Круглый конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов, поэтому круглый конус называют также конусом вращения.
Связанные определения для конуса
Образующая конуса. Отрезок, соединяющий вершину и границу основания, называется образующей конуса.
Образующая поверхность конуса. Объединение образующих конуса называется образующей (или боковой) поверхностью конуса.
Коническая поверхность. Образующая поверхность конуса является конической поверхностью.
Высота конуса (H). Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса.
Прямой конус. Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то конус называется прямым. При этом прямая, соединяющая вершину и центр основания, называется осью конуса.
Прямой круговой конус. Прямой круговой конус (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой, содержащей катет (эта прямая представляет собой ось конуса).
Эллиптическим конус. Конус, опирающийся на эллипс, параболу или гиперболу, называют соответственно эллиптическим, параболическим и гиперболическим конусом (последние два имеют бесконечный объём).
Усечённый конус. Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом, или коническим слоем.
Объем прямого углового конуса
Первый способ вычисления объема конуса
Объем конуса равен одной трети произведения площади основания на высоту
Второй способ вычисления объема конуса
Объем конуса равен одной трети произведения числа пи (3.1415) на квадрат радиуса основания на высоту.
\[ \LARGE V = \frac <3>\pi r^2 \]
Калькулятор объема конуса
Объем усеченного конуса
Усеченный конус получится, если в конусе провести сечение, параллельное основанию. Тело ограниченное этим сечением, основанием и боковой поверхностью конуса называется усеченным конусом.
Первый способ вычисления объема усеченного конуса
Объем усеченного конуса вычисляется по формуле:
\[ \LARGE V = \frac<1> <3>\left( H\cdot S_2 + h \cdot s_1 \right) \]
Второй способ вычисления объема усеченного конуса
Объем усеченного конуса вычисляется по формуле:
\[ \LARGE V = \frac<1> <3>\pi h \left( R^2 + R \cdot r + r^2 \right) \]
Объём конуса выражается такой же формулой, что и объём пирамиды: V = 1 /3 Sh,
где V — объём конуса, S — площадь основания конуса, h — его высота.
Окончательно V = 1 /3 πR 2 h, где R — радиус основания конуса.
Получение формулы объёма конуса можно пояснить таким рассуждением:
Пусть дан конус (рис). Впишем в него правильную пирамиду, т. е. построим внутри конуса такую пирамиду, вершина которой совпадает с вершиной конуса, а основанием служит правильный многоугольник, вписанный в основание конуса.
Объём этой пирамиды выразится формулой: V’ = 1 /3 S’h, где V — объём пирамиды,
S’ — площадь её основания, h — высота пирамиды.
Если при этом за основание пирамиды взять многоугольник с очень большим числом сторон, то площадь основания пирамиды будет весьма мало отличаться от площади круга, а объём пирамиды — весьма мало отличаться от объёма конуса. Если, пренебречь этими различиями в размерах, то объём конуса выразится следующей формулой:
V = 1 /3 Sh, где V — объём конуса, S — площадь основания конуса, h — высота конуса.
Примечание. В формуле V = 1 /3 Sh поставлен знак точного, а не приближённого равенства, хотя на основании проведённого рассуждения мы могли бы его считать приближённым, но в старших классах средней школы доказывается, что равенство
V = 1 /3 Sh точное, а не приближённое.
Объем произвольного конуса
Теорема. Объем произвольного конуса равен одной трети произведения площади основания на высоту, т.е.
где Q — площадь основания, а Н — высота конуса.
Рассмотрим конус с вершиной S и основанием Ф (рис.).
Пусть площадь основания Ф равна Q, а высота конуса равна Н. Тогда существуют последовательности многоугольников Фn и Ф’n с площадями Qn и Q’n таких, что
Очевидно, что пирамида с вершиной S и основанием Ф’n будет вписанной в данный конус, а пирамида с вершиной S и основанием Фn — описанной около конуса.
Объемы этих пирамид соответственно равны
то формула (1) доказана.
Следствие.Объем конуса, основанием которого является эллипс с полуосями а и b, вычисляется по формуле
В частности, объем конуса, основанием которого является круг радиуса R, вычисляется по формуле
где Н — высота конуса.
Как известно, площадь эллипса с полуосями а и b равна π ab, и поэтому формула (2) получается из (1) при Q = π ab. Если а = b = R, то получается формула (3).
Объем прямого кругового конуса
Теорема 1. Объем прямого кругового конуса с высотой Н и радиусом основания R вычисляется по формуле
Данный конус можно рассматривать как тело, полученное вращением треугольника с вершинами в точках О(0; 0),В(Н; 0), А(Н; R) вокруг оси Ох (рис.).
Треугольник ОАВ является криволинейной трапецией, соответствующей функции
у = R /Hх, х ∈ [0; H]. Поэтому, используя известную формулу, получаем
Следствие.Объем прямого кругового конуса равен одной трети произведения площади основания на высоту, т. е.
где Q — площадь основания, а H — высота конуса.
Теорема 2. Объем усеченного конуса с радиусами оснований r и R и высотой H вычисляется по формуле
Усеченный конус можно получить вращением вокруг оси Ох трапеции О ABC (рис.).
Прямая АВ проходит через точки (0; r) и (H; R), поэтому она имеет уравнение
Для вычисления интеграла сделаем замену
Очевидно, когда х изменяется в пределах от 0 до H, переменная и изменяется от r до R, и поэтому