что больше гугл или число грэма
Самые большие числа и какое число идет после гугла
Знаете, какое число идет после гугла? Слово «гугол» получило широкое распространение благодаря всем известной компании и одноименной поисковой системе. Однако в названии поисковика это слово используется в немного измененной форме.
Какие интересные числа есть до гугла
Далее можно приводить еще много чисел, но их все сложнее и сложнее представить, потому что сложно найти пример, который бы их описывал. Но все же такие числа люди еще «слышат» раз через раз, например:
квадриллион — 10 в 15-й степени;
квинтиллион — 10 в 18-й степени;
секстиллион — 10 в 21-й степени;
септиллион — 10 в 24-й степени;
октиллион — 10 в 27-й степени;
нониллион — 10 в 30-й степени;
Какое число идет после гугла
Гуголплекс. Это число обозначает 10, возведенн ое в степень гугол, то есть 10, возведенное в число степен и со 100 знаками. Это число является попыткой измерить количество частиц во всей Вселенной.
Число Скьюза. Это число показывает верхний предел для математических вычислений. Считается, что числа больше числа Скьюза нарушают многие математические правила и ведут себя по-другому. Даже самое меньшее число Скьюза будет намного больше г у голплекса и обозначается как: 10˄10˄10˄36, где ˄ — это возведение в степень.
Заключение
Мы будем очень благодарны
если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.
10 самых больших и важных чисел
Дети часто задают вопрос: «Какое число самое большое?». Этот вопрос — важный шаг в процессе перехода в мир абстрактных понятий. Ответ, конечно, прост: числа, скорее всего, бесконечны, но есть определенный порог, за которым числа становятся настолько большими, что в них нет смысла, кроме того, что технически они могут существовать. Давайте возьмем десятку гигантских чисел, известных нам, но ограничимся крайне важными понятиями в мире чисел.
Десять в восьмидесятой степени — 1 с 80 нулями — это довольно массивное число, обозначающее примерное число элементарных частиц в известной вселенной, и, говоря элементарные частицы, мы не имеем в виду микроскопические частицы — мы говорим о куда меньших вещах вроде кварков и лептонов — о субатомных частицах. Это число в США и современной Великобритании называют «сто квинквавигинтиллионов». Вроде бы, несложно понять, что это число обозначает количество мельчайших частиц в нашей Вселенной, однако это самое маленькое и простое число в нашем списке.
Один гугол
Слово гугол, несколько измененное, стало часто используемым в современности, благодаря популярной поисковой системе. У этого числа есть интересная история — достаточно просто погуглить. Термин был придуман Милтоном Сироттой в 1938 году, когда ему было 9 лет. И хотя это относительно абстрактное число, и его существование объясняется необходимостью технического существования, ему все-таки нашли применение.
Алексис Лемер поставил мировой рекорд, рассчитав корень тринадцати из стозначного числа. Гугол — это стозначное число, число с сотней нулей. Также предполагается, что от одного до полутора гугол лет с момента Большого Взрыва взорвется самая массивная черная дыра. И тогда Вселенная вступит в так называемую «темную эпоху» — конец той научной вселенной, какой мы ее знаем.
8,5 х 10^185
Длина Планка — это очень маленькая длина, примерно 1,616199 x 10-35, или 0,00000000000000000000000000000616199 метра. В дюймовом кубе этих длин примерно с гугол. Длина и объем Планка играют важную роль в отраслях квантовой физике — например, теории струн — поскольку позволяют производить вычисления на самых мельчайших масштабах. Во вселенной примерно 8,5 x 10^185 объемов Планка. Это достаточно большое число, и ему все же нет практического применения, но оно остается достаточно простым в нашем списке.
2^43,112,609 – 1
Третье по величине число в этом списке — это число всех планковых объемов во Вселенной, и в нем 185 цифр. А в этом числе почти 13 миллионов цифр. Чем это число важно? Это самое большое из известных сегодня простых чисел. Его обнаружили в августе 2008 года в ходе Great Internet Messene Prime Search (GIMPS).
Гуголплекс
Вы наверняка слышали это слово, хотя бы в фильме «Назад в будущее», когда доктор Эммет Браун бормотал «она одна на миллион, одна на миллиард, одна на гуголплекс». Что такое гуголплекс? Помните длину гугола? Единица и сто нулей. А гуголплекс — это десять в степени гугол. Это больше, чем число всех частиц в известной нам части вселенной.
Вы можете отметить, что можно возводить десять в степень гуголплекс и будет еще больше, и так далее, и окажетесь совершенно правы.
Числа Скьюза
Число Скьюза — это верхний предел для математической задачи π(x) > Li(x), хоть и просто выглядящей, но крайне сложной на самом деле. По существу, число Скьюза доказывает, что число x существует и нарушает это правило, если предположить, что гипотеза Римана верна, а число x меньше, чем 10^10^10^36, первое число Скьюза. Даже первое число Скьюза больше гуголплекса. Есть также и самое большое число Скьюза: x меньше, чем 10^10^10^963.
Время возвращения Пуанкаре
Это очень сложная вещь, но основная концепция относительно проста: при наличии достаточного времени, все возможно. Теорема Пуанкаре о возвращении предполагает количество времени, которого было бы достаточно для того, чтобы однажды вся Вселенная вернулась в свое нынешнее состояние, вызванное случайными квантовыми флуктуациями. Короче, «история повторится». Предполагается, что это займет 10^10^10^10^10^1,1 лет.
Число Грэма
В 80-х годах это число попало в Книгу рекордов Гиннесса как самое массивное конечное число, когда-либо использованное в математических доказательствах. Оно было выведено Роном Грэмом как верхний предел для проблем теории Рамси о многоцветных гиперкубах. Число настолько большое, что для его записи используется стрелочная нотация Кнута (метод записи больших чисел) и собственное уравнение Грэма. Метод Кнута и принцип работы стрелок сложно объяснить, но вы можете представить себе это так. 3↑3 превращается в 3^3 или 27, 3↑↑3 превращается в 3^3^3 или 7,625,597,484,987. Вы можете добавить еще одну стрелку к 3↑↑↑3 и выйти на 7,5 триллионов уровней. Само по себе это число значительно больше, чем время возвращения Пуанкаре, поскольку вы можете добавить бесконечное число стрелок, и каждая стрелка будет невероятно увеличивать число.
Число Грэма выглядит так: G=f64(4), где f(n)=3↑^n3. Лучший способ его представить — разложить по полочкам. Первый слой — это 3↑↑↑↑3, что уже невероятно много. Следующий слой — это множество стрелок между тройками. Возьмите эти стрелки и поместите между следующими тройками. Это умножается в 64 раза. Даже сам Грэм не знает первое число, но последние десять вот: 2464195387. Вся наблюдаемая вселенная слишком мала, чтобы вместить в себя обыкновенную десятичную запись числа Грэма.
∞. Бесконечность
Это число известно всем и каждому, оно часто используется для преувеличений — как какой-нибудь «многоллион». Однако это число намного сложнее, чем большинство может представить, и если вы могли представить числа, идущие до этого пункта, именно это число очень странное и противоречивое. Согласно правилам бесконечности, есть бесконечное число нечетных и четных чисел в бесконечности, однако только половина от всех чисел может быть четной. Бесконечность плюс один равна бесконечности, бесконечность минус один равна бесконечности, бесконечность плюс бесконечность равна бесконечности, деленная пополам — тоже бесконечность, бесконечность минус бесконечность — никто не знает, бесконечность, деленная на бесконечность, будет, скорее всего, 1.
Ученые полагают, что в известной вселенной около 10^80 субатомных частиц, но это только известная вселенная. Некоторые предполагают, что вселенная бесконечна. Если это так, то математически достоверно, что есть другая Земля где-то там, где каждый атом складывается таким же образом, как и мы, и наша Земля. Шанс того, что копия Земли существует, невероятно мал, но в бесконечной вселенной это не только может произойти, но и бесконечно много раз.
В бесконечность верят не все. Израильский профессор математики Дорон Зильбергер утверждает, что по его мнению, числа не будут продолжаться вечно, и найдется настолько большое число, что когда вы добавите к нему единицу, вы придете к нулю. И хотя это число едва ли когда будет обнаружено и едва ли кто сможет его вообразить, бесконечность является важной частью математической философии.
Самые большие числа во Вселенной
Гугология — современный термин, однако история изучения самых больших чисел в математике уходит корнями в глубокую древность. Еще Архимед в одном из своих трудов указал, как следует обозначать и записывать гигантские числовые значения — его и называют первым «гугологистом».
Сверхбольшие числа, а вернее, математические объекты, относящиеся к гугологии, называются гугологизмами. Сегодня математики определили их и дали им названия. Это сам гугол — единица со ста нулями, а также гуголплекс, гиггол, гаггол, бугол, число Грэма, траддом, биггол, трултом, тругол и еще — только представьте себе! — несколько тысяч больших чисел.
Наверно, каждый ребенок в детстве задавал родителям вопрос: «Какая самая большая цифра в мире?». Ответ на него будет довольно абстрактный: самые большие числа считаются бесконечными. Они могут быть такими грандиозными, что их практическое применение в реальной жизни и невозможно, и бессмысленно, и единственное, что их оправдывает — сам факт их существования. Однако часть из них может использоваться в космологии — например, для обозначения количества атомов и диаметра видимой части Вселенной, а также в статистической механике.
Гугол
Популярное название поисковой системы выглядит и произносится почти также, как и слово гугол — googol. Число имеет интересную историю: в 2020 году математик Эдвард Казнер гулял по парку с племянниками и обсуждал с ними большие числа. Когда речь зашла о числе со ста нулями, оказалось, что у него нет собственного названия. Тогда один из детей, девятилетний Милтон Сиротта, предложил назвать это число «гугол». Также было предложено название ещё для одного числа: «гуголплекс», численно равного десяти в степени гугол. Так, благодаря этой прогулке, в 1940 году Эдвард Казнер совместно с Джеймсом Ньюманом написал научно-популярную книгу «Новые названия в математике», где и рассказал любителям науки о числах гугол и гуголплекс.
Гугол имеет практическое значение в физике: это обозначение промежутка времени, примерно от 1 до 1.5 гугола лет, которые пройдут со времени Большого взрыва до взрыва самой массивной черной дыры. После этого Вселенная войдет в пятую и последнюю эру своего существования, известную как Эра Темноты, и наступит физический конец ее существования — правда, гипотетический.
Число Грэма
Число Грэма — самая большая цифра в математике. Записать ее проблематично — более того, число невозможно записать даже в форме степеней степеней! Для его записи используется особая формула — нотация Кнута или цепочка Конвея. Число Грэма намного больше гугла и даже гуголплекса (10 в степени гугол). А ведь одного гуглоплекса вполне достаточно, чтобы «вместить» в себя нашу Вселенную. У числа Грэма есть конкретный математический смысл, поэтому оно было занесено в Книгу рекордов Гиннесса как самая большая математическая величина.
10 в 80 степени
Огромное число десять в восьмидесятой степени — это число с 80 нулями после 1. Оно также имеет конкретную область применения, и обозначает примерное количество элементарных частиц во Вселенной. Название числа в современном английском языке — квинквавигинтиллион. Количество элементарных частиц, которые составляют видимую часть Вселенной, может быть невероятно огромным, но это самое маленькое и легкое для понимания число в этом списке.
Как видите, у науки и нашей Вселенной немало загадок, лежащих за гранью человеческого понимания. И большие числа — одни из них. Может быть, их значения когда-то найдет и докажет искусственный интеллект — только времени пройдет не один гугол лет…
masterok
Мастерок.жж.рф
Хочу все знать
“Я вижу скопления смутных чисел, которые скрывается там, в темноте, за небольшим пятном света, которое дает свеча разума. Они шепчутся друг с другом; сговариваясь кто знает о чем. Возможно, они нас не очень любят за захват их меньших братишек нашими умами. Или, возможно, они просто ведут однозначный числовой образ жизни, там, за пределами нашего понимания’’.
Дуглас Рэй
Каждого рано или поздно мучает вопрос, а какое же самое большое число. На вопрос ребенка можно ответить миллион. А что дальше? Триллион. А еще дальше? На самом деле, ответ на вопрос какие же самые большие числа прост. К самому большому числу просто стоит добавить единицу, как оно уже не будет самым большим. Процедуру эту можно продолжать до бесконечности. Т.е. получается нет самого большого числа в мире? Это бесконечность?
Существуют две системы наименования чисел — американская и английская.
Из английской системы в русский язык перешло только число миллиард (10 9 ), которое всё же было бы правильнее называть так, как его называют американцы — биллионом, так как у нас принята именно американская система. Но кто у нас в стране что-то делает по правилам! 😉 Кстати, иногда в русском языке употребляют и слово триллиард (можете сами в этом убедиться, запустив поиск в Гугле или Яндексе ) и означает оно, судя по всему, 1000 триллионов, т.е. квадриллион.
Кроме чисел, записанных при помощи латинских префиксов по американской или англйской системе, известны и так называемые внесистемные числа, т.е. числа, которые имеют свои собственные названия безо всяких латинских префиксов. Таких чисел существует несколько, но подробнее о них я расскажу чуть позже.
Вернемся к записи при помощи латинских числительных. Казалось бы, что ими можно записывать числа до бессконечности, но это не совсем так. Сейчас объясню почему. Посмотрим для начала как называются числа от 1 до 10 33 :
Самое маленькое такое число — это мириада (оно есть даже в словаре Даля), которое означает сотню сотен, то есть — 10 000. Слово это, правда, устарело и практически не используется, но любопытно, что широко используется слово «мириады», которое означает вовсе не определённое число, а бесчисленное, несчётное множество чего-либо. Считается, что слово мириада (англ. myriad) пришло в европейские языки из древнего Египта.
Гугол (от англ. googol) — это число десять в сотой степени, то есть единица со ста нулями. О «гуголе» впервые написал в 1938 году в статье «New Names in Mathematics» в январском номере журнала Scripta Mathematica американский математик Эдвард Каснер (Edward Kasner). По его словам, назвать «гуголом» большое число предложил его девятилетний племянник Милтон Сиротта (Milton Sirotta). Общеизвестным же это число стало благодаря, названной в честь него, поисковой машине Google. Обратите внимание, что «Google» — это торговая марка, а googol — число.
Эдвард Каснер (Edward Kasner).
Words of wisdom are spoken by children at least as often as by scientists. The name «googol» was invented by a child (Dr. Kasner’s nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. At the same time that he suggested «googol» he gave a name for a still larger number: «Googolplex.» A googolplex is much larger than a googol, but is still finite, as the inventor of the name was quick to point out.
Mathematics and the Imagination (1940) by Kasner and James R. Newman.
Как вы понимаете чем больше в числе степеней, тем сложнее понять какое из чисел больше. Например, посмотрев на числа Скьюза, без специальных вычислений практически невозможно понять, какое из этих двух чисел больше. Таким образом, для сверхбольших чисел пользоваться степенями становится неудобно. Мало того, можно придумать такие числа (и они уже придуманы), когда степени степеней просто не влезают на страницу. Да, что на страницу! Они не влезут, даже в книгу, размером со всю Вселенную! В таком случае встаёт вопрос как же их записывать. Проблема, как вы понимаете разрешима, и математики разработали несколько принципов для записи таких чисел. Правда, каждый математик, кто задавался этой проблемой придумывал свой способ записи, что привело к существованию нескольких, не связанных друг с другом, способов для записи чисел — это нотации Кнута, Конвея, Стейнхауза и др.
Рассмотрим нотацию Хьюго Стенхауза (H. Steinhaus. Mathematical Snapshots, 3rd edn. 1983), которая довольно проста. Стейн хауз предложил записывать большие числа внутри геометрических фигур — треугольника, квадрата и круга:
Математик Лео Мозер доработал нотацию Стенхауза, которая была ограничена тем, что если требовалаось записывать числа много больше мегистона, возникали трудности и неудобства, так как приходилось рисовать множество кругов один внутри другого. Мозер предложил после квадратов рисовать не круги, а пятиугольники, затем шестиугольники и так далее. Также он предложил формальную запись для этих многоугольников, чтобы можно было записывать числа, не рисуя сложных рисунков. Нотация Мозера выглядит так:
Но и мозер не самое большое число. Самым большим числом, когда-либо применявшимся в математическом доказательстве, является предельная величина, известная как число Грэма (Graham’s number), впервые использованная в 1977 года в доказательстве одной оценки в теории Рамсея. Оно связано с бихроматическими гиперкубами и не может быть выражено без особой 64-уровневой системы специальных математических символов, введённых Кнутом в 1976 году.
К сожалению, число записанное в нотации Кнута нельзя перевести в запись по системе Мозера. Поэтому придётся объяснить и эту систему. В принципе в ней тоже нет ничего сложного. Дональд Кнут (да, да, это тот самый Кнут, который написал «Искусство программирования» и создал редактор TeX) придумал понятие сверхстепень, которое предложил записывать стрелками, направленными вверх:
В общем виде это выглядит так:
Думаю, что всё понятно, поэтому вернёмся к числу Грэма. Грэм предложил, так называемые G-числа:
Число G 63 стало называться числом Грэма (обозначается оно часто просто как G). Это число является самым большим известным в мире числом и занесёно даже в «Книгу рекордов Гинесса». А, вот тут лежит доказательство, что число Грэма больше числа Мозера.
Так есть числа больше, чем число Грэма? Есть, конечно, для начала есть число Грэма + 1. Что касается значащего числа… хорошо, есть некоторые дьявольски сложные области математики (в частности, области, известной как комбинаторика) и информатики, в которых встречаются числа даже большие, чем число Грэма. Но мы почти достигли предела того, что можно разумно и понятно объяснить.
Невероятно большие величины
Самое большое число в мире
В детстве меня мучил вопрос, какое существует самое большое число, и я изводил этим дурацким вопросом практически всех подряд. Узнав число миллион, я спрашивал, а есть ли число больше миллиона. Миллиард? А больше миллиарда? Триллион? А больше триллиона? Наконец, нашёлся кто-то умный, кто мне объяснил, что вопрос глуп, так как достаточно всего лишь прибавить к самому большому числу единицу, и окажется, что оно никогда не было самым большим, так как существуют число ещё больше.
И вот, спустя много лет, я решил задаться другим вопросом, а именно: какое существует самое большое число, которое имеет собственное название? Благо, сейчас есть инет и озадачить им можно терпеливые поисковые машины, которые не будут называть мои вопросы идиотскими ;-). Собственно, это я и сделал, и вот, что в результате выяснил.
Из английской системы в русский язык перешло только число миллиард (10 9), которое всё же было бы правильнее называть так, как его называют американцы — биллионом, так как у нас принята именно американская система. Но кто у нас в стране что-то делает по правилам! 😉 Кстати, иногда в русском языке употребляют и слово триллиард (можете сами в этом убедиться, запустив поиск в Гугле или Яндексе) и означает оно, судя по всему, 1000 триллионов, т.е. квадриллион.
Кроме чисел, записанных при помощи латинских префиксов по американской или англйской системе, известны и так называемые внесистемные числа, т.е. числа, которые имеют свои собственные названия безо всяких латинских префиксов. Таких чисел существует несколько, но подробнее о них я расскажу чуть позже.
Вернемся к записи при помощи латинских числительных. Казалось бы, что ими можно записывать числа до бессконечности, но это не совсем так. Сейчас объясню почему. Посмотрим для начала как называются числа от 1 до 10 33:
Название Число
Единица 10 0
Десять 10 1
Сто 10 2
Тысяча 10 3
Миллион 10 6
Миллиард 10 9
Триллион 10 12
Квадриллион 10 15
Квинтиллион 10 18
Секстиллион 10 21
Септиллион 10 24
Октиллион 10 27
Нониллион 10 30
Дециллион 10 33
И вот, теперь возникает вопрос, а что дальше. Что там за дециллионом? В принципе, можно, конечно же, при помощи объединения приставок породить такие монстры, как: андецилион, дуодециллион, тредециллион, кваттордециллион, квиндециллион, сексдециллион, септемдециллион, октодециллион и новемдециллион, но это уже будут составные названия, а нам были интересны именно собственные названия чисел. Поэтому собственных имён по этой системе, помимо указанных выше, ещё можно получить лишь всего три — вигинтиллион (от лат. viginti — двадцать), центиллион (от лат. centum — сто) и миллеиллион (от лат. mille — тысяча). Больше тысячи собственных названий для чисел у римлян не имелось (все числа больше тысячи у них были составными). Например, миллион (1 000 000) римляне называли decies centena milia, то есть «десять сотен тысяч». А теперь, собственно, таблица:
Название Число
Вигинтиллион 10 63
Центиллион 10 303
Миллеиллион 10 3003
Таким образом, по подобной системе числа больше, чем 10 3003, у которого было бы собственное, несоставное название получить невозможно! Но тем не менее числа больше миллеиллиона известны — это те самые внесистемные числа. Расскажем, наконец-то, о них.
Название Число
Мириада 10 4
Гугол 10 100
Асанкхейя 10 140
Гуголплекс 10 10100
Второе число Скьюза 10 10 10 1000
Мега 2[5] (в нотации Мозера)
Мегистон 10 [5] (в нотации Мозера)
Мозер 2[2[5]] (в нотации Мозера)
Число Грэма G63 (в нотации Грэма)
Стасплекс G100 (в нотации Грэма)
Самое маленькое такое число — это мириада (оно есть даже в словаре Даля), которое означает сотню сотен, то есть — 10 000. Слово это, правда, устарело и практически не используется, но любопытно, что широко используется слово «мириады», которое означает вовсе не определённое число, а бесчисленное, несчётное множество чего-либо. Считается, что слово мириада (англ. myriad) пришло в европейские языки из древнего Египта.
Гугол (от англ. googol) — это число десять в сотой степени, то есть единица со ста нулями. О «гуголе» впервые написал в 1938 году в статье «New Names in Mathematics» в январском номере журнала Scripta Mathematica американский математик Эдвард Каснер (Edward Kasner). По его словам, назвать «гуголом» большое число предложил его девятилетний племянник Милтон Сиротта (Milton Sirotta). Общеизвестным же это число стало благодаря, названной в честь него, поисковой машине Google. Обратите внимание, что «Google» — это торговая марка, а googol — число.
В известном буддийском трактате Джайна-сутры, относящегося к 100 г. до н.э., встречается число асанкхейя (от кит. асэнци — неисчислимый), равное 10 140. Считается, что этому числу равно количество космических циклов, необходимых для обретения нирваны.
Words of wisdom are spoken by children at least as often as by scientists. The name «googol» was invented by a child (Dr. Kasner’s nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. At the same time that he suggested «googol» he gave a name for a still larger number: «Googolplex.» A googolplex is much larger than a googol, but is still finite, as the inventor of the name was quick to point out.
Mathematics and the Imagination (1940) by Kasner and James R. Newman.
Еще большее, чем гуголплекс число — число Скьюза (Skewes’ number) было предложено Скьюзом в 1933 году (Skewes. J. London Math. Soc. 8, 277-283, 1933.) при доказательстве гипотезы Риманна, касающейся простых чисел. Оно означает e в степени e в степени e в степени 79, то есть eee79. Позднее, Риел (te Riele, H. J. J. «On the Sign of the Difference П(x)-Li(x).» Math. Comput. 48, 323-328, 1987) свел число Скьюза к ee27/4, что приблизительно равно 8,185·10 370. Понятное дело, что раз значение числа Скьюза зависит от числа e, то оно не целое, поэтому рассматривать мы его не будем, иначе пришлось бы вспомнить другие ненатуральные числа — число пи, число e, число Авогадро и т.п.
Как вы понимаете чем больше в числе степеней, тем сложнее понять какое из чисел больше. Например, посмотрев на числа Скьюза, без специальных вычислений практически невозможно понять, какое из этих двух чисел больше. Таким образом, для сверхбольших чисел пользоваться степенями становится неудобно. Мало того, можно придумать такие числа (и они уже придуманы), когда степени степеней просто не влезают на страницу. Да, что на страницу! Они не влезут, даже в книгу, размером со всю Вселенную! В таком случае встаёт вопрос как же их записывать. Проблема, как вы понимаете разрешима, и математики разработали несколько принципов для записи таких чисел. Правда, каждый математик, кто задавался этой проблемой придумывал свой способ записи, что привело к существованию нескольких, не связанных друг с другом, способов для записи чисел — это нотации Кнута, Конвея, Стейнхауза и др.
Рассмотрим нотацию Хьюго Стенхауза (H. Steinhaus. Mathematical Snapshots, 3rd edn. 1983), которая довольно проста. Стейн хауз предложил записывать большие числа внутри геометрических фигур — треугольника, квадрата и круга:
— означает nn.
— означает «n в n треугольниках».
— означает «n в n квадратах».
Стейнхауз придумал два новых сверхбольших числа. Он назвал число — Мега, а число — Мегистон.
Математик Лео Мозер доработал нотацию Стенхауза, которая была ограничена тем, что если требовалаось записывать числа много больше мегистона, возникали трудности и неудобства, так как приходилось рисовать множество кругов один внутри другого. Мозер предложил после квадратов р