что необходимо иметь в газовом промежутке чтобы горела дуга
Глава III. Сварочная дуга
§ 9. Основные сведения о сварочной дуге
Сварочной дугой называется длительный электрический разряд между двумя электродами в ионизированной смеси газов и паров, характеризующийся высокой плотностью тока и малым напряжением.
Под электрическим разрядом понимают прохождение тока через газовую среду. Существует несколько форм или видов электрического разряда: дуговой, тлеющий, искровой и др. Один разряд отличается от другого длительностью, напряжением, силой тока и др.
В зависимости от схемы подвода сварочного тока, рода тока и других признаков различают следующие виды сварочных дуг:
дуга прямого действия (рис. 12, а), когда дуга горит между электродом и свариваемым металлом;
дуга косвенного действия (рис. 12, б), когда дуга горит между двумя электродами, а свариваемый металл не включен в электрическую цепь;
дуга между двумя плавящимися электродами и свариваемым изделием при питании переменным трехфазным током (рис. 12, в);
сжатая дуга (рис. 12, г) и др.
Условия горения сварочной дуги. В обычных условиях газы не проводят электрического тока. Для образования и поддержания горения дуги необходимо иметь в пространстве между электродами электрически заряженные частицы (положительные и отрицательные ионы и электроны). Ионы в газовом промежутке между электродами образуются в результате потери или присоединения к атомам электронов, а электроны испускаются сильно нагретым катодом.
Процесс образования электрически заряженных частиц в междуэлектродном пространстве называется ионизацией, а энергия, затраченная на отрыв электрона от атома, следовательно, и на образование положительного иона, работой ионизации. Эта работа выражается в электрон-вольтах (эВ) и называется потенциалом ионизации. Для отрыва электрона от атома требуется сообщить ему некоторую энергию. Энергия, затраченная на сообщение электрону этой скорости, носит название потенциала возбуждения и измеряется в эВ.
Строение сварочной дуги. Сварочная дуга состоит из катодной области, столба дуги и анодной области (рис. 13).
Катодная область распространяется на участок электродного материала и на приэлектродную часть дуги. На торце электрода при бомбардировке его положительными ионами образуется катодное пятно, с которого происходит при этом дополнительный выход электронов, кроме образовавшихся при ионизации в междуэлектродном пространстве. Электроны, выходящие с поверхности электрода, называются первичными. Выход первичных электронов объясняется несколькими факторами: термоэлектронной эмиссией (испусканием) электронов, автоэлектронной эмиссией и ионизацией на катоде. Термоэлектронная эмиссия заключается в нагреве поверхности электрода до высокой температуры, при которой связь электрона с ядром атома ослабевает и под влиянием электростатического притяжения он отрывается с поверхности катода и с большой скоростью устремляется к аноду. С увеличением температуры нагрева электрода число вырываемых электронов увеличивается.
Автоэлектронная эмиссия состоит в том, что под влиянием высокой напряженности электрического поля с катода вырываются первичные электроны и летят к аноду. С увеличением разности потенциалов между электродами выход с катода первичных электронов возрастает.
Ионизация на катоде происходит в результате соударений с электронами положительных ионов, которые образуются при ионизации в столбе дуги и летят к катоду. Ионизация также происходит в результате излучения (так называемая фотоионизация).
В столбе дуги происходит образование вторичных электронов, а также положительных ионов. Электроны устремляются к аноду, поддерживая ионизацию в анодной области. Положительные ионы движутся к катоду, выбивают из него электроны; при этом часть положительных ионов, соединяясь с электронами, образует нейтральные атомы. Процесс образования нейтральных атомов называется рекомбинацией. Вследствие рекомбинации уравновешиваются процессы исчезновения и образования заряженных частиц в дуге и степень ионизации нагретого газа остается неизменной.
Анодная область дуги состоит из анодного, пятна и приэлектродной части. Анодное пятно подвергается бомбардировке потоком электронов, образовавшихся при ионизации в столбе дуги. В результате бомбардировки анода возникают ионы. От сильной бомбардировки анодная область всегда имеет форму вогнутой сферы (чаши), которая называется кратером. Особенности сварочной дуги. Сварочная дуга по сравнению с другими электрическими разрядами имеет следующие особенности:
2. Высокая плотность тока в дуге, достигающая тысяч А/см 2 на электродах и в столбе дуги.
Температура в столбе дуги зависит от величины эффективного потенциала ионизации Uiэф, состава ионизированного газа и плотности тока столба дуги.
Особенно сильно возрастает температура столба дуги при его сжатии (гл. XV).
4. Возможность получения различных статических вольтамперных характеристик. Статической вольтамперной характеристикой дуги называют зависимость падения напряжения в дуге от силы тока при постоянной длине дуги (установившемся горении). Дуга, применяющаяся в сварочной технике, может иметь падающую, жесткую и возрастающую характеристики в зависимости от условий сварки (рис. 15).
Нагрев изделия и эффективный коэффициент полезного действия дуги. Количество тепла, вводимое дугой в свариваемое изделие в единицу времени, называют эффективной тепловой мощностью дуги qи. Она включает в себя тепло, непосредственно выделяющееся на катодном или анодном пятне на изделии; тепло, поступающее с каплями электродного металла, покрытия или флюса; тепло, вводимое в изделие из столба дуги.
Скорость нагрева изделия при дуговой сварке характеризуется эффективным к. п. д. нагрева металла дугой nи, представляющим отношение эффективной мощности qи к полной тепловой мощности дуги q=024KJ кал/с, таким образом
Численная величина ηи зависит от вида дуговой сварки, типа сварного соединения, длины дуги, скорости сварки, от рода и полярности тока, марки электрода и др.
Количество тепла, вносимое дугой в изделие на единицу длины шва, называется погонной энергией сварки. Погонная тепловая энергия выражается отношением
По доступной цене плащ для защиты от воды на нашем сайте.
Горение сварочной дуги
Рассмотрим подробнее условия горения дуги прямого действия между металлическим электродом и свариваемым металлом, являющейся наиболее распространенной в практике дуговой сварки.
Возникновение дуги (рис. 28). При касании концом электрода свариваемого металла происходит короткое замыкание сварочной цепи (рис. 28,а). Проходя через отдельные выступы, ток, имеющий в точках соприкосновения электрода с металлом очень высокую плотность, мгновенно расплавляет их, вследствие чего между электродом и металлом образуется тонкая прослойка из жидкого металла (рис. 28,6). В следующий момент сварщик несколько отводит электрод, отчего в жидком металле образуется шейка (рис. 28, б), в которой плотность тока и температура металла возрастают. Затем, благодаря испарению расплавленного металла, шейка разрывается, газы и пары, заполняющие образовавшийся промежуток, мгновенно ионизируются и между электродом и металлом возникает сварочная дуга (рис. 28,г).
Напряжение дуги. Определяется разностью потенциалов между катодом (электродом) и анодом (свариваемым металлом).
Общее падение напряжения в дуге UД складывается из падения напряжения в катодной области UK, столбе дуги Uст и анодной области Uа, т. е.
Линия а—б—в—г показывает изменение напряжения в трех основных областях дуги. Величины падения напряжения в катодной и анодной областях можно считать постоянными, так как они зависят только от материала электродов, давления и свойств газовой среды. Падение напряжения в столбе дуги пропорционально длине дуги (L), за которую принимается расстояние между поверхностями катодного и анодного пятна (при глубоком проваре часть дуги погружена в металл). Для средних значений тока, при которых производится ручная и автоматическая сварка, можно считать, что напряжение дуги не зависит от величины тока, а определяется только длиной дуги. Чем короче дуга, тем ниже напряжение в ней и, наоборот, с удлинением дуги ее напряжение возрастает. Это обусловлено повышением сопротивления столба дуги с увеличением его длины.
Поэтому для подсчета общего напряжения дуги можно пользоваться следующей приближенной формулой
Для стальных электродов можно в среднем принять а=10 в и b = 2 в/мм. Тогда напряжение дуги длиной L = 4 мм составит:
На величину напряжения дуги могут влиять также состав электрода и свариваемого металла, состав и давление окружающей дугу газовой среды (воздуха, аргона, гелия, углекислого газа) и другие факторы.
Дуга при сварке металлическим электродом горит устойчиво при напряжении 18—28 в, а при сварке угольным или графитовым — при 30—35 в. Для возбуждения дуги требуется более высокое напряжение, чем то, которое необходимо для ее нормального горения. Это объясняется тем, что в начальный момент воздушный промежуток еще недостаточно нагрет и необходимо придать электронам большую скорость для ионизации атомов газового промежутка, что можно достичь только при более высоком напряжении зажигания дуги.
Вольтамперная характеристика дуги. Кривая, показывающая зависимость между напряжением и током в дуге, называется вольтамперной характеристикой дуги и соответствует установившемуся (стационарному) горению дуги. На рис. 29, а изображена в общем виде такая характеристика дуги. Точка А соответствует моменту возникновения дуги. Как видно из графика, при малых токах (участок I) характеристика дуги падающая, т. е. при возрастании тока напряжение дуги падает. Это вызвано тем, что при токах до 80 а увеличение тока приводит к увеличению площади сечения столба дуги и его электропроводности. Такая дуга малоустойчива и поэтому находит ограниченное применение при сварке. При токах от 80 до 800 а (участок II) дуга имеет жесткую характеристику (линия горизонтальна), т. е. напряжение дуги не изменяется при увеличении или уменьшении тока. Это обусловлено тем, что при этих условиях площадь сечения столба дуги и площади катодного и анодного пятен увеличиваются (или уменьшаются) пропорционально величине тока, поэтому плотность тока и падение напряжения во всех областях дуги остаются постоянными, независимо от изменения тока. Такая дуга находит наиболее широкое применение при сварке. При токах свыше 800 а плотность тока в дуге повышается настолько, что при увеличении тока начинает возрастать и напряжение дуги. Это обусловлено тем, что
Устойчивость горения дуги. Дуга, горящая равномерно, без произвольных обрывов, требующих повторного зажигания, называется устойчивой. Если дуга горит неравномерно, часто обрывается и гаснет, то такая дуга называется неустойчивой. Устойчивость дуги зависит от многих причин, основными из которых являются род и полярность тока, состав покрытия электродов, длина дуги.
Для электродов диаметром 4—5 мм с покрытием нормальная длина дуги равна 5—6 мм. Такая дуга называется короткой; она горит устойчиво и обеспечивает нормальное протекание процесса сварки.
Дуга, у которой длина более 6 мм, называется длинной. Процесс плавления металла электрода при длинной дуге протекает неравномерно. Стекающие с конца электрода капли металла в большей степени могут окисляться кислородом и обогащаться азотом воздуха. Наплавленный металл получается пористым, шов имеет неровную поверхность, а дуга горит неустойчиво. При длинной дуге понижается производительность, увеличивается разбрызгивание металла, чаще образуются места с непроваром и недостаточным сплавлением наплавленного металла с основным.
Дуга постоянного тока. При сварке на постоянном токе дуга может питаться током прямой или обратной полярности. При прямой полярности минус источника тока подключают к электроду, а при обратной полярности — к свариваемому изделию. При сварке угольным электродом дуга легче возбуждается и устойчивее горит, если ток имеет прямую полярность. Ток обратной полярности применяют в тех случаях, когда нужно уменьшить выделение тепла на свариваемом изделии: при сварке тонкого или легкоплавкого металла, чувствительных к перегреву легированных, нержавеющих и высокоуглеродистых сталей и т. д., а также при пользовании некоторыми видами электродов (например, с фтористокальциевым покрытием типа УОНИ-13 и др.).
Чтобы определить полярность цепи постоянного тока, в стакане воды растворяют половину чайной ложки поваренной соли, опускают в раствор оба провода цепи и включают сварочный ток. Тот провод, около которого происходит интенсивное выделение пузырьков газа (водорода), будет отрицательным, а второй — положительным. Концы проводов на длине 1—2 см должны быть очищены от изоляции. Для определения полярности тока применяют также специальные полюсоуказателл (индикаторы полярности).
Дуга переменного тока. В дуге переменного тока напряжение и ток будут изменяться в соответствии с частотой тока. На рис.30 показаны кривые изменения напряжения и тока в дуге переменного тока за один период. Так как в каждом полупериоде ток Iд и напряжение дуги UД изменяются от нуля до максимальных значений, то за этот же промежуток времени уменьшается температура столба дуги и степень ионизации дугового промежутка. Вследствие этого для возбуждения дуги после прохождения тока через нулевое значение (точка А на рис. 30) необходимо повышенное напряжение, равное Uзаж, которое больше нормального напряжения дуги Uд.
Для повышения устойчивости горения дуги переменного тока в покрытия электродов и сварочные флюсы вводят элементы с низким потенциалом ионизации: калий, натрий и кальций, которые облегчают возбуждение дуги после того, как ток уменьшается до нуля, и одновременно изменяет свое направление на противоположное.
Магнитное дутье. Вокруг дуги и в свариваемом металле возникают магнитные поля. Если эти поля расположены относительно оси дуги несимметрично, то они могут отклонять дугу, являющуюся гибким проводником тока, что затрудняет сварку. Отклоняющее действие магнитных полей на сварочную дугу носит название магнитного дутья.
Сила магнитного поля пропорциональна квадрату тока, поэтому магнитное дутье особенно заметно при сварке постоянным током значительной величины (свыше 300—400 а). При сварке переменным током покрытыми электродами и сварке под флюсом явление магнитного дутья сказывается значительно слабее, чем при постоянном токе и применении голых или тонкопокрытых электродов.
На величину магнитного дутья оказывает также влияние расположение стальных (ферромагнитных) масс вблизи места сварки, место подвода тока к изделию, форма изделия, тип сварного соединения, наличие зазоров и другие причины. Для уменьшения отклоняющего действия магнитных полей на дугу следует вести сварку возможно более короткой дугой, подводить сварочный ток к изделию в точке, расположенной как можно ближе к месту сварки, а также изменять угол наклона электрода так, чтобы нижний конец электрода был обращен в сторону отдувания дуги. При больших помехах, создаваемых магнитным дутьем, следует переходить, если это возможно, на сварку переменным током.
На рис. 31, а, б и в показано влияние на отклонение дуги места подвода тока к изделию, а на рис. 31, г — влияние больших ферромагнитных масс. Для уменьшения влияния этих масс, отклоняющих дугу в нежелательную сторону, на свариваемое изделие укладывают дополнительную массивную стальную плиту со стороны противоположной отклонению дуги, и к ней присоединяют один провод от источника питания. Плиту размещают на расстоянии 200—250 мм от места сварки и постепенно передвигают вдоль шва по мере движения дуги.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _