гамк рецепторы что это
γ-аминомасляная кислота (GABA), которая синтезируется главным образом из глутамата глутаматдекарбоксилазой, является наиболее широко распространенным ингибиторным нейротрансмиттером в ЦНС как беспозвоночных, так и позвоночных. У беспозвоночных (например, насекомых) ГАМК обеспечивает быструю химическую нейротрансмиссию вместе с L- глутаматом, возбуждающим нейромедиатором в соединениях нервных мышц.
Механизмы антагонизма iGABAR были тщательно изучены и хорошо охарактеризованы в последние пять десятилетий с использованием различных технических подходов. Подавляющее большинство доказательств на молекулярном уровне подтверждается экспериментальными результатами, полученными в результате многочисленных фармакологических, электрофизиологических, биохимических и мутагенезных исследований.
Общий баланс между возбуждением и торможением нейронов жизненно важен для нормальной работы мозга. Слишком сильное торможение или слишком слабое возбуждение могут привести к коме, депрессии, пониженному кровяному давлению, седации или сну; с другой стороны, слишком сильное возбуждение или слишком слабое торможение могут привести к ряду состояний, включая судороги, беспокойство, высокое кровяное давление, тревогу и бессонницу. Хорошо известно, что блокировка GABA-закрытого хлоридного канала снижает нейрональное торможение и вызывает эпилептическую или эпилептиформную энцефалопатию.
Гамк рецепторы что это
Наиболее распространенный возбуждающий медиатор головного и спинного мозга — аминокислота L-глутамат. Значимый пример возбуждающих нейронов, использующих глутамат в качестве медиатора,— все нейроны, идущие от коры полушарий к белому веществу мозга, независимо от их направления в других частях коры полушарий, ствола или спинного мозга. Глутамат синтезируется из α-кетоглутарата, который, кроме того, служит субстратом для образования ГАМК.
ГАМК — самый распространенный в спинном и головном мозге тормозной медиатор, участвующий в работе приблизительно трети всех синапсов нервной системы. Миллионы ГАМКергических нейронов образуют основную часть вещества хвостатого и чечевицеобразного ядер, их также встречают в большом количестве в околоводопроводном сером веществе, гипоталамусе и гиппокампе. Кроме того, ГАМК выполняет функцию медиатора в крупных клетках Пуркинье, которые являются единственными клетками, выходящими из коры мозжечка. Аксоны клеток Пуркинье спускаются к зубчатому и другим ядрам мозжечка. ГАМК синтезируется из глутамата под действием фермента глутаматдекарбоксилазы.
Третий аминокислотный нейромедиатор — глицин. Глицин участвует в синтезе белков всех тканей организма и представляет собой простейшую аминокислоту, синтезируемую из серина в процессе катаболизма глюкозы. Этот нейромедиатор оказывает тормозное действие преимущественно в синапсах ассоциативных нейронов ствола мозга и спинного мозга.
Три аминокислотных медиатора.
Глутамат синтезируется из а-кетоглутарата под действием фермента ГАМК-трансаминазы (ГАМК-Т);
γ-аминомасляная кислота (ГАМК) синтезируется из глутамата под действием декарбоксилазы глутаминовой кислоты (ДГК).
Глицин представляет собой простейшую аминокислоту.
а) Глутамат. Глутамат выполняет функцию нейромедиатора как в ионотропных, так и в метаботропных рецепторах. К ионотропным рецепторам относят АМРА-, каинат- и NMDA-рецепторы, которые получили свои названия благодаря активирующим их синтетическим агонистам: амино-метил-изоксазол-пропионовой кислоте, каинату и N-метил-D-аспартату, соответственно. Каинатные рецепторы редко встречаются изолированно; чаще всего они комбинируются с АМРА-рецепторами и входят в состав АМРА-каинатных (АМРА-К) рецепторов.
Характерная особенность многократно повторяющейся активации NMDA-рецепторов — долговременное потенцирование, проявляющееся возникновением ВПСП со значениями, превышающими нормальные показатели даже несколько дней спустя (см. далее — длительная депрессия).
Метаботропные глутаматные рецепторы Выделяют более 100 различных метаботропных глутаматных рецепторов. Все метаботропные рецепторы — это внутренние мембранные белки, большинство которых располагается на постсинаптических мембранах и оказывает возбуждающее действие. Некоторые метаботропные рецепторы локализуются на пресинаптической мембране и являются тормозными ауторецепторами.
б) ГАМК. ГАМК-рецепторы могут быть как ионотропными, так и метаботропными.
Действие седативных снотворных препаратов барбитуровой кислоты и бензодиазепина (например, диазепама) реализуется за счет активации ГАМКA-рецепторов. Аналогично действие этанола (потеря контроля социального поведения под влиянием действия этанола происходит вследствие растормаживания возбуждающих нейронов-мишеней, которые в обычном состоянии «сдерживаются» под действием ГАМКергических влияний). Механизм действия некоторых летучих анестетиков также заключается в связывании рецепторов, за счет чего ионные каналы остаются открытыми более долгое время.
Основной антагонист, занимающий активный центр рецептора, — конвульсант бикукуллин. Другой конвульсант — пикротоксин — связывается с субъединицами белка, в активном состоянии закрывающими ионный канал.
2. Метаботропные ГАМК-рецепторы. Метаботропные рецепторы, получившие название ГАМКВ, равномерно распределены во всех структурах мозга, их также обнаруживают в периферических вегетативных нервных сплетениях. Несмотря на то, что большое количество G-белков этих рецепторов выполняет роль вторичных посредников, значительная часть G-белков оказывает влияние на особый вид постсинаптических калиевых каналов — GIRK-каналы (G-белок-связанные калиевые каналы внутреннего выпрямления). При присоединении медиатора происходит отделение β-субъединицы, которая «выталкивает» ионы К + через GIRK-канал, что приводит к формированию ТПСП.
В некоторых случаях для лечения заболеваний, связанных с чрезмерным рефлекторным тонусом мышц (мышечная спастичность), применяют инъекции миорелаксанта баклофена (агониста ГАМКВ) в окружающее спинной мозг субарахноидальное пространство. Баклофен проникает в спинной мозг и ингибирует высвобождение глутамата из чувствительных нервных окончаний в основном за счет уменьшения поступления большого количества ионов Са 2+ в клетку, возникающего под влиянием потенциалов действия чрезмерной частоты.
3. Обратный захват глутамата и ГАМК. Обратный захват глутамата и ГАМК происходит двумя путями. В левой части каждого рисунка показано, что некоторые молекулы медиатора захватываются из синаптической щели транспортными белками мембраны и помещаются обратно в синаптические пузырьки. В правых частях рисунков изображен захват молекул медиаторов прилежащими астроцитами. Находясь в астроците, глутамат под действием глутаминсинтетазы превращается в глутамин. В процессе последующего транспорта к синаптическому уплотнению глутамат достраивается под действием глутаминазы и помещается в синаптический пузырек. ГАМК превращается в глутамат под действием ГАМК-трансаминазы. В процессе транспорта глутамат трансформируется в глутамин под действием глутаминсинтетазы.
Вернувшись в область синаптического уплотнения, глутамин под действием глутаминазы превращается в глутамат, из которого под действием глутаматдекарбоксилазы синтезируется ГАМК, молекулы которой помещаются в синаптические пузырьки.
Блокирование фермента глутаматдекарбоксилазы лежит в основе известного аутоиммунного заболевания — синдрома «скованного человека».
Схема обратного захвата и повторного синтеза глутамата.
В левой части рисунка происходит обратный захват молекулы глутамата в неизменном виде.
В правой части рисунка (1) глутамат захватывается астроцитами, затем (2) под действием глутаминсинтетазы превращается в глутамин.
(3) Глутамин поступает в нервное окончание, (4) где под действием глутаминазы превращается в глутамат, который (5) возвращается в синаптические пузырьки. Схема обратного захвата и повторного синтеза ГАМК. В левой части рисунка происходит обратный захват молекулы ГАМК в неизменном виде.
В правой части рисунка ГАМК захватывается астроцитами, затем (1) под действием ГАМК-трансаминазы превращается в глутамат, который (2) под действием глутаминсинтетазы превращается в глутамин.
(3) Глутамин поступает в нервное окончание и под действием глутаминазы образует глутамат.
(4) Глутамат под действием глутаматдекарбоксилазы превращается в ГАМК, которая (5) возвращается в синаптические пузырьки.
г) Глицин. Глицин синтезируется из серина в процессе катаболизма глюкозы. Основная функция этого нейромедиатора — обеспечение отрицательной обратной связи двигательных нейронов ствола мозга и спинного мозга. При инактивации глицина (например, при отравлении стрихнином) возникают мучительные судороги.
Обратный захват. В области синаптического уплотнения при помощи аксональных белков-переносчиков осуществляется быстрый обратный захват глицина с последующим его помещением в синаптические пузырьки.
Схема отрицательной обратной связи: клетки Реншоу ингибируют избыточное возбуждение двигательных нейронов. АХ—ацетилхолин.
(1) Нейрон нисходящего двигательного проводящего пути оказывает возбуждающее действие на двигательный нейрон спинного мозга.
(2) Двигательный нейрон вызывает сокращение мускулатуры.
(3) Возвратная ветвь стимулирует клетку Реншоу.
(4) Клетка Реншоу оказывает ингибирующее влияние, достаточное для предупреждения чрезмерной активации двигательного нейрона.
Редактор: Искандер Милевски. Дата публикации: 12.11.2018
Спокоен как GABA
ГАМК. Нейромедиатор — монополист «отрасли» торможения в нервной системе. Находится в состоянии вечной борьбы за влияние со своим бодрым отцом Глутаматом. Основная функция — гашение возбуждающих сигналов: ГАМК убеждает нейроны (и нас, их «хозяев») не реагировать на провокации агрессивных соседей и соблюдать спокойствие, чтобы не пасть жертвами глутаматных козней инсульта. Вероятно, ГАМК участвует в поддержании нормального цикла сна и повышает усвоение глюкозы. Не исключено, что дирижирует она и какими-то сигнальными путями у растений — не зря же это основная аминокислота апопласта помидоров!
Автор
Редакторы
Гамма-аминомасляная кислота (ГАМК) — главный тормозной медиатор в нервной системе человека. Но только тех из нас, у кого она уже развита. А чтобы обеспечить нам поистине олимпийское спокойствие, ей иногда помогает пёстрая компания очень известных веществ. Мы познакомимся с ГАМК поближе и узнаем, что эта молекула не так проста, как кажется на первый взгляд.
Нейромедиатор покоя
Гамма-аминомасляная кислота (ГАМК; γ-aminobutyric acid, GABA) синтезируется в мозге из глутаминовой кислоты — еще одного нейромедитора — путем ее декарбоксилирования (удаления карбоксильной группы из основной цепи) (рис. 1). По химической классификации ГАМК — это аминокислота, но не привычная, то есть используемая для синтеза белковых молекул, α-аминокислота, где аминогруппа присоединена к первому атому углерода в цепочке. В ГАМК аминогруппа связана с третьим от карбоксильной группы атомом (в глутамате он был первым по счету до декарбоксилирования).
Рисунок 1. Синтез ГАМК. При помощи фермента глутаматдекарбоксилазы (GAD) из нейромедиатора глутамата получается другой нейромедиатор — ГАМК.
веб-атлас поведенческой и структурной анатомии Caenorhabditis elegans
ГАМК синтезируется прямо в мозге и связывается с двумя типами рецепторов на поверхности нейронов — ГАМК-рецепторами типов А и В. Рецепторы типа А раньше подразделялись на рецепторы типов А и С (встречаются преимущественно в сетчатке глаза), но в последующем были объединены в связи с общностью действия. Этот тип рецепторов является ионотропным: при связывании с ними ГАМК в мембране нервной клетки открывается ионный канал, и ионы хлора устремляются в клетку, снижая ее реактивность. Мембрана нервной клетки обладает потенциалом покоя [1]. Внутри клетки меньше заряженных ионов, чем снаружи, и это создает разницу зарядов. Снаружи превосходство создается хлором, кальцием и натрием, а внутри преобладают ионы калия и ряд отрицательно заряженных органических молекул. В теоретическом смысле у потенциала мембраны есть два пути: увеличение (называемое деполяризацией) и уменьшение (гиперполяризация) (рис. 2). В покое мембранный потенциал равен приблизительно −70. −90 мВ (милливольт), а при работе нервной системы начинается «перетягивание каната» между двумя силами — возбуждающими клетку (деполяризующими мембрану) и тормозящими ее (гиперполяризующими).
Рисунок 2. Схема возникновения потенциала действия на мембране клетки. Необходимо изменение содержания ионов внутри и снаружи клетки такой силы, чтобы значение заряда на мембране изменилось и достигло определенного порога. Если это происходит, то мембрана продолжает деполяризоваться дальше, нейрон возбуждается и передает сигнал другим клеткам. Овершут (инверсия) — период, когда потенциал мембраны положителен. Затем следует фаза реполяризации, и заряд мембраны возвращается к прежним значениям.
Чтобы понять, как это работает, надо учесть два момента. Первый — на один нейрон в то же самое время могут воздействовать несколько противоположно направленных сил: например, пять возбуждающих и три тормозящих нейрона сошлись на одной клетке в этом участке нервной системы. При этом они могут воздействовать на дендрит этого нейрона и на аксон в пресинаптической части. Второй момент — нервная клетка, испытывающая эти воздействия, будет работать по принципу «всё или ничего». Она не может одновременно послать сигнал и не посылать его. Все воздействия сигналов, пришедших на клетку, суммируются, и если итоговые изменения потенциала мембраны превысят определенное значение (называемое порогом возбуждения), то сигнал будет передан на другую клетку через синапс. Если же пороговое значение не будет достигнуто, то извините — попробуйте еще раз, ребята. Всё это напоминает басню Крылова про лебедя, рака и щуку: каждый тянет в свою сторону, но не очень понятно, что из этого выйдет.
Итак, молекула ГАМК связалась с рецептором ионного канала. Ионный канал, обладающий довольно сложным строением (рис. 3), раскрывается и начинает пропускать внутрь клетки отрицательно заряженные ионы хлора. Под воздействием этих ионов происходит гиперполяризация мембраны, и клетка становится менее восприимчивой к возбуждающим сигналам других нейронов. Это первая и, пожалуй, главная функция ГАМК — торможение активности нервных клеток в нервной системе.
Рисунок 3. Ионотропный ГАМК-рецептор. Рецептор ГАМКА — гетеропентамер: состоит из 5 белковых субъединиц, которые в зависимости от гомологии аминокислотных последовательностей могут принадлежать к восьми разным семействам (чаще — к α, β, γ; члены ρ-семейства гомоолигомеризуются — получаются рецепторы ГАМКA-ρ, «бывшие» ГАМКC). Это определяет разнообразие ГАМКА-рецепторов. а — Схема строения рецептора. Слева: Каждая из субъединиц на длинном глобулярном N-конце, выходящем на поверхность нейрона, имеет характерную структуру «цистеиновая петля» и участки связывания ГАМК и других лигандов. Далее следуют 4 α-спиральных трансмембранных домена (между последними из них — большая цитоплазматическая петля, ответственная за связывание с цитоскелетом и «внутренними» модуляторами) и короткий C-конец. Справа: Пять субъединиц образуют ионный канал, ориентируясь вторым трансмембранным доменом (оранжевым цилиндром) друг к другу. Это четвертичная структура рецептора. При связывании с двумя молекулами ГАМК рецептор меняет конформацию, открывая пору для транспорта анионов. б — Микрофотография рецептора ГАМК в свином мозге.
а — из «Википедии», б — из статьи [4]
Рецепторы типа В являются метаботропными, то есть влияют на обмен веществ в клетке. Они тоже снижают уровень возбуждения в клетке, но делают это более медленными способами, через систему G-белков. Рецепторы этого типа помогают клетке снизить чувствительность к возбуждающим воздействиям через влияние на кальциевые и калиевые каналы.
Припадки и тревога
ГАМК-ергическая система головного мозга по своему строению напоминает все остальные (рис. 4). Есть ряд глубоко расположенных в мозге структур, откуда нервные волокна, выделяющие ГАМК, идут в другие части нервной системы. Поэтому ГАМК является тормозным нейромедиатором, регулирующим многие процессы — от мышечного тонуса до эмоциональных реакций.
Рисунок 4. ГАМК-ергические пути головного мозга человека. Скопления нервных клеток в глубине мозга рассылают свои отростки в разные отделы нервной системы, чтобы снижать излишний уровень возбуждения.
Однако тормозным медиатором ГАМК становится только в зрелом мозге. В развивающейся нервной системе ГАМК-ергические нейроны могут производить возбуждающее действие на клетки, также меняя проницаемость мембраны для ионов хлора [2]. В незрелых нервных клетках концентрация ионов хлора выше, чем в окружающей среде, и стимуляция рецепторов ГАМК приводит к выходу этих анионов из клетки и последующей деполяризации мембраны. Со временем созревает основная возбуждающая система мозга — глутаматная, — и ГАМК приобретает роль тормозного (гиперполяризующего мембрану) нейромедиатора.
Само созревание мозга — это сложный процесс, который на разных этапах онтогенеза регулируется множеством генов (рис. 5). Нарушение процессов созревания и миграции нейронов приводит к различным неврологическим заболеваниям, например, эпилепсии [3]. Эпилепсия — одно из самых распространенных неврологических заболеваний. При нём нейроны головного мозга генерируют нервные импульсы не так, как следуют — слишком часто и слишком сильно, что приводит к возникновению патологического очага возбуждения в мозге. Именно существование такого очага приводит к припадкам — самому главному и опасному симптому эпилепсии. Такая «разрядка» позволяет на время снизить возбуждение в нервной системе. Мутации в ряде генов приводят к тому, что ГАМК-ергические вставочные нейроны оказываются не на своем месте и не могут полноценно выполнять свои тормозящие функции. На мышиных моделях и при исследовании генотипа людей была установлена связь между мутациями, нарушением миграции и созревания ГАМК-ергических нейронов и развитием эпилепсии.
Рисунок 5. Гены, отвечающие за созревание мозга, включаются в работу на разных этапах онтогенеза. Эмбриональный и постнатальный периоды разделены точкой P0 (рождение). За рост, созревание и функцию тормозящих клеток отвечают гены DLX, ARX, DCX, RELN. Семейство генов DLX (distal-less homeobox) кодирует гомеодомен-содержащие транскрипционные факторы. Большинство экспрессируется при формировании органов чувств и миграции клеток гребня и вставочных нейронов; регулируют экспрессию гена ARX. ARX (aristaless-related homeobox) кодирует гомеодомен-содержащий транскрипционный фактор, контролирующий дифференцировку клеток различных органов. В развивающемся мозге он необходим для миграции вставочных нейронов. DCX (doublecortin) кодирует даблкортин (lissencephalin-X) — ассоциированный с микротрубочками белок, синтезируемый в незрелых нейронах при их делении (маркер нейрогенеза, в том числе у взрослых). Он необходим для правильной миграции и дифференцировки нейробластов, поскольку влияет на динамику микротрубочек цитоскелета (стабилизирует их и группирует). RELN (reelin) — ген секретируемого сигнального гликопротеина рилина. При развитии нервной системы волокна радиальной глии ориентируются в направлении большей концентрации рилина, выстраивая «пути» для миграции нейронов. Необходим этот белок и для правильного построения слоев коры. Активен RELN и в других тканях, даже у взрослых. В развитом мозге рилин секретируется ГАМК-ергическими вставочными нейронами гиппокампа и коры. Вероятно, он стимулирует удлинение нейронных отростков, влияет на синаптическую пластичность и память [7].
Другим аспектом тормозящего действия ГАМК является влияние на эмоциональные процессы — в частности на тревогу. Тревога — это очень обширное понятие. В нём заключены как и совершенно здоровые реакции человека на стрессовые воздействия (экзамен, темная подворотня, признание в любви), так и патологические состояния (тревожные расстройства в медицинском смысле этого слова). Исходя из положений современной психиатрической науки, можно сказать, что есть нормальная тревога и тревога как болезнь. Тревога становится болезнью, когда она мешает вашей повседневной или профессиональной жизни, блокируя принятие любых решений — даже самых необходимых.
Отделом мозга, который отвечает за эмоциональные реакции, является миндалевидное тело — скопление нервных клеток в глубине нашей головы. Это одна из самых древних и важных частей нервной системы у животных. Особой специальностью миндалевидного тела являются отрицательные эмоции — мы гневаемся, злимся, боимся и тревожимся через миндалину. ГАМК позволяет мозгу снижать интенсивность этих переживаний.
Таблетка от нервов
Лекарства, которые эффективны в борьбе с тревогой и припадками, должны связываться с рецептором ГАМК. Они не являются прямыми стимуляторами рецептора, т.е. не связываются с той же частью молекулы, что и ГАМК. Их роль заключается в том, что они повышают чувствительность ионного канала к ГАМК, немного меняя его пространственную организацию. Такие химические вещества называются аллостерическими модуляторами. К аллостерическим модуляторам ГАМК-рецепторов относятся этанол, бензодиазепины и барбитураты.
Рисунок 6. Молекула барбитуровой кислоты.
Алкоголь известен своим расслабляющим и противотревожным эффектом. Растворы этилового спирта в различных концентрациях с давних пор широко используются населением Земли для успокоения нервов. Этанол дарит людям расслабление, связываясь с рецептором ГАМК и упрощая его дальнейшее взаимодействие с медиатором. Бывает такое, что люди переоценивают свои возможности в употреблении спиртного, и это приводит к постепенной потере контроля над своими действиями и нарастанием заторможенности. Наступает алкогольное гиперраслабление, которое при продолжении употребления может дойти до алкогольной комы — настолько сильным оказывается угнетающее действие спирта на центральную нервную систему. Потенциально алкоголь мог бы использоваться во время хирургических операций как наркозное средство (раньше в критических ситуациях — например, на фронте — так и поступали — Ред.), но спектр концентраций, где он выключает болевую чувствительность и еще не «выключает» человека полностью, слишком мал.
Рисунок 7. Коробочка «Веронала» фирмы Bayer (в верхнем левом углу).
фото автора, сделано в Музее фармации (Рига, Латвия)
Другой класс веществ — барбитураты — сейчас используется в неврологии для лечения эпилептических судорог. Все лекарства этого класса — аллостерические модуляторы, производные барбитуровой кислоты — барбитала (рис. 6). Сам барбитал продавался известной фирмой Bayer под торговым названием «Веронал» (рис. 7). В дальнейшем были синтезированы другие производные барбитуровой кислоты: фенобарбитал («Люминал») и бензобарбитал. Эти препараты, появившиеся в начале ХХ века, стали первым эффективным и относительно безопасным лекарством для борьбы с эпилепсией. Производные барбитуровой кислоты использовались и для борьбы с нарушениями сна, но в меньших дозах.
Об этой и других группах препаратов, применяемых в комплексном лечении уже не тревожности, а депрессии рассказано в «сочном» обзоре «Краткая история антидепрессантов»: со всей подноготной этого состояния, с теориями / гипотезами и сомнениями на их счет [5]. — Ред.
Рисунок 8. Рецептор ГАМКА и сайты связывания с лекарственными препаратами. Наиболее распространенная в ЦНС комбинация субъединиц (около 40 % ГАМКА-рецепторов) — двух α1, двух β2 и одной γ2s, располагающихся вокруг хлоридной поры (вид сверху). GABA site (на поверхности, стык α и β) — место, где ГАМК присоединяется к рецептору; BDZ site (на поверхности, стык α и γ) — сайт связывания бензодиазепинов, ETF site (на β) — этифоксина, NS site (в канале) — нейростероидов. Сайты связывания барбитуратов и этанола предположительно находятся в глубине канала (на трансмембранных доменах). В первом случае, вероятно, главную роль играет β-субъединица, с этанолом же взаимодействуют разные субъединицы, включая ρ и δ, но их чувствительность различается.
Причина нелюбви к бензодиазепинам кроется в их побочных эффектах, которых довольно много, и не все они учитываются официальными структурами [6]. Во-первых, бензодиазепины, как и все ГАМК-ергические препараты, вызывают стойкую зависимость. Во-вторых, бензодиазепины ухудшают память человека. Применение препаратов этой группы усиливает тормозящее влияние ГАМК на клетки гиппокампа — центра памяти. Это может приводить к затруднениям в запоминании новой информации, что и наблюдается на фоне приема бензодиазепинов, особенно у пожилых людей.
ГАМК, несмотря на свою узкую «специальность», — удивительный нейромедиатор. В развивающемся мозге γ-аминомасляная кислота возбуждает нервные клетки, а в развившемся, наоборот, снижает их активность. Она отвечает за чувство спокойствия, а препараты, активирующие ее рецепторы, приносят врачам массу поводов для тревоги. Такой предстала перед нами гамма-аминомасляная кислота — простая молекула, отвечающая за то, чтобы наши мозги не «перегорели».