10%.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 10. Прямоугольный импульс D=10%

Нетрудно видеть, что период следования импульсов составляет 10 клеток, в то время, как длительность импульса всего одна клетка. Поэтому D=1/10=0,1 или 10 %, что видно по настройкам генератора. Если воспользоваться формулой для подсчета скважности, то получится S = T / τ = 10 / 1 = 1 – величина безразмерная. Вот здесь можно сделать вывод, что Duty cycle намного наглядней характеризует импульс, чем скважность.

Собственно сам сигнал остался такой же, как на рисунке 9: прямоугольный импульс амплитудой 1В и частотой 100Гц. Изменяется только коэффициент заполнения или скважность, уж это как кому привычней и удобней. Но для удобства наблюдения на рисунке 10 длительность развертки снижена в два раза по сравнению с рисунком 9 и составляет 1мс/дел. Поэтому период сигнала занимает на экране 10 клеток, что позволяет достаточно легко убедиться, что Duty cycle составляет 10%. При пользовании реальным осциллографом длительность развертки выбирается примерно также.

Измерение напряжения прямоугольного импульса

Как было сказано в начале статьи, осциллограф измеряет напряжение, т.е. разность потенциалов между двумя точками. Обычно измерения проводятся относительно общего провода, земли (ноль вольт), хотя это необязательно. В принципе возможно измерение от минимального до максимального значения сигнала (пиковое значение, размах). В любом случае действия по измерению достаточно просты.

Прямоугольные импульсы чаще всего бывают однополярными, что характерно для цифровой техники. Как измерить напряжение прямоугольного импульса, показано на рисунке 11.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 11. Измерение амплитуды прямоугольного импульса

Если чувствительность канала вертикального отклонения выбрана 1В/дел, то получается, что на рисунке показан импульс с напряжением 5,5В. При чувствительности 0,1В/дел. Напряжение будет всего 0,5В, хотя на экране оба импульса выглядят совершенно одинаково.

Что еще можно увидеть в прямоугольном импульсе

Прямоугольные импульсы, показанные на рисунках 9, 10 просто идеальные, поскольку синтезированы программой Electronics WorkBench. Да и частота импульсов всего 100Гц, поэтому проблем с «прямоугольностью» изображения возникнуть не может. В реальном устройстве при высокой частоте следования импульсы несколько искажаются, прежде всего, появляются различные выбросы и всплески, обусловленные индуктивностью монтажа, как показано на рисунке 12.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 12. Реальный прямоугольный импульс

Если не обращать внимания на подобные «мелочи», то прямоугольный импульс выглядит так, как показано на рисунке 13.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 13. Параметры прямоугольного импульса

На рисунке показано, что передний и задний фронты импульса возникают не сразу, а имеют какое-то время нарастания и спада, несколько наклонены относительно вертикальной линии. Этот наклон обусловлен частотными свойствами микросхем и транзисторов: чем более высокочастотный транзистор, тем менее «завалены» фронты импульсов. Поэтому длительность импульса определяется по уровню 50% от полного размаха.

По этой же причине амплитуда импульса определяется по уровню 10…90%. Длительность импульса, так же, как и напряжение, определяется умножением числа делений горизонтальной шкалы на значение деления, как показано на рисунке 14.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

На рисунке показан один период прямоугольного импульса, несколько отличного от меандра: длительность положительного импульса составляет 3,5 деления горизонтальной шкалы, а длительность паузы 3,8 деления. Период следования импульса составляет 7,3 деления. Такая картинка может принадлежать нескольким разным импульсам с различной частотой. Все будет зависеть от длительности развертки.

Предположим, что длительность развертки 1мс/дел. Тогда период следования импульса 7,3*1=7,3мс, что соответствует частоте F=1/T=1/7.3= 0,1428КГц или 143ГЦ. Если длительность развертки будет 1мкс/дел, то частота получится в тысячу раз выше, а именно 143КГЦ.

Пользуясь данными рисунка 14 нетрудно подсчитать скважность импульса: S=T/τ=7,3/3,5=2,0857, получается почти, как у меандра. Коэффициент заполнения Duty cycle D=τ/T=3,5/7,3=0,479 или 47.9%. При этом следует обратить внимание, что эти параметры ни в коем случае не зависят от частоты: скважность и коэффициент заполнения были подсчитаны просто по делениям на осциллограмме.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 15. Параметры синусоиды

Очевидно, что для показанной на рисунке синусоиды чувствительность канала вертикального отклонения составляет 0,5В/дел. Остальные параметры нетрудно определить умножив число делений на 0,5В/дел.

Синусоида может быть и другой, которую придется измерять при чувствительности, например, 5В/дел. Тогда вместо 1В получится 10В. Однако, на экране изображение обеих синусоид выглядит абсолютно одинаково.

Временные параметры показанной синусоиды неизвестны. Если предположить, что длительность развертки 5мс/дел., период составит 20мс, что соответствует частоте 50ГЦ. Цифры в градусах на оси времени показывают фазу синусоиды, хотя для одиночной синусоиды это не особо важно. Чаще приходится определять сдвиг по фазе (непосредственно в миллисекундах или микросекундах) хотя бы между двумя сигналами. Лучше всего это делать с помощью двухлучевого осциллографа. Как это делается, будет показано чуть ниже.

Как осциллографом измерить ток

В некоторых случаях требуется измерение величины и формы тока. Например, переменный ток, протекающий через конденсатор, опережает напряжение на ¼ периода. Тогда в разрыв цепи включают резистор с небольшим сопротивлением (десятые доли Ома). На работу схемы такое сопротивление не влияет. Падение напряжения на этом резисторе покажет форму и величину тока, протекающего через конденсатор.

Примерно так же устроен обычный стрелочный амперметр, который включатся в разрыв электрической цепи. При этом измерительный резистор находится внутри самого амперметра.

Схема для измерения тока через конденсатор показана на рисунке 16.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 16. Измерение тока через конденсатор

Синусоидальное напряжение частотой 50 Гц амплитудой 220 В с генератора XFG1 (красный луч на экране осциллографа) подается на последовательную цепь из конденсатора C1 и измерительного резистора R1. Падение напряжения на этом резисторе покажет форму, фазу и величину тока через конденсатор (синий луч). Как это будет выглядеть на экране осциллографа, показано на рисунке 17.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Рисунок 17. Ток через конденсатор опережает напряжение на ¼ периода

При частоте синусоиды 50 Гц и развертке 5 ms/Div один период синусоиды занимает 4 деления по оси X, что очень удобно для наблюдения. Нетрудно видеть, что синий луч опережает красный ровно на 1 деление по оси X, что соответствует ¼ периода. Другими словами ток через конденсатор опережает по фазе напряжение, что полностью соответствует теории.

Чтобы рассчитать ток через конденсатор достаточно воспользоваться законом Ома: I = U/R. При сопротивлении измерительного резистора 0,1Ом падение напряжения на нем 7мВ. Это амплитудное значение. Тогда максимальный ток через конденсатор составит 7/0,1=70мА.

Измерение формы тока через конденсатор не является какой-то очень актуальной задачей, тут все ясно и без измерений. Вместо конденсатора может быть любая нагрузка: катушка индуктивности, обмотка электродвигателя, транзисторный усилительный каскад и многое другое. Важно, что именно таким методом можно исследовать ток, который в некоторых случаях значительно отличается по форме от напряжения.

Источник

Как пользоваться осциллографом и для чего он вообще нужен. Часть I

Зачем нужен осциллограф

Часто, произнося это слово в присутствии человека, не связанного с радиоэлектроникой, мне начинало казаться, что я произнес какое-то очень завораживающее слово. В глазах собеседника сразу появлялось удивление и заинтересованность, и он начинал смотреть на меня как на какого-то мага или волшебника. Так что же это за прибор, который делает человека, занимающегося электроникой, фактически Гарри Поттером?

Основное предназначение осциллографа — изобразить форму измеряемого электрического сигнала (его напряжения), и он становится относительно простым в использовании прибором уже после первого с ним знакомства (хотя куча всяких ручек и кнопочек на нем может вогнать в ступор кого угодно). Фактически, осциллограф рисует нам двухмерный график зависимости напряжения от времени, где по горизонтальной оси X мы наблюдаем время, по вертикальной Y — напряжение. Или как еще говорят, осциллограф делает временную развертку сигнала. Интенсивность (или яркость) сигнала на дисплее можно представить в виде третьей оси Z.

Итак, осциллограф — это измерительный прибор, который позволяет:

Еще раз повторюсь, что хотя мы и можем измерять некоторые из параметров исследуемого сигнала, его напряжение (амплитуду), частоту, сдвиг фаз, но именно форма сигнала зачастую позволяет понять процессы, происходящие в электрической цепи.

Рассмотрим пример осциллограммы электрического сигнала — это то, что показывает осциллограф. Картинка идеализирована, работая с реальными приборами таких идеально ровных линий увидеть не получится (из-за чего это происходит я расскажу несколько позже).

В нашем случае мы наблюдаем периодический сигнал, у которого отсутствует постоянная составляющая (равна нулю), и мы имеем переменную составляющую в форме прямоугольных импульсов. Действующее (эффективное) значение напряжения (Vrms, среднеквадратичное значение) в данном частном случае совпало с амплитудой сигнала, хотя в общем случае, это не так (действующее значение будет меньше амплитудного). К слову, вольтметры измеряют именно действующее значение напряжения (простенький цифровой вольтметр показывает вообще некоторое средневыпрямленное значение, такое, что при измерении синусоидального сигнала оно равно действующему значению). Хотя есть вольтметры, измеряющие именно амплитудные (пиковые) значения сигналов, вне зависимости от формы сигнала (в них используются пиковые детекторы). К теме работы вольтметров, я обязательно еще вернусь в своих публикациях.

Глядя на полученную осциллограму, можно заметить, что мы имеем:

Не так уж и мало информации мы получили, глядя на экран осциллографа!

При помощи многоканального осциллографа можно одновременно наблюдать сигналы в различных точках схемы и смотреть, как они между собой соотносятся. Например, на входе и выходе усилителя. Мы можем посмотреть сигнал на входе и сигнал на выходе, выяснить какие искажения в форму сигнала вносит наш усилитель, как изменилась его амплитуда, какова временная задержа (сдвиг фаз). Как правило, увеличение количества входов осциллографа значительно сказывается на его стоимости. На практике, при разработке, отладке, настройке или ремонте цифровых и аналоговых устройств оптимальным, я считаю, наличие в своем арсенале двухканального осциллографа.

В ближайшее время я планирую рассказать о том, как выбрать подходящий для ваших задач осциллограф, на какие характеристики следует обращать внимание, как устроены различные типы осциллографов и покажу, как с этим чудо-прибором работать. Следите за новостями!

Как вы оцениваете эту публикацию? (86 голосов, средняя оценка: 4.65 из 5) Loading …

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллографМетки: Измерения, Осциллограф

Видео

Где применяют осциллографы?

Информация, которую даёт осциллограф:

Осциллографы используют как в практических, так и в научно-исследовательских целях. Для простых измерений можно воспользоваться мультиметром, но в большинстве случаев осциллограф незаменим.

Приборы для измерения колебаний применяют при настройке электронного оборудования. К примеру, для регулировки телевизионного сигнала необходимо получить его осциллографическое изображение. Приборы также используются при ремонте блоков питания, диагностике печатных плат.

При ремонте автомобилей устройство поможет получить данные о положении коленчатого и распределительного валов, датчиков положения. Данные осциллограммы расскажут о наличии импульса на катушке, укажут на неисправность свечей и проводов, диодного моста генератора.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Медицинское оборудование (кардиографы, энцефалографы) тоже работает по принципу осциллографирования. Только электрические колебания, измеряемые ими, происходят в живых организмах.

Развёрнутая классификация прибора

Современные осциллографы обладают весомым набором приложений для измерения, глубокой памятью, сенсорным ёмкостным дисплеем и способностью к скоростному обновлению сигналов на дисплее. Ознакомление с классификацией — неотъемлемый шаг в работе с техникой. Аппаратура подлежит внутреннему делению по назначению и логике работы:

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

В отдельную группу выделяются приборы с непрерывной развёрткой. Они позволяют регистрировать кривую на особой фотоленте. По числу лучей бывают двулучевые, однолучевые, трехлучевые и так далее. Вершиной автоматизации считается 16 лучей и более. Параметр влияет на синхронизацию данных.

Для техники с периодической развёрткой характерно следующее деление: стробоскопические, скоростные, обычные и универсальные, специальные запоминающие. Цифровым моделям свойственно сочетание нескольких параметров. Реже встречаются осциллографы, назначение которых совмещено с другим измерительным прибором. Их официальное название — скопметры.

Устройство

Главный узел осциллографа — трубка как у старых телевизоров, электронно-лучевая, осуществляющая визуализацию величин, принимаемых входным делителем, от которого зависят рамки допустимых замеров. Происходит усиление, синхронизация с генератором развертки. Далее, исследуемая величина попадает на оконечный усиливающий узел, на ЭЛТ, затем происходит отображение его онлайн без каких-либо задержек.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Алгоритм, как работает цифровой осциллограф несколько иной: он сначала пропускает сигнал через преобразователь (аналого-цифровой), замеряя его несколько раз в сек. Затем происходит реконструкция и отображение на мониторе. Одновременно данные записываются буферной памятью, есть возможность будущей их обработки.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллограф

Работать с цифровым осциллографом удобнее, его преимущества — полная функциональность с дополнительными опциями в маленьком корпусе, простота настроек. Выбор осциллографа в современных условиях обычно осуществляется среди указанных видов. Отдельные аналоговые старые основательные советские экземпляры (дешевле в 4–5 раз) неплохи, но они габаритные, требуют больше навыков по настройке.

Как проводятся измерения

Продолжаем описывать, как пользоваться цифровым осциллографом или аналоговым

Важно отметить, что у них у всех есть недостаток. Стоит упомянуть одну особенность – все измерения осуществляются визуально, поэтому имеется риск того, что погрешность окажется высокой

Также следует учитывать тот факт, что напряжения развертки обладают крайне малой линейностью, что приводит к погрешности измерений сдвига фаз или частоты примерно на 5%. Чтобы минимизировать эти погрешности, требуется выполнить одно простое условие – график должен занимать примерно 90% площади экрана. Когда проводятся измерения частоты и напряжения (имеется временной интервал), следует регуляторы корректировки усиления сигнала на входе и скорости развертки выставить в крайние правые положения. Стоит заметить одну особенность: так как пользоваться цифровым осциллографом может даже новичок, приборы с электронно-лучевой трубкой потеряли актуальность.

Виды развёрток

В разных режимах работы осциллографа линейные (создаваемых пилообразным напряжением) развёртки могут различаться:

Осциллографом исследуют различные типы сигналов. Они могут быть постоянными (напряжение в сети), периодическими (шумы, помехи, звуки и т.д.). Периодические могут возникать случайно или с определенным интервалом. В зависимости от того, как часто или редко возникает сигнал, выбирают тот или иной режим работы. Чаще всего в осциллографе есть два режима: автоматический (автоколебательный) и ждущий. Еще может быть однократный.

Выбор режима работы осциллографа

Если мы не знаем, как часто возникают импульсы, выбирают обычно автоматический режим. В нем даже при отсутствии потенциала на входе или при его недостаточном уровне экран светится. Отображается «нулевой» сигнал — прямая линия, которая должна идти по горизонтальной оси на экране (выставляется по линии регуляторами со стрелочками). При появлении потенциала на входе, он отображается на экране. Картинка при этом периодически обновляется и мы видим развертку сигнала по времени.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллографРежим работы

Ждущий режим хорош для редко появляющихся сигналах. Пока на входе ничего нет, экран не светится. При появлении каких-либо изменений он загорается, запускается генератор развертки и сигнал отображается на экране. Запуск можно настроить как по восходящему фронту импульса/синусоиды, так и по нисходящему. Можно настроить запуск не на исследуемый сигнал, а на то событие, которое ему предшествует (если такое есть).

Одиночный режим настраивает осциллограф на принятие одного сигнала. Когда на вход приходит потенциал нужного уровня, сигнал отображается на экране. После этого прибор переходит в неактивное состояние. И, даже если на входе будет следующий потенциал (или пять, или сто пять) он его не зарегистрирует. Для приема другого импульса нужно заново «взвести» прибор.

Основные параметры

Для выбора осциллографа рекомендуется правильно оценивать следующие характеристики:

Перед детальным анализом нужно уточнить, для чего именно предназначается прибор. Далее оценивают соответствие по следующим параметрам:

История

Функциональный триггер можно создать из обычного реле с электромеханическим приводом. Установив нужным образом контакты управляющей цепи, обеспечивают включение силовой группы после определенной комбинации входных сигналов. Отдельной клавишей выполняют сброс.

в чем измеряется осциллограф. Смотреть фото в чем измеряется осциллограф. Смотреть картинку в чем измеряется осциллограф. Картинка про в чем измеряется осциллограф. Фото в чем измеряется осциллографСхема RS триггера на одном реле

Электронные аналоги были собраны в начале прошлого века из ламповых приборов. Действующие схемы впервые опубликованы российскими и английскими учеными в 1918-20 гг. Позднее стали применять полупроводниковые транзисторы. В наши дни соответствующие устройства создают с применением микроэлектронных технологий.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *