в чем измеряется концентрация электронов
§ 20. Атомы и молекулы, их характеристики (окончание)
Концентрация молекул
7. Постоянная Авогадро. Поскольку молекулы имеют малые размеры, их число в любом макроскопическом теле очень велико.
Число молекул в единице объёма называют концентрацией. Концентрация n вычисляется по формуле
где N — число молекул в теле, V — его объём.
Концентрацию молекул в теле также можно определить, зная плотность вещества ρ и массу молекулы этого вещества m0. Поскольку где m — масса тела, и m = m0N, то
Чтобы представить себе, насколько велико это число, предположим, что в воздушном шаре сделали настолько тонкий прокол, что за каждую секунду через него проходит 10 молекул. В этом случае, для того чтобы вышли все молекулы, потребуется 30 миллиардов лет.
Из определения моля следует, что 1 моль любого вещества содержит одинаковое число молекул (атомов). Это число называют постоянной Авогадро.
Постоянная Авогадро NА — число молекул или атомов в количестве вещества 1 моль.
Поскольку в одном моле любого вещества содержится одинаковое число молекул, то при одинаковых условиях 1 моль любого газа занимает одинаковый объём.
Вопросы для самопроверки
1. Сформулируйте первое положение молекулярно-кинетической теории строения вещества.
2. Поясните выражение: «Молекула — мельчайшая частица вещества, сохраняющая его химические свойства».
3. Опишите опыт, позволяющий оценить размеры молекулы. Предложите способ измерения объёма капли масла.
4. Что называют относительной молекулярной массой; количеством вещества; молярной массой; концентрацией молекул; постоянной Авогадро?
5. Что такое один моль?
6. Каков порядок значений размеров, массы молекул, их концентрации, числа молекул в одном моле вещества?
1Д. Подготовьте краткое сообщение об исследованиях М. В. Ломоносова, результаты которых внесли вклад в развитие учения о строении вещества. Воспользуйтесь для этого интернет-ресурсами и другими источниками информации. Докажите, что результаты исследований М. В. Ломоносова имели принципиальное значение для развития взглядов на строение вещества.
2. Сравните количество вещества, содержащееся в телах равной массы из алюминия и железа.
3. Найдите число атомов в алюминиевой ложке массой 30 г.
4. Деталь площадью 30 см 2 покрыли слоем серебра толщиной 2 мкм. Сколько атомов серебра содержится в покрытии?
5. Сравните массы и объёмы двух тел, сделанных из свинца и меди, если в них содержатся равные количества вещества.
Вопросы для дискуссии
Почему мы уверены в существовании молекул и атомов, ведь мы их не видим?
Концентрация частиц
Концентрация частиц — физическая величина, равная отношению числа частиц N к объёму V, в котором они находятся:
.
Размерность в системе СИ , в системе СГС — .
Если концентрация является функцией координаты , то под концентрацией понимают отношение:
.
Однако, такое представление является в большой степени условным, поскольку концентрация (как, например, и температура) относится к макропараметрам и при переходе к бесконечно малому объёму, по большому счету, теряет смысл.
Формулы, в которых присутствует концентрация
Полезное
Смотреть что такое «Концентрация частиц» в других словарях:
концентрация частиц — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN particle concentration … Справочник технического переводчика
концентрация частиц — 3.2.7 концентрация частиц (particle concentration): Число частиц в единице объема воздуха. Источник: ГОСТ Р ИСО 14644 3 2007: Чистые помещения и связанные с ними контролируемые среды. Часть 3. Методы испытаний … Словарь-справочник терминов нормативно-технической документации
концентрация частиц в атмосфере планеты — концентрация Число частиц данного вида в единице объема атмосферы планеты. Примечание Подразумеваются как микрочастицы (атомы, молекулы, ионы или электроны), так и макрочастицы (капли, кристаллы, пылинки). [ГОСТ 25645.143 84] Тематики атмосферы… … Справочник технического переводчика
концентрация частиц в устройстве для определения запылённости дымовых газов — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN concentration of specie in the impingerCi … Справочник технического переводчика
концентрация частиц на входе — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN concentration at inletCin … Справочник технического переводчика
концентрация частиц на выходе — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN concentration at outletCout … Справочник технического переводчика
концентрация частиц ( particle concentration) — 2.2.3 концентрация частиц ( particle concentration): Число отдельных частиц в единице объема воздуха. Источник: ГОСТ Р ИСО 14644 1 2000: Чистые помещения и связанные с ними контролируемые среды. Часть 1. Классификация чистоты воздуха … Словарь-справочник терминов нормативно-технической документации
относительная концентрация частиц в атмосфере планеты — относительная концентрация Отношение концентрации частиц данного вида к сумме концентраций всех частиц в атмосфере планеты. [ГОСТ 25645.143 84] Тематики атмосферы планет Синонимы относительная концентрация EN relative concentration of particles… … Справочник технического переводчика
массовая нагрузка [концентрация] частиц пыли в газовом потоке электрофильтра — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ESP mass loading … Справочник технического переводчика
счетная концентрация частиц — 6.1.5 счетная концентрация частиц: По ГОСТ Р 50766. Источник: ГОСТ Р 51109 97: Промышленная чистота. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации
Концентрация электронов в зоне проводимости
Концентрация электронов в зоне проводимости определяется формулой:
где NC – эффективная плотность состояний в зоне проводимости. Аналогично:
В этой формуле наиболее сильно всё зависит от членой в экспоненте. Так например, при комнатной температуре получается:
До сих пор мы имели ввиду абсолютно чистые кристаллы, не имеющие никаких примесей. На самом деле примеси есть и играют очень большую роль. Чистые полупроводники называются собственными, а с примесями – примусными. Рассмотрим наиболее простые примеси, отличающиеся от атомов кремния и германия на одну валентность (валентность кремния и германия 4).
Если имеется примесь с 5 электронами на внешней орбите, то в связях с кремнием или германием участвуют 4 электрона, а пятый – лишний, он легко отрывается от атома примеси и может свободно двигаться по кристаллу. Таким образом, в полупроводнике появляются лишние электроны, а вследствие рекомбинация количество дырок уменьшается. Происходит сдвиг уровня Ферми вверх, равновесные концентрации электронов и дырок меняются, а их произведение остаётся прежним, см. рис. При этом примесь, отдающая один электрон, называется донором.
При введении в полупроводник другой примеси, 3-х валентной, происходит иная ситуация: для четырёхкратной связи атомам полупроводника не хватает одного электрона. Поэтому полупроводник отдаёт один электрон, количество электронов уменьшается, а вследствие рекомбинации количество дырок растёт. Это иллюстрирует нижний рис. Такие примеси называются акцепторами.
Полупроводник с дозорной примесью называется электронным, или полупроводником n – типа, а полупроводник с акцепторной примесью называется дырочным, или p – типа. Существенно, что большинство полупроводниковых приборов использует контакт полупроводников n- и p- типов, поэтому не стараются использовать чистые полупроводники, а наоборот, делают примесные полупроводники.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
И их основные свойства
Проводниками электрического тока в соответствии с терминами и определениями ГОСТ Р 52002-2003 называют вещества, основными электрическими свойствами которых является высокая электропроводность. Их удельное сопротивление при нормальной температуре лежит в пределах от 0,036 до 300 мкОм·м. Эти материалы используют для изготовления токоведущих частей электроустановок. Чаще всего в качестве проводников электрического тока используют твердые тела, реже жидкости и газы в ионизированном состоянии.
Важнейшими практически применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы. Основные свойства металлов приведены в табл 3.3.
Классификация металлических проводников. Металлические проводниковые материалы подразделяются на следующие основные группы:
Металлы высокой проводимости, имеющие удельное сопротивление ρ при нормальной температуре не более 0,05 мкОм∙м, Металлы высокой проводимости используются для изготовления проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов.
Сверхпроводники – это материалы (чистые металлы и сплавы), удельное сопротивление которых при весьма низких температурах, близких к абсолютному нулю скачком уменьшается до ничтожно малой величины.
Высокотемпературные сверхпроводники (ВТСП) – это проводники, имеющие температуру перехода в сверхпроводящее состояние выше 30К.
Криопроводники – это металлические проводники высокой проводимости, удельное сопротивление которых плавно снижается при понижении температуры и при криогенных температурах (Т 0 С) становится гораздо меньше, чем при нормальной температуре без перехода в сверхпроводящее состояние.
Сплавы высокого сопротивления с ρ при нормальной температуре не менее 0,3 мкОм ּ м. Металлы и сплавы высокого сопротивления применяются для изготовления резисторов, электронагревательных приборов, нитей ламп накаливания и т. п.
Металлы и сплавы различного назначения. К ним относятся тугоплавкие и легкоплавкие металлы, а также металлы и сплавы для контактов электрических аппаратов.
Классификация неметаллических проводников. К неметаллическим твердым проводникам относятся:
Композиционные проводящие материалы – это искусственные материалы с электронным характером электрической проводимости, состоящие из проводящей фазы, связующего вещества и заполнителей с высокими диэлектрическими свойствами.
Классификация жидких и газообразных проводников. К жидким проводникам относятся:
Расплавленные металлы. В качестве жидкого металлического проводника при нормальной температуре может быть использована только ртуть (Hg), температура плавления которой около минус 39 °С. Другие металлы могут быть жидкими проводниками только при повышенных температурах, превышающих их температуру плавления.
К газообразным проводникам относятся: все газы и пары, в том числе и пары металлов. При низких напряженностях электрического поля газы являются хорошими диэлектриками. Если же напряженность электрического поля превзойдет некоторое критическое значение, при котором начинается ударная ионизация, то в этом случае газ может стать проводником с электронной и ионной проводимостью. Сильно ионизированный газ при равенстве числа электронов в единице объема числу положительных ионов представляет собой особую проводящую среду, носящую название плазмы.
Газы и пары металлов в качестве проводников используются в газоразрядных лампах освещения. Среди газоразрядных источников оптического излучения наиболее распространены лампы, в которых используется разряд в парах ртути. Это люминесцентные лампы низкого давления (до 0,03МПа) и дуговые ртутные лампы (ДРЛ) высокого давления (0,03-3МПа).
Рассмотрим подробнее механизмы проводимости и основные свойства металлических проводников, наиболее широко применяемых в технике. Они являются основным видом проводниковых материалов в электро- и радиотехнике.
Электропроводность металлов. Твердый металлический проводник представляет собой кристаллическую решетку, в узлах которой расположены положительно заряженные ионы. В пространстве между ионами находятся свободные электроны, которые образуют так называемый электронный газ. Электронный газ и положительные ионы металла, взаимодействуя между собой, образуют прочную металлическую связь. При отсутствии электрического поля свободные электроны, находятся в состоянии хаотического теплового движения, сталкиваясь с колеблющимися атомами кристаллической решетки.
Для электронного газа, как и для обычных газов, используют законы статистики. Рассмотрим основные положения этих законов. Среднее расстояние, проходимое электронами между двумя столкновениями с узлами решетки, называют длиной свободного пробега . Средний промежуток времени между двумя столкновениями называют временем свободного пробега, которое определяют как:
, (3.3)
где — средняя скорость теплового движения свободных электронов в металле. При Т=300К средняя скорость =30 5 м/с =300км/с.
Скорости хаотического теплового движения электронов (при определенной температуре) для различных металлов примерно одинаковы. Примерно одинаковы и концентрации свободных электронов n в разных металлах. Поэтому значение удельной проводимости (или удельного сопротивления) в основном зависит лишь от средней длины свободного пробега электронов λ в данном проводнике. Эта длина в свою очередь, определяется структурой проводникового материала. Поэтому все чистые металлы с идеальной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления; примеси же, искажая кристаллическую решетку, приводят к увеличению ρ.
Если в проводнике существует электрическое поле Е=const, то со стороны этого поля на электроны действует сила . Под действием этой силы электроны приобретают ускорение , пропорциональное напряженности электрического поля E, в результате чего возникает направленное движение электронов. Такое направленное движение называют дрейфом электронов. Скорость направленного движения или дрейфа значительно меньше скорости теплового движения. Во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега максимальную скорость
, (3.2)
где — время свободного пробега.
В конце свободного пробега электрон, сталкиваясь с ионами кристаллической решетки, отдает им приобретенную в электрическом поле энергию, и скорость его становится равной нулю. Следовательно, средняя скорость направленного движения электрона будет равна:
, (3.3)
Направленное движение электронов создает электрический ток, плотность которого согласно классической теории металлов равна:
. (3.4)
— удельная электрическая проводимость металла, которая тем больше, чем больше концентрация n свободных электронов и средняя длина λ их свободного пробега, См/м (Сименс, деленный на метр),
— удельное электрическое сопротивление – величина, обратная удельной электрической проводимости, Ом∙м (Ом, умноженный на метр).
Удельная проводимость γ не зависит от напряженности электрического поля Е при изменении ее в широких пределах. Уравнение (3.4) представляет собой закон Ома в дифференциальной форме.
Если считать, что концентрация свободных электронов равна концентрации атомов, то эти концентрации можно найти по формуле:
, (3.5)
где d- плотность вещества,
При движении свободных электронов в металле под действием электрического поля, они приобретают дополнительную кинетическую энергию, которую отдают узлам кристаллической решетки при столкновении с ними. Отданная энергия превращается в тепловую, в результате чего температура металла повышается. Мощность удельных потерь p, выделяющихся в проводнике и нагревающих его, определяют по закону Джоуля-Ленца, который в дифференциальной форме имеет вид:
(3.6)
Отметим, что при температуре, равной 0 0 К скорость теплового движения электронов будет равна нулю. Они не будут сталкиваться с ионами, находящимися в узлах кристаллической решетки. Длина свободного пробега λ электронов будет равна бесконечности, а удельное сопротивление ρ будет равно нулю (удельная проводимость равна бесконечности). Проводник в этом случае нагреваться не будет.
Решение. Концентрация свободных электронов в меди находится по формуле:
Пример 3.2. В медном проводнике под действием электрического поля проходит электрический ток плотностью . Определить среднюю скорость дрейфа электронов.
. Плотность тока: .
Здесь — средняя скорость дрейфа электронов.
Отсюда: .
Пример 3.3. За какое время электрон в проводе линии связи преодолеет расстояние L=3км, если он будет двигаться без столкновения с узлами кристаллической решетки? Разность потенциалов на концах провода U=300В.
Решение. Если электрон будет двигаться без столкновения с узлами кристаллической решетки, то его движение будет равноускоренным и пройденный путь L найдется из выражения: ,
где — ускорение электрона,
Следовательно,
Отсюда:
Пример 3.4.Найти время передачи электрического сигнала по медному проводу длиной L=3км.
Решение. Передача энергии вдоль проводов воздушной линии электропередачи производится электромагнитным полем, которое распространяется вдоль линии со скоростью света с=3·30 8 м/с. Для воздушной линии время передачи сигнала электромагнитным полем будет равно:
Двойственная природа электрона, т.е. свойство корпускулярно-волнового дуализма обусловила то обстоятельство, что движущиеся в металлах свободные электроны (электроны проводимости) следует рассматривать и как корпускулярные частицы, и как частицы, обладающие волновыми свойствами. С этой точки зрения движение электронов в металле – это распространение электромагнитной волны в твердом теле. Сопротивление металла возникает в результате рассеяния этой волны на тепловые колебания кристаллической решетки. Согласно представлениям волновой теории удельное сопротивление металлов также связано с длиной свободного пробега электронов . Это соотношение записывается так:
(3.7)
Здесь h – постоянная Планка.
Решение. Удельное сопротивление металлов связано со средней длиной свободного пробега соотношением: .
Отсюда выразим среднюю длину свободного пробега электрона:
Пример 3.6. Сколько электронов пройдет через поперечное сечение проводника за время t=2с, если по проводнику проходит ток I=8А.
Решение. За время t через поперечное сечение проводника проходит заряд q, равный: . Количество электронов:
Связь плотности тока δ, (А/м²), и напряженности электрического поля Е (В/м), в металлическом проводнике, как уже было показано выше, дается известной формулой (3.4) δ = γE, называемой дифференциальной формой закона Ома.
Для проводника, имеющего сопротивление R длину l и постоянное поперечное сечением S, удельное сопротивление ρ вычисляют по формуле
Для измерения ρ проводниковых материалов разрешается пользоваться внесистемной единицей Ом·мм²/м. Связь между названными единицами удельного сопротивления такая:
3 Ом·м = мкОм·м = Ом·мм²/м, т.е. 3Ом·мм 2 /м=3мкОм·м.
Диапазон значений удельного сопротивления ρ металлических проводников при нормальной температуре довольно узок: от 0,036 для серебра и примерно до 3,4 мкОм·м для железохромо-алюминиевых сплавов.
Пример 3.7Проводник длиной L=50 м и диаметром d=0,5мм включен в электрическую цепь. По проводнику проходит ток I=7А, а напряжение на концах проводника U=50В. Определить удельное сопротивление проводника и материал, из которого он изготовлен.
Решение. Из выражения найдем:
Судя по величине удельного сопротивления, провод выполнен из алюминия.
Пример 3.5. Определить, во сколько раз сопротивление Rf медного провода круглого сечения диаметром d=0,9 мм на частоте f=5МГц больше сопротивления R0 этого провода на постоянном токе.
Решение. Глубина проникновения электромагнитного поля в проводник определяется по формуле:
м.
где — удельное сопротивление меди;
Гн/м –магнитная постоянная;
— относительная магнитная проницаемость меди.
Коэффициент увеличения сопротивления провода круглого сечения определится:
Для случая, когда членом в знаменателе можно пренебречь и формула, упрощаясь, примет вид: