где будет располагаться точка d при условии что ab d
Где будет располагаться точка d при условии что ab d
§2. Площадь треугольника. Метод площадей
В школьном курсе геометрии доказано несколько формул площади треугольника. Напомним их.
При вычислении площади из этих формул следует выбрать ту, которая в условиях конкретной задачи приводит к более простому решению.
Для примера, рассмотрим два треугольника:
`DeltaABC:` `AB=13`, `BC=14`, `AC=15`;
`DeltaKML:` `KL=sqrt(13)`, `LM=sqrt(14)`, `KM=sqrt(15)`;
Надо найти площадь и радиус описанной окружности.
Для треугольника `ABC` удобен ход решения такой:
`p=1/2(AB+BC+AC)=21`, по формуле Герона
`S_(ABC)=sqrt(21*6*7*8)= ul(84)` и по формуле (5)
тогда `sinM=sqrt(1-64/(210))=(sqrt(146))/(sqrt(14)*sqrt(15))` и по формуле (2):
тогда `R=(KL)/(2sinM)=ul((sqrt(13)*sqrt(14)*sqrt(15))/(2*sqrt(146)))=(sqrt(13)*sqrt7*sqrt(15))/(2*sqrt(73))` (точно также по формуле 5).
Сравнение площадей треугольников обычно опирается на одно из следующих утверждений:
$$ 2.<1>^<○>$$. Площади треугольников с одинаковой высотой относятся как длины соответствующих оснований. В частности, если точка `D` лежит на основании `AC` (рис. 6а), то
$$ 2.<2>^<○>$$. Площади треугольников с общим углом относятся как произведения сторон, заключающих этот угол (см. рис. 6б):
$$ 2.<3>^<○>$$. Площади подобных треугольников относятся как квадраты их
сходственных сторон, т. е. если `Delta ABC
DeltaA_1B_1C_1`, то `(S_(A_1B_1C_1))/(S_(ABC))=((A_1B_1)/(AB))^2`.
Все эти утверждения легко доказываются с использованием соответственно формул площади (1) и (2).
Обратим внимание на важное свойство медиан треугольника.
Три медианы треугольника разбивают его на `6` треугольников с общей вершиной и равными площадями.
Докажем, например, для треугольника `BOM`, что `S_(BOM)=1/6S_(ABC)`.
Дан треугольник `ABC`. Точка `D` лежит на стороне `AB`, `AD:DB=1:2`, точка `K` лежит на стороне `BC`, `BK:KC=3:2` (рис. 8а). Отрезки `AK` и `CD` пересекаются в точке `O`. Найти отношение площади четырёхугольника `DBKO` к площади треугольника `ABC`.
2. Через точку `D` проведём прямую `DL«|\|«AK`. По теореме о пересечении сторон угла параллельными прямыми (`/_ABC`, `DL«|\|«AK`) имеем `(BL)/(LK)=(BD)/(AD)`, откуда `LK=y`.
По той же теореме (`/_DCB`, `OK«|\|«DL`) получим `(DO)/(DC)=(LK)/(LC)`, `DO=1/3DC`.
3. Теперь находим `S_(ADO):S_(ADC)=DO:DC`, `a=1/3(1/3S)=1/9S`.
(Можно по теореме Менелая для треугольника `BCD` и секущей `CD:`
`(BK)/(KC)*(CO)/(OD)*(DA)/(AB)=1 iff 3/2*(CO)/(OD)*1/3=1 iff CO=2OD=>OD=1/3DC`).
Находим площадь: `sigma=3/5S-a=(3/5-1/9)S=22/45S`.
Найти площадь треугольника, две стороны которого равны `3` и `7`, а медиана к третьей стороне равна `4` (рис. 9).
Пусть `AB=3`, `BC=7`, `AM=MC` и `BM=4`. Достроим треугольник `ABC` до параллелограмма, для этого на прямой `BM` отложим отрезок `MD=BM` и соединим точки: `A` с `D` и `C` с `D`. Противоположные стороны параллелограмма равны: `(DC=AB)` и равны площади треугольников `ABC` и `DBC` (общее основание `BC` и равные высоты из вершин `A` и `D`).
В треугольнике `DBC` известны все три стороны: `BC=7`, `DC=3`, `BD=2BM=8`.
Находим его площадь по формуле Герона: `p=9`, `S_(BCD)=6sqrt3`.
Значит и `S_(ABC)=6sqrt3`.
В решении этой задачи дополнительным построением получен треугольник, площадь которого равна площади заданного и легко вычисляется по данным задачи. Приведём ещё одну задачу, где сначала вычисляется площадь дополнительно построенной фигуры, а затем легко находится искомая площадь.
Найти площадь треугольника, если его медианы равны `3`, `4` и `5`.
По свойству медиан `AO=2/3m_a`, `CO=2/3m_c` и `ON=1/3m_b`. В треугольнике `AOC` известны две стороны `AO` и `CO` и медиана третьей стороны `ON`. Площадь этого треугольника найдём как в предыдущей задаче.
Достроим треугольник `AOC` до параллелограмма `AOCD`, `S_(AOC)=S_(DOC)`, в треугольнике `DOC` известны три стороны:
`DO=2ON=2/3m_b`, `OC=2/3m_c`, `DC=AO=2/3m_a`.
Площадь треугольника `DOC` вычисляем по формуле Герона `S_1=S_(AOC)=S_(DOC)=8/3`. Сравним теперь площадь треугольника `ABC` (обозначим её `S`) с площадью треугольника `AOC`. Из теоремы 2 о медианах и площадях следует `S_(AOC)=S_(AON)+S_(NOC)=2*1/6S=1/3S`.
В следующей задаче докажем лемму об отношении площади треугольника к площади другого треугольника, построенного из медиан первого.
Найти отношение площади `S` треугольника к площади `S_0` треугольника, составленного из медиан первого.
Рассмотрим рис. 10. В построенном треугольнике `OCD` стороны таковы: `OC=2/3m_c`, `OD=2/3m_b`, `CD=2/3m_a`. Очевидно, что треугольник со сторонами `m_a`, `m_b`, `m_c` подобен (по третьему признаку) треугольнику со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`.
`S_(m_am_bm_c)=3/4S_(abc)`. |
Около окружности радиуса `sqrt3` описан треугольник. Найти его площадь, если одна из его сторон точкой касания делится на отрезки `9` и `5`.
Пусть `AP=9`, `PC=5` (рис. 11) и пусть `BM=x`. По свойству касательных `AM=AP`, `CN=CP` и `BN=BM`, поэтому стороны треугольника таковы: `AC=14`, `AB=9+x`, `BC=5+x`, тогда `p=14+x`. (Заметим, что `p=AC+BM`!). По формулам площади (3) и (4) имеем: `S=pr=(14+x)sqrt3` и `S=sqrt((14+x)x*5*9)`. Приравниваем правые части, возводим в квадрат, приводим подобные члены, получаем `x=1`. Вычисляем площадь треугольника:
Приём, применённый в решении этой задачи, когда площадь фигуры выражается двумя различными способами, часто используется в задачах на доказательство.
Проведём два примера, в каждом выведем полезную формулу.
В треугольнике `ABC` угол `C` равен `varphi`, `AC=b`, `BC=a` (рис. 12). Доказать, что биссектриса `CD` равна `(2ab)/(a+b) cos varphi/2`.
Обозначим `CD=x`. Очевидно, что `S_(ABC)=S_(ACD)+S_(DCB)`. По формуле (2) `S_(ABC)=1/2 ab sin varphi`, `S_(ACD)=1/2 bx sin varphi/2`, `S_(BDC)=1/2 ax sin varphi/2`. Таким образом, имеем: `1/2 ab sin varphi=1/2(a+b)x sin varphi/2`. Используем формулу синуса двойного угла `sin varphi=2sin varphi/2 cos varphi/2`, получим:
называется окружность, касающаяся одной из сторон треугольника и продолжений двух других сторон. Таких окружностей, очевидно, три (рис. 13). Их радиусы обычно обозначаются `r_a`, `r_b`, `r_c` в зависимости от того, какой стороны окружность касается.
Вневписанная окружность касается стороны `a=BC` треугольника `ABC` (рис. 14). Доказать, что `S_(ABC)=r_a(p-a)`, где `2p=a+b+c`.
Считаем площадь `S_0` четырёхугольника `ABI_aC`:
`S_0=S_(ABC)+S_(BCI_a)` и `S_0=S_(ABI_a)+S_(ACI_a)`, откуда
Где будет располагаться точка d при условии что ab d
Площадь треугольника АВС равна 12. На прямой АС взята точка D так, что точка С является серединой отрезка AD. Точка K — середина стороны AB, прямая KD пересекает сторону BC в точке L.
a) Докажите, что BL : LC = 2 : 1.
б) Найдите площадь треугольника BLK.
а) Соединим отрезками точки B и D, A и L. Рассмотрим треугольник АВD. Ясно, что L — точка пересечения медиан этого треугольника. Отсюда BL : LC = 2 : 1, что и требовалось доказать.
б) Как известно, медианы треугольника, пересекаясь в одной точке, делят его на 6 равновеликих треугольников. Учитывая то, что L — точка пересечения медиан а также получим:
Точка D делит сторону AC в отношении AD : DC = 1 : 2.
а) Докажите, что в треугольнике ABD найдётся медиана, равная одной из медиан треугольника DBC.
б) Найдите длину этой медианы в случае, если AB = 7, BC = 8, и AC = 9.
а) Обозначим середины отрезков BA, BD, BC за E, F, G соответственно. Тогда EG — средняя линия треугольника ABC, и точка F лежит на ней. Поскольку FG — средняя линия DBC, то Итак, в четырехугольнике AFGD две стороны равны и параллельны, значит, он параллелограмм и
б) По теореме косинусов в треугольнике ABC имеем откуда
По теореме косинусов в треугольнике DGC имеем откуда
Ответ:
Площадь треугольника ABC равна 10; площадь треугольника AHB, где H — точка пересечения высот, равна 8. На прямой CH взята такая точка K, что треугольник ABK — прямоугольный.
а) Докажите, что
б) Найдите площадь треугольника ABK.
а) Заметим, что поскольку тогда или как перпендикуляры к одной прямой. Значит, Обозначим основания высот треугольника ABC за Тогда точки K, B, A, A1, B1 лежат на окружности с диаметром AB (из-за прямых углов). заметим, что — основание перпендикуляра из K на
Перепишем требуемое утверждение:
Это верно из-за подобия треугольников AHS и CBS по двум углам: действительно,
б) Из пункта а) следует, что
Ответ:
Где будет располагаться точка d при условии что ab d
Биссектриса CD угла ACB при основании равнобедренного треугольника ABC (AB = AC) делит сторону AB так, что AD = BC = 2.
а) Докажите, что CD = BC.
б) Найдите площадь треугольника ABC.
а) По свойству биссектрисы получим:
Воспользуемся теоремой синусов для треугольника ABC:
Осталось по теореме косинусов найти CD из треугольника BCD:
Таким образом, CD = BC = 2. Что и требовалось доказать.
б) Найдем площадь треугольника по формуле Герона:
Ответ:
Примечание: в данной задаче получилось, что ADC равнобедренный, откуда откуда
Площадь треугольника АВС равна 12. На прямой АС взята точка D так, что точка С является серединой отрезка AD. Точка K — середина стороны AB, прямая KD пересекает сторону BC в точке L.
a) Докажите, что BL : LC = 2 : 1.
б) Найдите площадь треугольника BLK.
а) Соединим отрезками точки B и D, A и L. Рассмотрим треугольник АВD. Ясно, что L — точка пересечения медиан этого треугольника. Отсюда BL : LC = 2 : 1, что и требовалось доказать.
б) Как известно, медианы треугольника, пересекаясь в одной точке, делят его на 6 равновеликих треугольников. Учитывая то, что L — точка пересечения медиан а также получим:
Точка D делит сторону AC в отношении AD : DC = 1 : 2.
а) Докажите, что в треугольнике ABD найдётся медиана, равная одной из медиан треугольника DBC.
б) Найдите длину этой медианы в случае, если AB = 7, BC = 8, и AC = 9.
а) Обозначим середины отрезков BA, BD, BC за E, F, G соответственно. Тогда EG — средняя линия треугольника ABC, и точка F лежит на ней. Поскольку FG — средняя линия DBC, то Итак, в четырехугольнике AFGD две стороны равны и параллельны, значит, он параллелограмм и
б) По теореме косинусов в треугольнике ABC имеем откуда
По теореме косинусов в треугольнике DGC имеем откуда
Ответ:
На сторонах AB, BC и CA треугольника ABC отложены соответственно отрезки
а) Докажите, что где
б) Найдите, какую часть от площади треугольника ABC составляет площадь треугольника MNK.
а) Напишем теорему Менелая для треугольника ABF и прямой MKC. Получим
Аналогично площади остальных треугольников равны
Ответ:
В прямоугольном треугольнике ABC с прямым углом C проведена высота CD. Радиусы окружностей, вписанных в треугольники ACD и BCD, равны 0,6 и 0,8.
а) Докажите подобие треугольников ACD и BCD, ACD и ABC.
б) Найдите радиус окружности, вписанной в треугольник ABC.
а) Пусть в прямоугольном треугольнике ABC проведена высота к гипотенузе CD. Треугольники ACD и ABC подобны по двум углам ( общий, ) с коэффициентом и в таком же отношении находятся их радиусы вписанных окружностей.
По тем же причинам подобны треугольники BCD и ABC ( общий, ). Значит, и треугольники ACD и BCD подобны.
б) Как следует из первого пункта, в треугольниках ACD, BCD, ABC одинаково отношение гипотенузы к радиусу вписанной окружности. Обозначим это отношение за x. Тогда Тогда по теореме Пифагора откуда
Где будет располагаться точка d при условии что ab d
Площадь треугольника АВС равна 12. На прямой АС взята точка D так, что точка С является серединой отрезка AD. Точка K — середина стороны AB, прямая KD пересекает сторону BC в точке L.
a) Докажите, что BL : LC = 2 : 1.
б) Найдите площадь треугольника BLK.
а) Соединим отрезками точки B и D, A и L. Рассмотрим треугольник АВD. Ясно, что L — точка пересечения медиан этого треугольника. Отсюда BL : LC = 2 : 1, что и требовалось доказать.
б) Как известно, медианы треугольника, пересекаясь в одной точке, делят его на 6 равновеликих треугольников. Учитывая то, что L — точка пересечения медиан а также получим:
Точка D делит сторону AC в отношении AD : DC = 1 : 2.
а) Докажите, что в треугольнике ABD найдётся медиана, равная одной из медиан треугольника DBC.
б) Найдите длину этой медианы в случае, если AB = 7, BC = 8, и AC = 9.
а) Обозначим середины отрезков BA, BD, BC за E, F, G соответственно. Тогда EG — средняя линия треугольника ABC, и точка F лежит на ней. Поскольку FG — средняя линия DBC, то Итак, в четырехугольнике AFGD две стороны равны и параллельны, значит, он параллелограмм и
б) По теореме косинусов в треугольнике ABC имеем откуда
По теореме косинусов в треугольнике DGC имеем откуда
Ответ:
Площадь треугольника ABC равна 10; площадь треугольника AHB, где H — точка пересечения высот, равна 8. На прямой CH взята такая точка K, что треугольник ABK — прямоугольный.
а) Докажите, что
б) Найдите площадь треугольника ABK.
а) Заметим, что поскольку тогда или как перпендикуляры к одной прямой. Значит, Обозначим основания высот треугольника ABC за Тогда точки K, B, A, A1, B1 лежат на окружности с диаметром AB (из-за прямых углов). заметим, что — основание перпендикуляра из K на
Перепишем требуемое утверждение:
Это верно из-за подобия треугольников AHS и CBS по двум углам: действительно,
б) Из пункта а) следует, что
Ответ: