номера хромосом которые имеют спутники

Сателлиты (цитология)

номера хромосом которые имеют спутники. Смотреть фото номера хромосом которые имеют спутники. Смотреть картинку номера хромосом которые имеют спутники. Картинка про номера хромосом которые имеют спутники. Фото номера хромосом которые имеют спутники

номера хромосом которые имеют спутники. Смотреть фото номера хромосом которые имеют спутники. Смотреть картинку номера хромосом которые имеют спутники. Картинка про номера хромосом которые имеют спутники. Фото номера хромосом которые имеют спутники

Хромосо́мы (греч. χρώμα — цвет и греч. σώμα — тело) — хорошо окрашиваемые включения в ядре эукариотической клетки, которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза). Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия все чаще говорят о бактериальных хромосомах. В хромосомах сосредоточена большая часть наследственной информации.

Содержание

Хромосомы эукариот

Хромосомы эукариот имеют сложное строение. Основу хромосомы составляет линейная (не замкнутая в кольцо) макромолекула дезоксирибонуклеиновой кислоты (ДНК) значительной длины (например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований). В растянутом виде длина хромосомы человека может достигать 5 см. Помимо неё, в состав хромосомы входят пять специализированных белков — H1, H2A, H2B, H3 и H4 (так называемые гистоны) и ряд негистоновых белков. Последовательность аминокислот гистонов высококонсервативна и практически не различается в самых разных группах организмов.

В интерфазе хроматин не конденсирован, но и в это время его нити представляют собой комплекс из ДНК и белков. Макромолекула ДНК обвивает октомеры (структуры, состоящую из восьми белковых глобул) гистоновых белков H2A, H2B, H3 и H4, образуя структуры, названные нуклеосомами. В целом вся конструкция несколько напоминает бусы. Последовательность из таких нуклеосом, соединённых белком H1, называется нуклеофиламентом (nucleofilament), или нуклеосомной нитью, диаметром около 10 нм.

В ранней интерфазе (фаза G1) основу каждой из будущих хромосом составляет одна молекула ДНК. В фазе синтеза (S) молекулы ДНК вступают в процесс репликации и удваиваются. В поздней интерфазе (фаза G2) основа каждой из хромосом состоит из двух идентичных молекул ДНК, образовавшихся в результате репликации и соединённых между собой в районе центромерной последовательности.

Перед началом деления клеточного ядра хромосома, представленная на этот момент цепочкой нуклеосом, начинает спирализовываться, или упаковываться, образуя при помощи белка H1 более толстую хроматиновую нить, или хроматиду, (chromatin fiber) диаметром 30 нм. В результате дальнейшей спирализации диаметр хроматиды достигает ко времени метафазы 700 нм. Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп. Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, по-прежнему соединены между собой в районе центромеры (подробнее о судьбе хромосом при клеточном делении см. статьи митоз и мейоз).

Центромера

Первичная перетяжка

X. п., в которой локализуется центромера и которая делит хромосому на плечи.

Вторичные перетяжки

Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 13, 14, 15, 21 и 22 хромосомы.

Типы строения хромосом

Различают четыре типа строения хромосом:

Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода.

Спутники (сателлиты)

Сателлит — это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

Зона ядрышка

Зоны ядрышка (организаторы ядрышка) — специальные участки, с которыми связано появление некоторых вторичных перетяжек.

Хромонема

Хромонема — это спиральная структура, которую удаётся увидеть в декомпактизованных хромосомах через электронный микроскоп. Впервые наблюдалась Баранецким в 1880 году в хромосомах клеток пыльников традесканции, термин ввёл Вейдовский. Хромонема может состоять из двух, четырёх и более нитей, в зависимости от исследуемого объекта. Эти нити образуют спирали двух типов:

Хромосомные перестройки

Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений (например, после облучения).

Гигантские хромосомы

Такие хромосомы, для которых характерны огромные размеры, можно наблюдать в некоторых клетках на определённых стадиях клеточного цикла. Например, они обнаруживаются в клетках некоторых тканей личинок двукрылых насекомых (политенные хромосомы) и в ооцитах различных позвоночных и беспозвоночных (хромосомы типа ламповых щёток). Именно на препаратах гигантских хромосом удалось выявить признаки активности генов.

Политенные хромосомы

Впервые обнаружены Бальбиани в 1881-го, однако их цитогенетическая роль была выявлена Костовым, Пайнтером, Гейтцем и Бауером. Содержатся в клетках слюнных желёз, кишечника, трахей, жирового тела и мальпигиевых сосудов личинок двукрылых.

Хромосомы типа ламповых щеток

Обнаружены Рюккертом в 1892 году. По длине превышают политенные хромосомы, наблюдаются в ооцитах на стадии первого деления мейоза, во время которой процессы синтеза, приводящие к образованию желтка, наиболее интенсивны. Общая длина хромосомного набора в ооцитах некоторых хвостатых амфибий достигает 5900 мкм.

Бактериальные хромосомы

Прокариоты (архебактерии и бактерии, в том числе митохондрии и пластиды, постоянно обитающие в клетках большинства эукариот) не имеют хромосом в собственном смысле этого слова. У большинства из них в клетке имеется только одна макромолекула ДНК, замкнутая в кольцо (эта структура получила название нуклеоид). У ряда бактерий обнаружены линейные (не замкнутые в кольцо) макромолекулы ДНК. Помимо нуклеоида или линейных макромолекул, ДНК может присутствовать в цитоплазме прокариотных клеток в виде небольших замкнутых в кольцо молекул ДНК, так называемых плазмид, содержащих обычно незначительное, по сравнению с бактериальной хромосомой, число генов. Состав плазмид может быть непостоянен, бактерии могут обмениваться плазмидами в ходе парасексуального процесса.

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида, но гистонов у них не обнаружено.

Источник

Научная электронная библиотека

номера хромосом которые имеют спутники. Смотреть фото номера хромосом которые имеют спутники. Смотреть картинку номера хромосом которые имеют спутники. Картинка про номера хромосом которые имеют спутники. Фото номера хромосом которые имеют спутники

Юров И. Ю., Ворсанова С. Г., Воинова В. Ю., Чурносов М. И., Юров Ю. Б.,

1.1. Хромосомы человека

Хромосомный набор человека, определяемый как кариотип – совокупность данных о структуре, размерах и количестве митотических хромосом, – установлен в начале 60-х годов прошлого века. Ещё в 1888 году Г. Вальдеер (H. Waldeyer, 1836–1921 гг.) ввёл термин «хромосома» для обозначения окрашенных нитевидных структур, видимых в ходе стадий деления клетки (митоза). Характерные особенности строения каждой хромосомы человека определяются, как известно, положением в ней центромеры – важнейшей структуры, которая в делении клетки (митозе) соединяется с нитями веретена и определяет расхождение сестринских хроматид к противоположным полюсам клетки. Метафазная хромосома состоит из двух хроматид (сестринские хроматиды) и центромеры, при помощи которой они соединяются. В районе центромеры хромосома сужена, две её хроматиды сближены, и этот район в теле хромосомы образует первичную перетяжку. Центромера делит хромосому на два плеча (короткое и длинное). По положению центромеры и первичной перетяжки среди хромосом человека различают метацентрические хромосомы, у которых центромера расположена в середине хромосомы (медианно) и делит её на два равных по длине плеча; субметацентрические хромосомы, в которых центромера расположена субмедианно и делит хромосому на два плеча неравной длины; и акроцентрические хромосомы, у которых центромера расположена почти на конце хромосомы (терминально), отделяя от длинного очень короткое плечо. У некоторых хромосом на коротком плече двух хроматид на красящейся тонкой нити располагаются маленькие хроматические тельца – спутники. Участки на концах хромосомы называются теломерами. Структуры в виде точек прикрепления нитей митотического веретена к центромерам называются кинетохорами. Плечи некоторых хромосом содержат перетяжки, называемые «вторичными» (например, хромосомы 1, 9, 16). Диплоидный набор человека, состоящий из 46 хромосом, составлен из 23 пар гомологичных хромосом – гомологов (отцовского и материнского происхождения): 22 пары аутосом и плюс половые хромосомы (гоносомы) – ХХ у женщин или ХY у мужчин. Гомологичные хромосомы, как правило, сходны между собой в размерах и строении, хотя могут встречаться некоторые отклонения от каждого показателя, и это носит название «гетероморфизм хромосом». Термин «кариотип» рекомендуется применять к систематизированному набору хромосом отдельной клетки человека. Существует также термин «идиограмма», который сохраняется для представления кариотипа в виде схемы, построенной на основании измерений хромосом большого числа клеток. Хромосомы пронумерованы серийно от 1 до 22 в соответствии с их длиной, а также с другими особенностями их строения, допускающими идентификацию. Половые хромосомы (гоносомы) не имеют номеров и обозначаются как Х и Y. Следует отметить, что термины и «кариотип», и «идиограмма», получившие международное признание и распространение, принадлежат русским цитологам: «идиограмма» – С.Г. Навашину (1857–1930 гг.) в 1921 году и «кариотип» – Г.А. Левитскому (1878–1942 гг.) в 1924 году. В фазах деления – метафазах и прометафазах (см ниже) – хромосомы можно увидеть в световом микроскопе как дискретные удлинённые структуры длиной от 2 до 11 мкм. На рисунках 1 и 2 представлены мужской и женский кариотипы человека.

номера хромосом которые имеют спутники. Смотреть фото номера хромосом которые имеют спутники. Смотреть картинку номера хромосом которые имеют спутники. Картинка про номера хромосом которые имеют спутники. Фото номера хромосом которые имеют спутникиномера хромосом которые имеют спутники. Смотреть фото номера хромосом которые имеют спутники. Смотреть картинку номера хромосом которые имеют спутники. Картинка про номера хромосом которые имеют спутники. Фото номера хромосом которые имеют спутники

Рис. 1. Мужской кариотип: I – метафазная пластинка; II – классификация по группам и нумерация хромосом

Как указано выше, кариотип человека состоит из 46 хромосом, которые нумеруются от 1 до 22 (аутосомы) и делятся на 7 групп, – A, B, C, D, E, F, G и половые хромосомы (гоносомы) X и Y (рис. 1 и 2).

К первой группе А относятся хромосомы 1, 2 и 3, которые хорошо отличаются друг от друга. Хромосома 1 (размер – 11 мкм) – метацентрическая, содержит вторичную перетяжку в околоцентромерном участке длинного плеча. Хромосома 2 (10,8 мкм) по размерам почти равна хромосоме 1 и является субметацентрической. Хромосома 3 (размер – 8,3 мкм) – практически метацентрическая.

номера хромосом которые имеют спутники. Смотреть фото номера хромосом которые имеют спутники. Смотреть картинку номера хромосом которые имеют спутники. Картинка про номера хромосом которые имеют спутники. Фото номера хромосом которые имеют спутникиномера хромосом которые имеют спутники. Смотреть фото номера хромосом которые имеют спутники. Смотреть картинку номера хромосом которые имеют спутники. Картинка про номера хромосом которые имеют спутники. Фото номера хромосом которые имеют спутники

Рис. 2. Женский кариотип: I – метафазная пластинка; II – классификация по группам и нумерация хромосом

К группе В относятся хромосомы 4 и 5 (размер – 7,7 мкм каждая) – это крупные субметацентрические хромосомы, которые не отличаются друг от друга при рутинном окрашивании ни размером, ни положением центромер.

К группе С относятся хромосомы с 6 по 12 и Х. В основном, это субметацентрические хромосомы крупных и средних размеров. Наиболее крупные хромосомы из группы С – 6, 7 и Х (6,8–7,2 мкм). Хромосома Х является половой хромосомой (гоносомой). Хромосома 7 более метацентрична, чем хромосома 6. Хромосомы 8 и 9 – практически одинаковы по размеру (5,8 мкм). Хромосома 8 метацентричнее хромосомы 9, которая характеризуется регулярной вторичной перетяжкой в прицентромерном районе длинного плеча.

К группе D относятся хромосомы 13, 14 и 15 (4,2 мкм) – средних размеров акроцентрические хромосомы с почти терминальным расположением центромеры. Эти хромосомы между собой не различаются ни по размерам, ни морфологически после рутинного окрашивания. Короткое плечо всех трёх пар хромосом может формировать спутники (рис. 1, 2 и 5).

К группе Е относятся хромосомы 16, 17 и 18. Хромосома 16 (размер – 3,6 мкм) – сравнительно небольшая метацентрическая хромосома, содержащая вторичную перетяжку в длинном плече. Хромосома 17 (размер – 3,5 мкм) – сравнительно короткая субметацентрическая хромосома. Хромосома 18 (размер – 3,2 мкм) – самая короткая субметацентрическая хромосома.

Группа F представлена хромосомами 19 и 20 (размеры – 2,9 мкм). Это короткие метацентрические хромосомы, которые не отличаются между собой без дифференциального окрашивания по длине.

Хромосомы 21 и 22 (2,8 мкм) относятся к группе G. Это наиболее короткие акроцентрические хромосомы в кариотипе, которые обладают способностью формировать спутники на коротком плече (рис. 1, 2 и 5).

Хромосома Y (2,3 мкм) является маленькой акроцентрической хромосомой, сравнимой по размерам с хромосомами 21 и 22, но не имеющая спутников.

Важнейшая работа по созданию общей системы обозначения и классификации хромосом человека, представляемая в виде отдельной книги, проводилась регулярно из года в год, куда в последние десятилетия включались и результаты использования современных молекулярно-цитогенетических методов. Первые результаты работы учёных по номенклатуре и классификации хромосом человека были представлены в 1960 году в Денвере, в Университете штата Колорадо (США). Работа комиссии была проведена при поддержке американского онкологического общества. В состав комиссии входили известнейшие учёные: 14 учёных-цитологов и 3 учёных-генетика. Результаты были опубликованы в Денвере в том же 1960 году в ряде журналов в виде документа (книги), названного как «Стандартная система номенклатуры митотических хромосом человека». Впоследствии был создан комитет по номенклатуре хромосом человека. Комиссия и комитет периодически собирались для работы и, по мере развития цитогенетических, а в последние десятилетия и молекулярно-цитогенетических исследований, вносили поправки и дополнения в существующую классификацию. Работа комиссий проводилась регулярно в различных странах и городах. Комитет последовательно собирался в Париже, Чикаго, Мехико, Лэйк-Плэсиде, Эдинбурге, Стокгольме, где было решено разработать и опубликовать унифицированный вариант номенклатуры хромосом человека, включающий основные положения первых совещаний (Денвер, Лондон, Чикаго, Париж). Результаты работы комитета публиковались в различных издательствах. Этот важный документ получил название «Международная система номенклатуры хромосом человека» – «An International System for Human Cytogenetic Nomenclature» (ISCN). В дальнейшем поправки и дополнения в документе делались, учитывая новые разработанные технологии, включая молекулярно-цитогенетические, и докладывались на различных конференциях. Последний документ – «ISCN 2016» – An International System for Human Cytogenetic Nomenclature» опубликован в 2016 году. Таким образом, в одном документе даётся полная номенклатура хромосом в норме и при хромосомных синдромах и аномалиях, исходя из цитогенетических и современных молекулярно-цитогенетических технологий (см рекомендуемую литературу).

Следует отметить, что хромосомные синдромы и аномалии связаны с хромосомными (геномными) мутациями (аномалиями) в виде различных структурных перестроек хромосом или с изменением их числа (n). Численные изменения хромосом могут быть двух типов: полиплоидии – умножение хромосомного набора (3n, 4n и т. д.) или генома, кратное гаплоидному числу хромосом; анеуплоидии – увеличение или уменьшение числа хромосом, некратное гаплоидному. Структурные хромосомные (геномные) перестройки классифицируют по принципу линейной последовательности расположения генов: делеции (потеря хромосомных участков), дупликации (удвоение хромосомных участков), инверсии (перевертывание на 180° относительно нормальной последовательности хромосомных участков), инсерции (вставки хромосомных участков) и транслокации (изменение расположения хромосомных участков). Подробная информация по возможным аномалиям хромосом человека представлена в главе 3.5.

Источник

Лекция № 8. Ядро. Хромосомы

Строение и функции ядра

Как правило, эукариотическая клетка имеет одно ядро, но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).

Форма ядра — сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра — обычно от 3 до 10 мкм.

номера хромосом которые имеют спутники. Смотреть фото номера хромосом которые имеют спутники. Смотреть картинку номера хромосом которые имеют спутники. Картинка про номера хромосом которые имеют спутники. Фото номера хромосом которые имеют спутники

Строение ядра:
1 — наруж­ная мембрана; 2 — внут­ренняя мемб­рана; 3 — поры; 4 — ядрышко; 5 — гетеро­хроматин; 6 — эухро­матин.

Кариоплазма (ядерный сок, нуклеоплазма) — внутреннее содержимое ядра, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки (в том числе ферменты ядра), свободные нуклеотиды.

Хроматин — внутренние нуклеопротеидные структуры ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП). В зависимости от функционального состояния хроматина различают: гетерохроматин (5) и эухроматин (6). Эухроматин — генетически активные, гетерохроматин — генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотненные) участки хроматина. Хроматин — форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.

Функции ядра: 1) хранение наследственной информации и передача ее дочерним клеткам в процессе деления, 2) регуляция жизнедеятельности клетки путем регуляции синтеза различных белков, 3) место образования субъединиц рибосом.

Хромосомы

номера хромосом которые имеют спутники. Смотреть фото номера хромосом которые имеют спутники. Смотреть картинку номера хромосом которые имеют спутники. Картинка про номера хромосом которые имеют спутники. Фото номера хромосом которые имеют спутники

Хромосомы — это цитологические палочковидные структуры, представляющие собой конденсированный хроматин и появляющиеся в клетке во время митоза или мейоза. Хромосомы и хроматин — различные формы пространственной организации дезоксирибонуклеопротеидного комплекса, соответствующие разным фазам жизненного цикла клетки. Химический состав хромосом такой же, как и хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%).

Основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК; длина ДНК одной хромосомы может достигать нескольких сантиметров. Понятно, что молекула такой длины не может располагаться в клетке в вытянутом виде, а подвергается укладке, приобретая определенную трехмерную структуру, или конформацию. Можно выделить следующие уровни пространственной укладки ДНК и ДНП: 1) нуклеосомный (накручивание ДНК на белковые глобулы), 2) нуклеомерный, 3) хромомерный, 4) хромонемный, 5) хромосомный.

В процессе преобразования хроматина в хромосомы ДНП образует не только спирали и суперспирали, но еще петли и суперпетли. Поэтому процесс формирования хромосом, который происходит в профазу митоза или профазу 1 мейоза, лучше называть не спирализацией, а конденсацией хромосом.

номера хромосом которые имеют спутники. Смотреть фото номера хромосом которые имеют спутники. Смотреть картинку номера хромосом которые имеют спутники. Картинка про номера хромосом которые имеют спутники. Фото номера хромосом которые имеют спутники

Хромосомы: 1 — метацентрическая; 2 — субметацентрическая; 3, 4 — акроцентрические. Строение хромосомы: 5 — центромера; 6 — вторичная перетяжка; 7 — спутник; 8 — хроматиды; 9 — теломеры.

Метафазная хромосома (хромосомы изучаются в метафазу митоза) состоит из двух хроматид (8). Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи. Некоторые хромосомы имеют вторичную перетяжку (6) и спутник (7). Спутник — участок короткого плеча, отделяемый вторичной перетяжкой. Хромосомы, имеющие спутник, называются спутничными (3). Концы хромосом называются теломерами (9). В зависимости от положения центромеры выделяют: а) метацентрические (равноплечие) (1), б) субметацентрические (умеренно неравноплечие) (2), в) акроцентрические (резко неравноплечие) хромосомы (3, 4).

Соматические клетки содержат диплоидный (двойной — 2n) набор хромосом, половые клетки — гаплоидный (одинарный — n). Диплоидный набор аскариды равен 2, дрозофилы — 8, шимпанзе — 48, речного рака — 196. Хромосомы диплоидного набора разбиваются на пары; хромосомы одной пары имеют одинаковое строение, размеры, набор генов и называются гомологичными.

Кариотип — совокупность сведений о числе, размерах и строении метафазных хромосом. Идиограмма — графическое изображение кариотипа. У представителей разных видов кариотипы разные, одного вида — одинаковые. Аутосомы — хромосомы, одинаковые для мужского и женского кариотипов. Половые хромосомы — хромосомы, по которым мужской кариотип отличается от женского.

Хромосомный набор человека (2n = 46, n = 23) содержит 22 пары аутосом и 1 пару половых хромосом. Аутосомы распределены по группам и пронумерованы:

ГруппаЧисло парНомерРазмерФорма
A31, 2, 3Крупные1, 3 — метацентрические, 2 — субметацентрические
B24, 5КрупныеСубметацентрические
C76, 7, 8, 9, 10, 11, 12СредниеСубметацентрические
D313, 14, 15СредниеАкроцентрические, спутничные (вторичная перетяжка в коротком плече)
E316, 17, 18МелкиеСубметацентрические
F219, 20МелкиеМетацентрические
G221, 22МелкиеАкроцентрические, спутничные (вторичная перетяжка в коротком плече)

Половые хромосомы не относятся ни к одной из групп и не имеют номера. Половые хромосомы женщины — ХХ, мужчины — ХУ. Х-хромосома — средняя субметацентрическая, У-хромосома — мелкая акроцентрическая.

В области вторичных перетяжек хромосом групп D и G находятся копии генов, несущих информацию о строении рРНК, поэтому хромосомы групп D и G называются ядрышкообразующими.

Функции хромосом: 1) хранение наследственной информации, 2) передача генетического материала от материнской клетки к дочерним.

Перейти к лекции №7 «Эукариотическая клетка: строение и функции органоидов»

Перейти к лекции №9 « Строение прокариотической клетки. Вирусы»

Смотреть оглавление (лекции №1-25)

Источник

Клетка – генетическая единица живого. Хромосомы, их строение

Содержание:

Клетка – генетическая единица живого

Генетическая информация каждого живого организма находится именно в клетке, так как основная её структура – ядро содержит хромосомы, которые и отвечают за определённые внешние и внутренние признаки. У организмов, не имеющих ядра, например у вирусов, наследственная информация содержится в виде кольцевой ДНК. Поэтому для воспроизводства данные организмы проникают в многоклеточные организмы, так как генетический материал не реализуется вне клетки. Из этого следует, что клетка является генетической единицей всего живого, потому что она обладает минимальным набором компонентов для хранения, изменения, реализации и передачи потомкам информации о фенотипе и генотипе организма.

Все эти процессы возможны, благодаря тому, что в ядре находятся хромосомы.

Строение и функции хромосом

Соединение ДНК и белка гистона называется хроматином. Из него в профазе митоза, в самом начале деления клетки, образуются хромосомы. Строение хромосомы наиболее хорошо удаётся рассмотреть под световым микроскопом в процессе деления клетки, а конкретно в метафазе митоза.

Хромосома состоит из двух сестринских хроматид, представляющих собой нити молекулы ДНК с белками. Хроматиды образуются в результате удвоения хромосомы в процессе деления клетки.

У каждой хромосомы имеется участок ДНК, называемый центромерой (кинетохором). Здесь в стадии профазы и метафазы деления клетки осуществляется соединение двух дочерних хроматид. Центромера делит хромосому на два плеча.

Существуют хромосомы, имеющие вторичные перетяжки, которые отделяют от плеча хромосомы так называемый спутник, из которого в последующем в интерфазном ядре образуется ядрышко.

Концевые участки хромосом принято называть теломерами.

По форме хромосомы различают:

Существует две классификации хромосом по размеру и форме:

Денверская классификация помимо размеров хромосом, также учитывает их форму, расположение кинетохора и наличие вторичных перетяжек, спутников. Важным является значение центромерного индекса, отражающего процентное соотношение длины короткого плеча к длине всей хромосомы. Проводилось сплошное окрашивание хромосом.

Группы хромосом по денверской классификации:

Парижская классификация основывается на методах специального дифференциального окрашивания, при котором каждая хромосома имеет индивидуальный порядок чередующихся светлых и тёмных сегментов.

номера хромосом которые имеют спутники. Смотреть фото номера хромосом которые имеют спутники. Смотреть картинку номера хромосом которые имеют спутники. Картинка про номера хромосом которые имеют спутники. Фото номера хромосом которые имеют спутники

Число хромосом и их видовое постоянство. Соматические и половые клетки

У многоклеточных организмов клетки подразделяются на два вида:

Соматическими называют все клетки тела, которые образуются в результате митоза.

Для этих клеток характерным признаком является наличие постоянного числа хромосом. Для каждого вида организмов их количество строго определено. Человек имеет 23 пары хромосом.

Набор хромосом соматических клеток называется диплоидным (двойным).

Половые же клетки всегда содержат уменьшенный вдвое, гаплоидный (одинарный) набор хромосом. Половые клетки также называются гаметами.

Совокупность полного набора хромосом, присущая клеткам определённого биологического вида, отдельного организма или линии клеток называется кариотипом.

Принято считать, что кариотип является видовой характеристикой. Но бывает и так, что он различается у особей одного вида. Пример этого отличающиеся друг от друга половые хромосомы мужских и женских организмов. У Y – хромосомы отсутствуют некоторые аллели (модификационные формы одного и того же гена, расположенные в одинаковых участках гомологичных хромосом), тогда как у Х – хромосомы они есть. Мужчины гетерогаметны, то есть несут и X –и Y – хромосомы, в то время как женщины гомогаметны, так как их половой набор содержит только X – хромосомы. Немаловажным фактором являются мутации, которые приводят к различным изменениям кариотипа. Важно отметить, что количество хромосом и уровень организации вида не имеют прямой зависимости. То есть, если вид имеет большое количество хромосом, это не говорит о его высокой организации. Кариотипы диплоидных клеток состоят из пар хромосом, названных гомологичными. Хромосомы одной пары называются гомологичными, они находятся в одинаковых локусах (местах расположения) и несут аллельные гены. Одну из хромосом организм всегда получает от матери, другую от отца.

В ядрах некоторых соматических клеток количество хромосом может отличаться от их количества в соматических клетках. Встречаются полплоидные клетки, они содержат более одного гаплоидного набора хромосом и называются соответственно три-, тетраплоидные и т.д. Метаболические процессы в полиплоидных клетках протекают в разы интенсивнее.

Хромосомы человека делятся на две группы: аутосомы (неполовые) и половые хромосомы, также называемые гетерохромосомами. В соматических клетках организма человека содержится 22 пары аутосом, которые являются одинаковыми и для мужчин и для женщин, половых же хромосом всего одна пара, эта пара и определяет пол особи. Различают два вида половых хромосом — X и Y. В половых клетках женщины содержится по две X-хромосомы, а в половых клетках мужчин две различных хромосомы — X и Y.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *