в чем измеряется мощность телескопа
Супермощный телескоп
Определить, какой телескоп самый мощный в мире, практически невозможно. И тому есть несколько причин. Если любительские телескопы позволяют вести наблюдения только в видимом световом диапазоне, профессиональные модели уже можно использовать для рентгеновских, инфракрасных и ультрафиолетовых наблюдений. Сравнивать их между собой бессмысленно. Один телескоп сможет увидеть далекие звезды, другой максимально четко отобразит поверхность Луны, третий зафиксирует вспышки пульсаров. Поэтому имеет смысл говорить о самом мощном оптическом телескопе, самой чувствительной ультрафиолетовой модели и т.п. Некорректно также сравнивать возможности наземных и орбитальных телескопов. Они работают в совершенно разных условиях. Одна только атмосфера так сильно влияет на наблюдения, что инфракрасные телескопы могут эффективно работать лишь за ее пределами.
Самый мощный телескоп
Если отбросить все эти разделения на типы, мощнейший телескоп в мире – это «Хаббл». Диаметр его объектива достигает 2,4 метра, работает он вне земной атмосферы, поэтому его разрешающая способность во много раз выше, чем у любого наземного телескопа. Доказательство тому – множество красивейших фотографий, которые легко найти в интернете на разных ресурсах.
Но в ближайшем будущем «Хабблу» придется передать свои лавры первенства другому телескопу. А именно – «Джеймсу Уэббу», который строится уже 20 лет и будет запущен на орбиту ориентировочно в марте 2021 года. Как только это произойдет, именно он станет самым мощным телескопом в мире. В «Джеймс Уэббе» будет установлено зеркало диаметром 6,5 метров, которое позволит улавливать свет от самых тусклых и далеких галактик. Производство телескопа было достаточно трудным и даже сейчас нельзя с уверенностью сказать, что запуск произойдет вовремя. NASA неоднократно переносило сроки завершения работ, также сильно увеличился бюджет на постройку. Сейчас стоимость создания «Джеймса Уэбба» оценивают примерно в 9,5 млрд долларов США.
Как рассчитать мощность телескопа?
Еще одна причина, по которой сложно говорить о самых мощных оптических системах, – сам термин «мощность телескопа». В технических характеристиках вы никогда не увидите такого параметра: есть кратность, светосила, проницающая способность, но не мощность.
Часто под мощностью понимают увеличение телескопа, хотя этот параметр не так уж и важен для оценки всех возможностей оптики. Диаметр – гораздо важнее. Ведь чем больше объектив телескопа, тем больше света он собирает, а значит, тем более тусклые объекты он может видеть. Зная диаметр объектива телескопа, можно рассчитать его проницающую способность – наибольшую звездную величину, доступную для наблюдений с его помощью. Напомним, что все звезды различаются яркостью, и эта яркость выражается в фиксированном числе, которое и называется «звездной величиной».
Диаметр объектива влияет и на разрешающую способность телескопа – параметр, который показывает, насколько мелкие детали объектов удастся в него рассмотреть. Она измеряется в угловых секундах и характеризует величину угла между двумя близкорасположенными точками, при котором они все еще видны как два отдельных объекта. Чем этот угол меньше, тем более близкие друг другу звезды мы можем наблюдать. В общем смысле это просто характеристика оптики телескопа, которая говорит нам о четкости картинки.
Самый мощный телескоп в мире – это весьма условное понятие. Возможности оптического прибора зависят от слишком многих параметров (увеличения, светосилы, разрешения), в том числе и от материала линз или зеркал. В нашем интернет-магазине вы сможете приобрести телескопы для разных видов наблюдений и решения широкого круга задач. Пишите или звоните нам – мы с радостью поможем в выборе!
4glaza.ru
Апрель 2018
Статья обновлена в марте 2020 года.
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Другие обзоры и статьи о телескопах и астрономии:
Обзоры оптической техники и аксессуаров:
Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:
Все об основах астрономии и «космических» объектах:
astro-talks
форум для любителей астрономии
Важные характеристики телескопов
Модератор: Ernest
Важные характеристики телескопов
Сообщение Ernest » 31 авг 2011, 12:04
Что такое увеличение телескопа?
Что такое апертура телескопа?
Что такое апертурная лихорадка?
Это естественное следствие из кардинального свойства апертуры ограничивать проницание и разрешение телескопа. Владелец менее апертурного телескопа, войдя во вкус наблюдательной астрономии, хочет сменить его на более апертурный (с большим диаметром линз/зеркала), чтобы иметь возможность увидеть больше. По ряду соображений, имеет смысл переходить на размер апертуры примерно в полтора раза больший, чем предыдущая. В некоторых случаях этот естественный ход событий приобретает клиническую форму, когда смена апертуры на большую происходит задолго до исчерпания возможностей наличного инструмента – просто как погоня за дюймами, не взирая на те трудности, с которыми придется столкнуться используя габаритный и тяжелый инструмент. Что и называют апертурной лихорадкой.
Что важнее увеличение телескопа или его апертура?
С каким максимальным увеличением я смогу наблюдать?
Обычно отвечают, что для этого надо умножить диаметр апертуры телескопа, измеренный в миллиметрах, на полтора или 40 апертур выраженных в дюймах. То есть для 10” инструмента (диаметр апертуры 254 мм) максимальное разумное составит около 400 крат.
Но тут надо отметить ряд обстоятельств. Это число не догма – обычно телескоп используется с меньшим увеличением подобранным для наблюдений того или иного класса объектов. Кроме того, при больших остаточных аберрациях объектива телескопа, плохой юстировке, неудачном климате места наблюдений (турбулентная атмосфера), тусклых объектах наблюдений, отсутствии часового ведения телескопа увеличения придется ограничивать меньшим, чем предельное, значением увеличением. При ярких объектах наблюдений, при проведении некоторым технических наблюдений (связанных с юстировкой телескопа или разрешением тонкой дифракционной структуры двойных звезд) неважной остроте зрения наблюдателя и надежном часовым двигателе монтировки, который отрабатывает компенсацию вращения Земли, вполне может оказаться полезным использование и несколько больших значений увеличений. Чем больше увеличение, тем меньше яркость изображения, меньше поле зрения телескопа, заметнее проявления дефектов оптики телескопа. И наоборот чем увеличение меньше, тем больше поле зрения телескопа, больше яркость изображения, оно выглядит более контрастным и резким.
см. также статью из ЧАВО «Какое максимальное увеличение имеет смысл для телескопа?»
Что такое разрешение телескопа?
Что такое проницание телескопа?
Что такое поле зрения телескопа?
Важна ли светосила для объектива телескопа?
Светосила объектива телескопа или его относительное отверстие (отношение диаметра апертуры к фокусному расстоянию) – важная характеристика для астрографа, телескопа используемого для производства фоторабот. Этот параметр (наряду со временем выдержки) определяет экспозицию при получении одного кадра. Чем светосила больше, тем меньшее время требуется для достижения той же экспозиции – того же уровня полезного сигнала на фотоматериале. Длительность выдержек при фотографировании широких звездных полей и туманностей обеспечивается довольно сложными системами слежения за суточным вращением неба, компенсацией несовершенства механики монтировки и поэтому для астрографа в ряде случаев важно уменьшить время выдержки и максимально увеличить светосилу объектива (без потерь в качестве изображения).
При визуальных наблюдениях в первом приближении светосила объектива телескопа не столь существенна. То насколько ярким глаз увидит изображения в телескоп, определяется не светосилой объектива, а размером выходного зрачка телескопа. Диаметр выходного зрачка равен диаметру апертуры объектива деленному на увеличение. То есть, чем больше увеличение, тем меньше выходной зрачок и тем меньше яркость изображения.
Светосила объектива телескопа косвенно определяет размер поля зрения. Чем светосильнее объектив телескопа – тем большее поле зрения возможно получить в пределах его окулярного тубуса или зафиксированном размере фотоприемника (кадра камеры). Кроме того как у визуального так и у фотографического астрономического телескопа (рефлектора или рефрактора) продольный размер трубы, обычно, тем меньше, чем больше относительное отверстие его объектива.
При фотоработах по широким полям (звездные поля, туманности, галактики и т.п.) относительное отверстие (отношение диаметра входной апертуры к фокусному расстоянию) выбирают побольше, чтобы получить лучшую проработку тусклых объектов (см. выше про важность светосилы). Но при стремлении к наивысшему проницанию по звездам требуется согласовывать относительное отверстие объектива и сумму его остаточных аберраций с размером пиксела фотоприемника. Вполне может статься, что меньшая светосила объектива даст лучшее проницание.
А вот для визуальных инструментов большее относительное отверстие объектива интересно постольку, поскольку позволяет получить большее поле зрения при том же размере фокусера (полевой диафрагмы обзорного окуляра).
При этом надо иметь ввиду, что большая светосила объектива обычно сопровождается большими остаточными аберрациями (как расчетными, так и ошибками производства, разюстирокой). Так что при желании достичь предельного разрешения (например, по планетам) лучше предпочесть телескопы с нефорсированным (небольшим) относительным отверстием объектива. Кроме того, в зеркальных системах большее относительное отверстие влечет за собой большее центральное экранирование, что также не добавляет контраста изображению на предельных увеличениях.
Фокусное расстояние телескопа
В окулярную трубку фокусера (фокусировщика) телескопа вставляют окуляры и проч. узлы. Двухдюймовый фокусер в любом случае лучше, хотя бы потому, что переходники для посадки 1.25″ окуляров и проч. аксессуаров в 2-дюймовый фокусер есть, а обратных переходников (во всяком случае без потерь в поле зрения) – нет. 2-дюймовый фокусер предоставляет больше свободы в выборе окулярных аксессуаров. Особенно важно иметь больший диаметр окулярной трубки фокусера в астрографе. Но 2″ аксессуары дороже и габаритнее.
см. также статью из ЧАВО «2» или 1.25″?»
В телескоп все видно вверх ногами?!
Среди астро-товаров, как и в мире всех прочих гаджетов, есть особенно дорогие, в том числе с карбоновыми трубами. Первоисточник этого карбона – стремление создать трубу астрографа минимально подверженную уходу фокуса из-за температурного дрейфа в процессе съемки. Масляная иммерсия между линзами апохромата позволяет увеличить размер «склейки» против допустимых при традиционном способе склеивания и получить все преимущества склеенного блока – минимальные возможности для разъюстировки, потерь света и т.п.
Это возможность сочетать быструю перефокусировку с точной высокочувствительной подстройкой фокуса на больших увеличениях, что особенно актуально для светосильных телескопов.
Что ограничивает мобильность телескопа?
Обычная схема астрономических наблюдений с выездом за город – вынос из дома к автомобилю частей телескопа (труба, монтировка, тренога), сумки или чемоданчика с аксессуарами (окуляры, фильтры, карты, фонарь), расфасовка всего этого добра по салону и в багажник, а по прибытии на место наблюдения вдали от городских огней сборка телескопа.
При таком подходе мобильность ограничена только весом и габаритом самой тяжелой и габаритной из частей телескопа, размерами дверных проемов, дверей в лифте, объемом багажного отделения (а то и прицепа) автомобиля, силой и количеством рук наблюдателя и его помощников, трудоемкость сборки/разборки телескопа на части.
Можно ли будет перевозить телескоп на автомобиле?
Да – это наиболее обычный способ доставить телескоп к месту наблюдений для жителей больших городов.
Каковы примерные размеры телескопов?
Выбираем телескоп
Телескоп на альт-азимутальной alt-az монтировке
Телескоп на экваториальной (EQ) монтировке
Принципиальная схема трех наиболее распространенных типов телескопов:
Рефрактор, Рефлектор Ньютона и Катадиоптрик Шмидт-Кассегрен (ШК)
Телескоп рефрактор АПО фирмы Meade
Ахроматы. В этих телескопах хорошо исправлены все основные аберрации, но хроматическую полностью побороть так и не удалось. Цветная окантовка наблюдается у таких объектов как Луна, планеты и яркие звезды. Слегка снизить хроматическую аберрацию удается, только уменьшая относительное отверстие, что негативно сказывается на размерах трубы, делая телескоп громоздким и требовательным к жесткости монтировки.
Телескоп | Плюсы | Минусы |