что нужно сделать чтобы возвести одночлен в степень
Возведение одночлена в степень, правило, примеры.
Ранее мы определили умножение одночлена на одночлен, это позволяет ввести еще одно действие – возведение одночлена в степень. Ниже мы получим правило возведения одночлена в степень с натуральным показателем, и рассмотрим решения примеров, чтобы разобрать все нюансы.
Навигация по странице.
Из приведенных рассуждений, во-первых, отчетливо видны все действия, из которых состоит процесс возведения одночлена в степень. Соберем их вместе в виде правила возведения одночлена в степень.
Чтобы возвести одночлен в степень, нужно
Во-вторых, из разобранного выше примера видно, что результатом возведения одночлена в степень является новый одночлен. Здесь отметим, что если исходный одночлен записан в стандартном виде, то после его возведения в степень получится одночлен стандартного вида. Если же исходный одночлен дан в виде, отличном от стандартного, то целесообразно этот одночлен привести к стандартному виду перед возведением в степень. Если этого не сделать, то к стандартному виду придется приводить одночлен, полученный после применения записанного выше правила. Мы еще вернемся к этому моменту в следующем пункте.
Примеры
Пришло время решить несколько примеров возведения одночленов в степень. Это поможет отработать применение правила из предыдущего пункта. Начнем с простеньких примеров.
Переходим дальше. Сначала выполняем такой переход: . В последнем выражении осталось степень заменить ее значением. Так как , то .
Кратко возведение одночлена в степень для этого случая выглядит так: .
В следующем примере убедимся, что в результате возведения в степень одночлена в виде, отличном от стандартного, и соответствующего ему одночлена в стандартном виде, получаются тождественно равные одночлены.
Выполните возведение одночлена 2·x 3 ·5·x в квадрат.
Взведение одночлена в степень
Возведение одночлена в степень проводится по правилам возведения в степень произведения и степени.
Чтобы возвести одночлен в степень, надо возвести в эту степень каждый множитель одночлена и полученные результаты перемножить.
Возвести в степень одночлен:
Чтобы возвести одночлен в четвертую степень, надо возвести в 4-ю степень каждый из входящих в него множителей. При возведении чисел в степень удобно пользоваться таблицей степеней.
]При возведении в степень обыкновенной дроби возводят в степень и числитель, и знаменатель.
При возвести в степень смешанного числа сначала его нужно перевести в неправильную дробь, затем возвести в степень отдельно числитель, отдельно — знаменатель.
Последний этап — из неправильной дроби следует выделить целую часть.
Если коэффициент одночлена является отрицательным числом, начинать возведение одночлена в степень следует с определения знака результата.
При возведении отрицательного числа в четную степень получается положительное число, в нечетную — отрицательное.
Здесь отрицательное число возводим в третью, то есть нечетную, степень. В результате получаем отрицательное число.
Отрицательное число возводим во вторую, то есть четную, степень. В результате получаем положительное число. Смешанное число переводим в неправильную дробь и возводим в квадрат и её числитель, и знаменатель. Из полученной неправильной дроби выделяем целую часть.
Одночлен. Подобные одночлены. Степень одночлена.
Одночленом является выражение, содержащее числа, натуральные степени переменных и их произведения, причем оно не должно содержать любых действий с этими числами и переменными.
Одночлен (или моном) — простое выражение в математике, которое рассматривается и используется в элементарной алгебре. Если точнее, произведение, которое состоит из числового множителя и 1-ной либо нескольких переменных, каждая из которых взята в положительной степени.
Или другими словами:
Стандартным видом одночлена является одночлен как произведение числового множителя, который стоит на 1-ом месте, и степеней разных переменных. Каждый одночлен возможно привести к стандартному виду методом перемножения всех переменных и чисел, которые входят в него.
Приведение одночлена к стандартному виду:
Произведение одночленов тоже является одночленом.
Одночлен в некоторой натуральной степени тоже оказывается одночленом.
Результаты таких действий (умножение одночленов и возведение одночлена в степень) обычно приводятся к стандартному виду.
Число 0 является нулевым одночленом.
Подобные одночлены.
2 одночлена, которые приведены к стандартному виду, являются подобными, когда они совпадают либо отличаются лишь числовым коэффициентом.
Сложение и вычитание подобных одночленов является приведением подобных слагаемых.
Одночлены, у которых произведения переменных одинаковы (порядок их может отличаться) называются подобными одночленами.
Подобными одночленами являются и ; и ; и ; 5 и −3; и .
Подобными одночленами не являются и .
Если у подобных одночленов коэффициенты равны, то они являются равными (одинаковыми) одночленами.
Подтвердить это можно, записав одночлены в стандартном виде:
8xy 3 ; xy 3 ; 8y 3 x; 2⋅4xyyy; 8x 3 y => 8xy 3 ; xy 3 ; 8xy 3 ; 8xy 3 ; 8x 3 y;
Если у подобных одночленов коэффициенты оказываются противоположными числами, то такие одночлены являются противоположными.
Умножение одночленов. Возведение одночленов в степень.
При умножении одночленов и возведении одночленов в степень пользуются правилом умножения степеней с одинаковым основанием и правилом возведения степени в степень. При этом получают одночлен, представляемый обычно в стандартном виде.
Для того, чтобы умножить одночлен на одночлен, необходимо умножить их коэффициенты и степени с равными основаниями.
Что бы возвести одночлена в степень, необходимо возвести его коэффициент в эту степень и умножить показатель степени всех букв на показатель степени, в которую возводится одночлен.
Для того, чтобы поделить одночлен на одночлен, необходимо поделить коэффициенты делимого на коэффициент делителя, к найденной части дописать множителями все буквы делимого с показателем, который равен разнице показателей этой буквы в делимом и делителе.
Складывая и вычитая многочлены используют правило раскрытия скобок.
Чтобы умножить одночлен на многочлен, необходимо все члены многочлена умножить на этот одночлен и одночлены, которые получены, сложить.
Чтобы умножить многочлен на многочлен, необходимо все члены 1-го многочлена домножить на все члены второго многочлена и члены, которые получены, сложить.
Чтобы разделить многочлен на одночлен, необходимо все члены многочлена разделить на этот одночлен и результаты, которые получены, сложить.
Основные сведения о возведении одночлена в натуральную степень
Определение степени с натуральным показателем
Степень — это произведение, которое состоит из нескольких одинаковых множителей.
Рассмотрим пример, который полезно включить в конспект:
Если провести вычисления, то получится 8. Таким образом:
Левую часть равенства можно сократить путем записи повторяющегося множителя и указания количества его повторов. Таким множителем является 2, а повторяется он 3 раза. Преобразуем запись:
Полученное выражение читается следующим образом: «два в третьей степени равно восемь», либо «третья степень числа два равна восьми». Это полезно знать для самостоятельного решения задач на уроке в классе.
В распространенных случаях предпочтение отдается короткой записи при умножении одинаковых множителей. При записи одного числа сверху второго числа подразумевается умножение множителей, которые являются одинаковыми.
Возведение в степень является операцией, в процессе которой перемножают одинаковые множители.
Представим, что имеются идентичные множители в количестве четырех, каждый из которых является числом 2. Тогда можно сказать, что число 2 возведено в четвертую степень:
Заметим, что при возведении числа 2 в четвертую степень получится в результате число 16.
Во всех рассматриваемых примерах числа возводились в степень с натуральным показателем.
Степень с натуральным показателем является разновидностью степени с показателем в виде натурального числа.
Натуральное число представляет собой целое положительное число.
Объединим данные определения в одно и получим формулировку степени с натуральным показателем.
Степень какого-то числа a, имеющая натуральный показатель n — это такое выражение вида a^
Наглядно степень с натуральным показателем можно записать, как:
В качестве примеров приведем следующие выражения:
Возведение одночлена в натуральную степень
Одночлен — это алгебраическое выражение, которое представляет собой произведение чисел и переменных, возведенных в степень с натуральными показателями.
Одночлен в алгебре является простым выражением. Одночленом является произведение, в состав которого входит число, играющее роль множителя, а также одна или несколько переменных, возведенных в положительную степень.
Выражения, которые не являются одночленами:
Любой одночлен можно представить в стандартном виде. Такая форма записи подразумевает произведение множителя в виде числа, стоящего на первом месте, и степеней разных переменных.
Приведение какого-либо одночлена к стандартному виду заключается в том, что требуется перемножить все переменные и числа, входящие в его состав.
Приведение одночлена к стандартному виду:
В записи стандартного одночлена присутствует числовой множитель. Он играет роль коэффициента многочлена. Степенью одночлена называют результат сложения показателей степени переменных.
Заметим, что в результате умножения одночленов в любом случае получается одночлен. Кроме того, если возвести одночлен в какую-то натуральную степень, то получится тоже одночлен.
Основное правило
Операцию возведения одночлена в какую-то степень рассмотрим на наглядном примере.
Допустим, что имеется одночлен, записанный в стандартном виде:
Попробуем возвести этот одночлен в третью степень:
2 x y 5 3 = 2 3 × x 3 × y 5 3
Выполним замену множителя y 5 3 на y 15 с помощью свойства степени в степени:
2 3 × x 3 × y 5 3 = 2 3 × x 3 × y 15
Следующим шагом можно возвести в степень число 2:
2 3 × x 3 × y 15 = 8 × x 3 × y 15
В итоге получился одночлен стандартного вида.
Исходя из решенного примера, составим руководство к действию возведения одночлена в степень. Алгоритм операций:
Заметим, что при возведении в степень одночлена, записанного в стандартном виде, в результате получится одночлен стандартного вида. Рекомендуется перед тем, как приступить к операции возведения одночлена в степень, записать этот одночлен в стандартном виде, чтобы упростить работу.
Для возведения одночлена в степень требуется возвести в эту степень каждый из множителей одночлена и найти произведение полученных результатов.
Пояснение на примерах
Требуется возвести одночлен в степень:
В данном случае одночлен нужно возвести в степень 4. Для этого каждый его множитель возведем в четвертую степень:
5 x y 2 z 5 4 = 5 4 x 4 y 2 4 z 5 4 = 625 x 4 y 8 z 20
Возвести одночлен в степень:
Заметим, что в условии задания имеется обыкновенная дробь. Вспомним, что при возведении дроби в степень требуется возвести в эту степень числитель и знаменатель дроби. Получим:
2 3 a 3 b 7 5 = 2 3 5 a 3 5 b 7 5 = 2 5 3 5 a 15 b 35 = 32 243 a 15 b 35
1 2 5 m n 10 2 = 7 5 2 m 2 n 10 2
Когда смешанное число возводят в степень, в первую очередь его необходимо привести к виду неправильной дроби. На втором шаге в степень возводят по отдельности числитель и знаменатель. Затем преобразуем неправильную дробь в смешанное число путем выделения из нее целой части:
7 2 5 2 m 2 n 20 = 49 25 m 2 n 20 = 1 24 25 m 2 n 20
Нужно возвести в степень одночлен со знаком минус:
Бывают случаи, когда одночлен имеет отрицательный коэффициент. При этом в процессе его возведения в степень нужно в первую очередь определить знак результата. Если отрицательное число возвести в четную степень, то результатом станет положительное число. В том случае, когда отрицательное число возводят в нечетную степень, результат будет иметь знак минуса.
Требуется возвести в степень одночлен:
В данном примере требуется выполнить последовательно несколько действий. Сначала отрицательное число необходимо возвести в степень 2, которая является четным числом. Поэтому результат операции будет представлять собой число со знаком плюс.
Смешанное число нужно привести в вид неправильной дроби. Затем числитель и знаменатель полученной дроби следует возвести во вторую степень. Далее требуется преобразовать неправильную дробь путем выделения целой части:
Одночлены
Определения и примеры
Приведём ещё примеры одночленов:
Одночленом также является любое отдельное число, любая переменная или любая степень. Например, число 9 является одночленом, переменная x является одночленом, степень 5 2 является одночленом.
Приведение одночлена к стандартному виду
Рассмотрим следующий одночлен:
Этот одночлен выглядит не очень аккуратно. Чтобы сделать его проще, нужно привести его к так называемому стандартному виду.
Приведение одночлена к стандартному виду заключается в перемножении однотипных сомножителей, входящих в этот одночлен. То есть числа нужно перемножать с числами, переменные с переменными, степени со степенями. В результате этих действий получается упрощённый одночлен, который тождественно равен предыдущему.
Ещё один нюанс заключается в том, что в одночлене степени можно перемножать только в том случае, если они имеют одинаковые основания.
Итак, приведём одночлен 3a 2 5a 3 b 2 к стандартному виду. В этом одночлене содержатся числа 3 и 5. Перемножим их, получим число 15. Записываем его:
Мы привели одночлен 3a 2 5a 3 b 2 к стандартному виду. В результате получили одночлен 15a 5 b 2
Числовой сомножитель 15 называют коэффициентом одночлена. Приводя одночлен к стандартному виду, коэффициент нужно записывать в первую очередь, и только потом переменные и степени.
Если коэффициент в одночлене отсутствует, то говорят, что коэффициент равен единице. Так, коэффициентом одночлена abc является 1, поскольку abc это произведение единицы и abc
Степенью одночлена называют сумму показателей всех переменных входящих в этот одночлен.
Если одночлен не содержит переменных или степеней, а состоит из числа, то говорят, что степень такого одночлена равна нулю. Например, степень одночлена 11 равна нулю.
Не следует путать степень одночлена и степень числа. Степень числа это произведение из нескольких одинаковых множителей, тогда как степень одночлена это сумма показателей всех переменных входящих в этот одночлен. В одночлене 11 нет переменных, поэтому его степень равна нулю.
Пример 1. Привести одночлен 5xx3ya 2 к стандартному виду
Перемножим числа 5 и 3, получим 15. Это будет коэффициент одночлена:
Пример 2. Привести одночлен 2m 3 n × 0,4mn к стандартному виду
Перемножим числа, переменные и степени по отдельности.
Числа, переменные и степени при перемножении разрешается заключать в скобки. Делается это для удобства. Так, в данном примере перемножение чисел 2 и 0,4 можно заключить в скобки. Также в скобки можно заключить перемножение m 3 × m и n × n
Но желательно выполнять все элементарные действия в уме. Так, решение можно записать значительно короче:
Но чтобы в уме приводить одночлен к стандартному виду, тема умножения целых чисел и умножения степеней должна быть изучена на хорошем уровне.
Сложение и вычитание одночленов
Одночлены можно складывать и вычитать. Чтобы это было возможно, они должны иметь одинаковую буквенную часть. Коэффициенты могут быть любыми. Сложение и вычитание одночленов это по сути приведение подобных слагаемых, которое мы рассматривали при изучении буквенных выражений.
Чтобы сложить (вычесть) одночлены, нужно сложить (вычесть) их коэффициенты, а буквенную часть оставить без изменений.
Пример 1. Сложить одночлены 6a 2 b и 2a 2 b
Сложим коэффициенты 6 и 2, а буквенную часть 6a 2 b оставим без изменений
Пример 2. Вычесть из одночлена 5a 2 b 3 одночлен 2a 2 b 3
Можно заменить вычитание сложением, и сложить коэффициенты одночленов, оставив буквенную часть без изменения:
Либо сразу из коэффициента первого одночлена вычесть коэффициент второго одночлена, а буквенную часть оставить без изменения:
Умножение одночленов
Одночлены можно перемножать. Чтобы перемножить одночлены, нужно перемножить их числовые и буквенные части.
Пример 1. Перемножить одночлены 5x и 8y
Перемножим числовые и буквенные части по отдельности. Для удобства перемножаемые сомножители будем заключать в скобки:
Пример 2. Перемножить одночлены 5x 2 y 3 и 7x 3 y 2 c
Перемножим числовые и буквенные части по отдельности. В процессе умножения будем применять правило перемножения степеней с одинаковыми основаниями. Перемножаемые сомножители будем заключать в скобки:
Пример 3. Перемножить одночлены −5a 2 bc и 2a 2 b 4
Пример 4. Перемножить одночлены x 2 y 5 и (−6xy 2 )
Пример 5. Найти значение выражения
Деление одночленов
Одночлен можно разделить на другой одночлен. Для этого нужно коэффициент первого одночлена разделить на коэффициент второго одночлена, а буквенную часть первого одночлена разделить на буквенную часть второго одночлена. При этом используется правило деления степеней.
Например, разделим одночлен 8a 2 b 2 на одночлен 4ab. Запишем это деление в виде дроби:
Первый одночлен 8a 2 b 2 будем называть делимым, а второй 4ab — делителем. А одночлен, который получится в результате, назовём частным.
Не всегда можно первый одночлен разделить на второй одночлен. Например, если в делителе окажется переменная, которой нет в делимом, то говорят, что деление невозможно.
Но если в делимом содержится переменная, которая не содержится в делителе, то деление будет возможным. В этом случае переменная, которая отсутствовала в делителе, будет перенесена в частное без изменений.
Но в некоторых дробях, если невозможно выполнить деление, бывает возможным выполнить сокращение. Делается это с целью упростить выражение.
В числителе и знаменателе мы пришли к делению одночленов, которое можно выполнить:
Процесс деления обычно выполняется в уме, записывая над числителем и знаменателем получившийся результат:
Пример 2. Разделить одночлен 12a 2 b 3 c 3 на одночлен 4a 2 bc
Пример 3. Разделить одночлен x 2 y 3 z на одночлен xy 2
Дополнительно упомянем, что деление одночлена на одночлен также невозможно, если одна из степеней, входящая в делимое, имеет показатель меньший, чем показатель той же степени из делителя.
и такое частное при перемножении с делителем x 2 будет давать в результате делимое 2x
Но нас пока интересуют только те частные, которые являются так называемыми целыми выражениями. Целые выражения это те выражения, которые не являются дробями, в знаменателе которых содержится буквенное выражение. А частное целым выражением не является. Это дробное выражение, в знаменателе которого содержится буквенное выражение.
Возведение одночлена в степень
Одночлен можно возвести в степень. Для этого используют правило возведения степени в степень.
Пример 1. Возвести одночлен xy во вторую степень.
Чтобы возвести одночлен xy во вторую степень, нужно возвести во вторую степень каждый сомножитель этого одночлена
Пример 2. Возвести одночлен −5a 3 b во вторую степень.
Пример 3. Возвести одночлен − a 2 bc 3 в пятую степень.
В данном примере коэффициентом одночлена является −1. Этот коэффициент тоже нужно возвести в пятую степень:
Пример 4. Представить одночлен 4x 2 в виде одночлена, возведённого в квадрат.
Пример 5. Представить одночлен 121a 6 в виде одночлена, возведённого в квадрат.
Таким образом, если произведение 11a 3 возвести во вторую степень, то получится 121a 6
(11a 3 ) 2 = 11 2 × (a 3 ) 2 = 121a 6
Разложение одночлена на множители
Поскольку одночлен является произведением чисел, переменных и степеней, то он может быть разложен на множители, из которых состоит.
Пример 1. Разложить одночлен 3a 3 b 2 на множители
Данный одночлен можно разложить на множители 3, a, a, a, b, b
Либо степень b 2 можно не раскладывать на множители b и b
В каком виде представлять одночлен зависит от решаемой задачи. Главное, чтобы разложение было тождественно равно исходному одночлену.
Пример 2. Разложить одночлен 10a 2 b 3 c 4 на множители.