что нужно знать data engineer
Кто такой дата-инженер?
Эксперт в Data Engineering.
Дата-инженер – это человек, который организует потоки загрузки и обрабатывает данные. Как он это делает, что для этого нужно уметь, и насколько такая деятельность востребована, разбираемся с дата-инженером X5 Retail Group Максимом Кереметом.
Что делает дата-инженер?
Дата-инженер (Data Engineer) участвует в начальной и финальной стадиях анализа данных, обеспечивает их работу на инфраструктуре компании. Он занимается ETL-процессами, то есть обрабатывает данные: достает ( extract) их из сырых источников, трансформирует ( transform) и загружает ( load).
После предварительной обработки, очистки от повторов, ошибок, ненужных уточнений, он автоматизирует выполнение скриптов и, если нужно, настраивает мониторинги, алерты (сигналы о том, что в моделях что-то пошло не так), задает расписание, по которому сервис или программа будут работать с данными (шедуллит).
Задачи в компаниях могут отличаться: где-то инженер только обрабатывает данные, а где-то выполняет и программистскую работу: внедряет новые модели и переучивает старые.
Помимо сбора и обработки дата-инженер организует хранение данных. Для этого он строит архитектуру хранилищ – базы данных с таблицами, в которых они разбиты по смыслу. Дата-сайентистам это облегчает доступ к обработанным наборам данных (признакам), с помощью хранилища проще и быстрее масштабировать модели.
Чем дата-инженер отличается от дата-сайентиста?
Задачи дата-сайентиста и дата-инженера находятся на разных этапах работы с данными. Дата-сайентист – это исследователь, который придумывает, как решить задачу бизнеса. Например, прогнозирует, когда покупатель придет в магазин в следующий раз. Он готовит дата-сет, извлекает признаки, экспериментирует с моделями, делает пилотный запуск модели.
Для того, чтобы дата-сайентисту было с чем экспериментировать, дата-инженер готовит данные. Они обычно скрыты в хранилищах. Когда модель готова, дата-инженер масштабирует успешные решения на гораздо бОльшие объемы чем тренировочный датасет
Модель также нужно периодически обновлять: делать отчеты, чтобы бизнес мог ежедневно использовать этот труд, по мере необходимости обновлять признаки. Этим тоже занимается дата-инженер.
Читайте также: Чем занимается дата-инженер X5 Retail Group?
Где он нужен?
Везде, где работа с данными помогает бизнесу развиваться и зарабатывать.
Дата-инженеры особенно востребованы в телекоме, ритейле, банкинге – здесь генерируют больше всего данных. Конечно же, такие спецы нужны в интернет- и транспортных компаниях, маркетинге.
Часто небольшие компании ищут специалиста, который берет на себя задачи и дата-инженера, и дата-сайентиста. Но с ростом бизнеса обязанности разводятся между разными ролями: аналитиками, сайентистами и инженерами.
Пример задачи дата-инженера:
Коллеге дата-сайентисту нужно узнать, какие действия совершают пользователи, оставляющие больше всего денег в приложении такси. Чтобы дата-сайентист смог проанализировать историю их действий и сделать прогноз, дата-инженеру необходимо собрать нужную информацию из приложения. Для этого он:
Для этого необходимо создать пайплайн (процесс сбора, трансформации и загрузки в базу данных), который в реальном времени сможет собрать логи приложений и сервера, проанализировать их и соотнести с конкретным пользователем. Проанализированные логи дата-инженер собирает в базу данных так, чтобы их можно было без труда запросить по API.
Насколько это востребовано?
Из-за того, что данные растут в геометрической прогрессии, компании придумывают новые, более эффективные способы работы с ними. Для этого им нужны не только мощные платформы для хранения, но и сотрудники, которые оптимизируют процессы, поставляют уже подготовленные данные, ускоряя дальнейшую работу дата-сайентистов. Поэтому спрос на специалистов в этой сфере только увеличивается, а зарплаты в этом направлении – одни из самых высоких в IT.
Согласно отчету DICE о технических вакансиях за 2020 год количество вакансий дата-инженера выросло на 50% по сравнению в 2019 годом. Это самый большой показатель среди других профессий.
Сколько получает дата-инженер?
Зарплаты зависят от уровня: в среднем джуниоры получают 100-150 тыс. руб, миддл-специалисты 150-250 тыс. руб, а синьор-профессионалы 250-300 тыс. руб, основываясь на данных из сообщества ODS.
На июнь 2021 года на hh.ru почти тысяча вакансий по запросу data engineer.
Научитесь собирать данные из разных источников, помогайте аналитикам строить гипотезы и принимать бизнес-решения. Дополнительная скидка 5% по промокоду BLOG.
Что ему нужно знать?
По мнению Максима Керемета, на российском рынке дата-инженер – это человек, который может все по чуть-чуть: и программировать, и работать с базами данных, и провести несложную аналитику (построить дашборд в Power BI или Tableau), и самостоятельно написать приложение, которое может работать.
Традиционно дата-инженер работает с таблицами, поэтому ему необходимо знать, как писать SQL-запросы, разбираться в видах баз данных. В основном он сталкивается с реляционными (наборы данных, связанных между собой по значению) и колоночными (данные связаны не по строкам, а по колонкам) базами данных.
Наиболее популярная система управления реляционной БД – PostgreSQL, для колоночных – ClickHouse, он быстрый и используется для аналитики и логирования событий.
Дата-инженер должен хорошо знать Python: он умеет читать таблицы из источников на компьютере, понимает язык на уровне базовых структур, ООП. Python также нужен для того, чтобы писать веб-сервисы, чтобы в дальнейшем работать с продуктивизацией моделей. Кроме того, с помощью языка можно разрабатывать новые сервисы и модели, которые отслеживают стабильность уже работающих программ.
Плюсом будет знание Scala — язык эффективен в промышленных масштабах, когда становится важна скорость обработки данных. В этом Python уступает.
Нужно владеть инструментами экосистемы Hadoop (система управления базами данных Hive или фреймворк Spark) – они помогают работать с большими данными, которые невозможно обрабатывать на одном локальном компьютере из-за объемов и производительности. Для них используются кластерные машины с более мощными показателями.
Чтобы запускать уже готовые сервисы, не требующие доработки, на разных компьютерах, дата-инженеру нужно уметь использовать Docker. Он «упаковывает» сервис, написанный на локальном компьютере, в контейнер, и его можно воспроизводить на компьютере коллеги или кластерной машине.
А для автоматизации работы в команде дата-инженер использует GitLab.
Откуда приходят в дата-инженеры?
Максим Керемет добавляет: « Можно переквалифицироваться из дата-сайентиста, если хочется больше развиваться с точки зрения программирования и построить какой-то сервис или продукт. Кроме того, если надоело постоянно выполнять разные ситуативные задачи и хочется сконцентрироваться на среднесрочных проектах на несколько месяцев, дата-инженер — хороший вариант».
Плюсы и минусы профессии
Как начать?
Новичкам без бэкграунда в IT попасть в профессию сложно, так как она требует серьезной технической подготовки: нужно писать хотя бы на Python, владеть инструментами автоматизации.
Для специалиста в этой области важны знания алгоритмов и структур данных. Алгоритмические задачи хорошо выстраивают мышление, знание синтаксиса языка и его возможностей. Алгоритмы данных можно изучить на бесплатном курсе на Coursera.
Кроме того, на Coursera можно познакомиться с базовыми понятиями, научиться строить пайплайны (выстраивать весь ETL-процесс переноса данных из одного места в другое), разобраться в том, что такое базы данных и как устроены системы облачных хранилищ.
Можно попробовать самостоятельно определить траекторию обучения, ориентируясь на Road map профессии. C ее помощью удобно систематизировать, какими навыками вы уже овладели, а какие нужно подтянуть или выучить с нуля.
Полезные ссылки:
Либо можно пройти полноценный курс по Data Engineering. На нем есть главное – практика, благодаря которой вы сможете не просто в теории разобраться с программами и продуктами, которыми используют в профессии, но отработать технологии на реальных задачах и применить их в проекте.
Освойте перспективную профессию за 10 недель или усильте ваши навыки дата-инженера.
📊 Кто такой дата-инженер, чем он занимается и что должен знать?
Причём здесь дата и почему ею должен заниматься целый инженер?
Гордон Линдсей Глегг
Информация может быть разной: от статистических данных потребителей зубной пасты до списка переменных и их значений в условиях некой формулы. Как раз благодаря возможностям сбора, накапливания и последующей обработки данных получилось создать все концепции и технологии “умных” городов, “интеллектуальных” алгоритмов рекомендаций и прочие новомодные взаимодействия с информацией.
Накопленная информация сама по себе ничего не даёт: для получения выгоды её нужно обработать. Тут в дело вступает дата-инженер.
Чем дата-инженер отличается от аналитика?
Термин дата-сайентист (от англ. data scientist) у всех на слуху и обозначает коллегу дата-инженера. С учётом современных трендов на объединение или работу в команде, штатные единицы сайентиста (ученого, аналитика) и инженера представлены либо в одном лице, либо эти специалисты тесно сотрудничают друг с другом.
Итак, инженер выстраивает все каналы связи – от процесса сбора информации до её преобразования в нужный формат. Как в каком-нибудь промышленном симуляторе Factorio или Satisfactory: он находит источник данных, выстраивает конвейер для их передачи, а также создаёт инфраструктуру для обрабоки и преобразования информации.
Дальше вступает в дело аналитик: получив нужные данные он трансформирует их в необходимую форму. Именно аналитики создают различные модели, графики и прочую визуализацию. И они же красиво подают менеджменту выводы в текстовом формате. Грубо говоря, инженер собирает информацию, проводит её первичную обработку и отправляет аналитику. Тот же издевается над данными по полной: анализирует, проверяет гипотезы и на основе полученной информации создает новые знания и прочую ценность для бизнеса.
Что нужно знать дата-инженеру?
Для первичной обработки информации и организации её хранения инженеру понадобятся знания бекенда и в области разработки ПО. В качестве основного и самого популярного хранилища выступают СУБД (SQL и noSQL), поэтому в начале пути можно сфокусироваться на них.
Базовые требования
Дата-инженер работает с данными, а значит ему нужно знать о данных всё:
Заключение
Порог входа в профессию довольно высок, причём даже от новичка требуется понимание технологий, а не простое заучивание методов работы с инструментами, но в итоге потраченные усилия окупятся.
Если вы только собираетесь стать дата-инженером, стоит заранее подготовиться к тяжёлой, а иногда и нудной учёбе. Обратите внимание курс факультета Data Engineering российской образовательной онлайн-платформы GeekBrains. Учат здесь с нуля, постепенно продвигаясь по всем важным нюансам этой непростой специализации. Занятия с экспертами-практиками из ведущих технологических компаний России позволят сэкономить время, а успешно окончив курс, вы получите диплом о профессиональной переподготовке, электронный сертификат и помощь в трудоустройстве.
Кто такие дата-инженеры, и как ими становятся?
И снова здравствуйте! Заголовок статьи говорит сам о себе. В преддверии старта курса «Data Engineer» предлагаем разобраться в том, кто же такие дата-инженеры. В статье очень много полезных ссылок. Приятного прочтения.
Простое руководство о том, как поймать волну Data Engineering и не дать ей затянуть вас в пучину.
Складывается впечатление, что в наши дни каждый хочет стать дата-саентистом (Data Scientist). Но как насчет Data Engineering (инжиниринга данных)? По сути, это своего рода гибрид дата-аналитика и дата-саентиста; дата-инженер обычно отвечает за управление рабочими процессами, конвейерами обработки и ETL-процессами. Ввиду важности этих функций, в настоящее время это очередной популярный профессиональный жаргонизм, который активно набирает обороты.
Высокая зарплата и огромный спрос — это лишь малая часть того, что делает эту работу чрезвычайно привлекательной! Если вы хотите пополнить ряды героев, никогда не поздно начать учиться. В этом посте я собрал всю необходимую информацию, чтобы помочь вам сделать первые шаги.
Итак, начнем!
Что такое Data Engineering?
Честно говоря, нет лучшего объяснения, чем это:
«Ученый может открыть новую звезду, но не может ее создать. Ему придется просить инженера сделать это за него.»
–Гордон Линдсей Глегг
Таким образом, роль дата-инженера достаточно весома.
Из названия следует, что инженерия данных связана с данными, а именно с их доставкой, хранением и обработкой. Соответственно, основная задача инженеров — обеспечить надежную инфраструктуру для данных. Если мы посмотрим на ИИ-иерархию потребностей, инженерия данных занимает первые 2–3 этапа: сбор, перемещение и хранение, подготовка данных.
Чем занимается инженер данных?
С появлением больших данных сфера ответственности резко изменилась. Если раньше эти эксперты писали большие SQL-запросы и перегоняли данные с помощью таких инструментов, как Informatica ETL, Pentaho ETL, Talend, то теперь требования к дата-инженерам повысились.
Большинство компаний с открытыми вакансиями на должность дата-инженера предъявляют следующие требования:
Список используемых в этом случае инструментов может отличаться, все зависит от объема этих данных, скорости их поступления и неоднородности. Большинство компаний вообще не сталкиваются с большими данными, поэтому в качестве централизованного хранилища, так называемого хранилища данных, можно использовать базу данных SQL (PostgreSQL, MySQL и т. д.) с небольшим набором скриптов, которые направляют данные в хранилище.
IT-гиганты, такие как Google, Amazon, Facebook или Dropbox, предъявляют более высокие требования: знание Python, Java или Scala.
Дата-инженеры Vs. дата-саентисты
Ладно, это было простое и забавное сравнение (ничего личного), но на самом деле все намного сложнее.
Во-первых, вы должны знать, что существует достаточно много неясности в разграничении ролей и навыков дата-саентиста и дата-инженера. То есть, вы легко можете быть озадачены тем, какие все-таки навыки необходимы для успешного дата-инженера. Конечно, есть определенные навыки, которые накладываются на обе роли. Но также есть целый ряд диаметрально противоположных навыков.
Наука о данных — это серьезное дело, но мы движется к миру с функциональной дата саенс, где практикующие способны делать свою собственную аналитику. Чтобы задействовать конвейеры данных и интегрированные структуры данных, вам нужны инженеры данных, а не ученые.
Является ли дата-инженер более востребованным, чем дата-саентист?
— Да, потому что прежде чем вы сможете приготовить морковный пирог, вам нужно сначала собрать, очистить и запастись морковью!
Дата-инженер разбирается в программировании лучше, чем любой дата-саентист, но когда дело доходит до статистики, все с точностью до наоборот.
Но вот преимущество дата-инженера: без него/нее ценность модели-прототипа, чаще всего состоящей из фрагмента кода ужасного качества в файле Python, полученной от дата-саентиста и каким-то образом дающей результат, стремится к нулю.
Без дата-инженера этот код никогда не станет проектом, и никакая бизнес-проблема не будет эффективно решена. Инженер данных пытается превратить это все в продукт.
Основные сведения, которые должен знать дата-инженер
Итак, если эта работа пробуждает в вас свет и вы полны энтузиазма — вы способны научиться этому, вы можете овладеть всеми необходимыми навыками и стать настоящей рок-звездой в области разработки данных. И, да, вы можете осуществить это даже без навыков программирования или других технических знаний. Это сложно, но возможно!
Каковы первые шаги?
Вы должны иметь общее представление о том, что есть что.
Прежде всего, Data Engineering относится к информатике. Конкретне — вы должны понимать эффективные алгоритмы и структуры данных. Во-вторых, поскольку дата-инженеры работают с данными, необходимо понимание принципов работы баз данных и структур, лежащих в их основе.
Например, обычные B-tree SQL базы данных основаны на структуре данных B-Tree, а также, в современных распределенных репозиториях, LSM-Tree и других модификациях хеш-таблиц.
* Эти шаги основаны на замечательной статье Адиля Хаштамова. Итак, если вы знаете русский язык, поддержите этого автора и прочитайте его пост.
1. Алгоритмы и структуры данных
Использование правильной структуры данных может значительно улучшить производительность алгоритма. В идеале, мы все должны изучать структуры данных и алгоритмы в наших школах, но это редко когда-либо освещается. Во всяком случае, ознакомится никогда не поздно.
Итак, вот мои любимые бесплатные курсы для изучения структур данных и алгоритмов:
Вся наша жизнь — это данные. И для того, чтобы извлечь эти данные из базы данных, вам нужно «говорить» с ними на одном языке.
SQL (Structured Query Language — язык структурированных запросов) является языком общения в области данных. Независимо от того, что кто-то говорит, SQL жил, жив и будет жить еще очень долго.
Если вы долгое время находились в разработке, вы, вероятно, заметили, что слухи о скорой смерти SQL появляются периодически. Язык был разработан в начале 70-х годов и до сих пор пользуется огромной популярностью среди аналитиков, разработчиков и просто энтузиастов.
Без знания SQL в инженерии данных делать нечего, так как вам неизбежно придется создавать запросы для извлечения данных. Все современные хранилища больших данных поддерживают SQL:
Для анализа большого слоя данных, хранящихся в распределенных системах, таких как HDFS, были изобретены механизмы SQL: Apache Hive, Impala и т. д. Видите, он не собирается никуда уходить.
Как выучить SQL? Просто делай это на практике.
Для этого я бы порекомендовал ознакомиться с отличным учебником, который, кстати, бесплатный, от Mode Analytics.
3. Программирование на Python и Java/Scala
Почему стоит изучать язык программирования Python, я уже писал в статье Python vs R. Выбор лучшего инструмента для AI, ML и Data Science. Что касается Java и Scala, большинство инструментов для хранения и обработки огромных объемов данных написаны на этих языках. Например:
Чтобы погрузиться в язык Scala, вы можете прочитать Программирование в Scala от автора языка. Также компания Twitter опубликовала хорошее вводное руководство — Scala School.
Что касается Python, я считаю Fluent Python лучшей книгой среднего уровня.
4. Инструменты для работы с большими данными
Вот список самых популярных инструментов в мире больших данных:
Знание хотя бы одной облачной платформы находится в списке базовых требований, предъявляемым к соискателям на должность дата-инженера. Работодатели отдают предпочтение Amazon Web Services, на втором месте — облачная платформа Google, и замыкает тройку лидеров Microsoft Azure.
Вы должны хорошо ориентироваться в Amazon EC2, AWS Lambda, Amazon S3, DynamoDB.
6. Распределенные системы
Работа с большими данными подразумевает наличие кластеров независимо работающих компьютеров, связь между которыми осуществляется по сети. Чем больше кластер, тем больше вероятность отказа его узлов-членов. Чтобы стать крутым экспертом в области данных, вам необходимо вникнуть в проблемы и существующие решения для распределенных систем. Эта область старая и сложная.
Эндрю Таненбаум считается пионером в этой области. Для тех, кто не боится теории, я рекомендую его книгу «Распределенные системы», для начинающих она может показаться сложной, но это действительно поможет вам отточить свои навыки.
Я считаю «Проектирование приложений с интенсивным использованием данных» под авторством Мартина Клеппманна лучшей вводной книгой. Кстати, у Мартина есть замечательный блог. Его работа поможет систематизировать знания о построении современной инфраструктуры для хранения и обработки больших данных.
Для тех, кто любит смотреть видео, на Youtube есть курс Распределенные компьютерные системы.
7. Конвейеры данных
Конвейеры данных — это то, без чего вы не можете жить в качестве дата-инженера.
Большую часть времени дата-инженер строит так называемую пайплайн дату, то есть создает процесс доставки данных из одного места в другое. Это могут быть пользовательские сценарии, которые идут к API внешнего сервиса или делают SQL-запрос, дополняют данные и помещают их в централизованное хранилище (хранилище данных) или хранилище неструктурированных данных (озера данных).
Подводя итог: основной чеклист дата-инженера
Подытожим — необходимо хорошее понимание следующего:
И, наконец, последнее, но очень важное, что я хочу сказать.
Путь становления Data Engineering не так прост, как может показаться. Он не прощает, фрустрирует, и вы должны быть готовы к этому. Некоторые моменты в этом путешествии могут подтолкнуть вас все бросить. Но это настоящий труд и учебный процесс.
Просто не приукрашивайте его с самого начала. Весь смысл путешествия в том, чтобы узнать как можно больше и быть готовым к новым вызовам.
Вот отличная картинка, с которой я столкнулся, которая хорошо иллюстрирует этот момент:
И да, не забудьте избегать выгорания и отдыхать. Это тоже очень важно. Удачи!
Как вам статья, друзья? Приглашаем на бесплатный вебинар, который состоится уже сегодня в 20.00. В рамках вебинара обсудим, как построить эффективную и масштабируемую систему обработки данных для небольшой компании или стартапа с минимальными затратами. В качестве практики познакомимся с инструментами обработки данных Google Cloud. До встречи!
План прокачки для получения профессии Data engineer
Последние восемь лет я работаю руководителем проектов (не пишу код на работе), что естественно негативно влияет на мой технологический бекэнд. Я решил сократить своё технологическое отставание и получить профессию Data engineer. Основной навык Data engineer — способность разрабатывать, строить и поддерживать хранилища данных.
Составил план обучения, думаю он будет полезен не только для меня. План ориентирован на самостоятельное изучение курсов. Приоритет отдается бесплатным курсам на русском языке.
Алгоритмы и структуры данных
В свой план я включил изучение Python, повторение основ математики и алгоритмизации.
Базы и хранилища данных, Business Intelligence
На мой взгляд, важно изучать современную методологию проектирования хранилищ данных Data Vault ссылка 1, ссылка 2. И лучший способ изучить его — взять и реализовать на простом примере. На GitHub есть несколько примеров реализации Data Vault ссылка. Современная книга по хранилищам данных: Modeling the Agile Data Warehouse with Data Vault by Hans Hultgren.
Для знакомства с инструментами Business Intelligence для конечных пользователей можно использовать бесплатный конструктор отчетов, дашбордов, мини хранилищ данных Power BI Desktop. Обучающие материалы: ссылка 1, ссылка 2.
Hadoop and Big Data
Заключение
Не всё из того что изучаешь получается применять на работе. Поэтому необходим дипломный проект, в котором ты попробуешь применить новые знания.
В плане нет тем связанных с анализом данных и Machine Learning, т.к. это больше относится к профессии Data Scientist. Также нет тем связанных с облаками AWS, Azure т.к. эти темы сильно зависят от выбора платформы.
Вопросы к сообществу:
Насколько адекватен мой план прокачки? Что убрать или добавить?
Какой проект посоветуете в качестве дипломной работы?