число умноженное на ноль чему равно
История возникновения
Ноль означает ничто, пустоту. Он используется для обозначения пустых разрядов чисел в позиционной системе счисления, а также в десятичных дробях до и после запятой. Вокруг этой цифры всегда велось много споров. Использовать ноль начали еще в древности, о чем свидетельствуют трактаты вавилонян и надписи майя.
Но повсеместно применять в вычислениях его начали лишь спустя несколько тысячелетий. Это произошло в Индии. Нулю там придавали не только математический, но и философский смысл. Он означает отсутствие всего, а его форма соответствовала кругу жизни.
Индусы использовали 0 как любое другое число. Его складывали, вычитали, на него умножали. С делением на 0 возникла проблема, но благодаря ей в дальнейшем возникла другая область математики — математический анализ. Идею использования нуля подхватили исламские ученые на Ближнем Востоке и внесли его в арабскую систему счисления.
В Европе до Крестовых походов применялась Римская система счисления. Это непозиционная система, и ноль в ней отсутствует. Делать расчеты в ней очень тяжело. Для вычислений использовали специальные разграфленные таблицы — абаки. Расчеты с их применением производились часами, в то время как сегодня любой школьник сможет легко получить результат, например, перемножая или складывая числа в столбик.
Во времена первых Крестовых походов арабские цифры вместе с нолем и позиционной системой счисления пришли в Европу. К этим новшествам сначала отнеслись с большим недоверием. Во Флоренции даже был издан закон о запрещении использования арабских цифр вместе с нулем.
Считалось, что они поощряют мошенничество: 0 легко переделать на цифру 9 или приписать в конце счета, чтобы величина долга возросла многократно. Лишь в XV веке, когда началось развитие в сфере математики и механики, люди оценили преимущество нуля и арабских цифр и стали использовать их повсеместно.
Сложение, умножение, степень
В математике используется несколько действий. Они следующие:
Сложение с нулем обычно вопросов не вызывает. Если к любому числу добавить 0, это значит, что к нему не прибавилось ничего. Слагаемое каким было, таким и осталось, сколько раз ноль ни прибавляй. То же самое будет, если отнять ноль.
Операция умножения гораздо менее очевидна. Не все понимают, почему при умножении на ноль получается ноль. Это объясняется особенностями операции умножения. Изначально ее определяли как число, прибавленное к самому себе определенное количество раз, что справедливо для натуральных чисел. Так, 5 х 3 = 15. Этот пример можно заменить следующим выражением: 5 + 5 + 5 = 15. То есть число 5 было взято 3 раза. Согласно этому правилу, умножение на 0 числа 5 дает нулевой результат, и 5 х 0 = 0.
Чтобы было нагляднее, можно привести следующий пример:
Иногда юные скептики выдвигают следующее возражение: допустим, у мальчика в руке 2 яблока. Если он не съел их, то яблоки не пропадут, они так и останутся в него в руке. Почему же тогда результат равен нулю? Действительно, яблоки из руки никуда не денутся. Но в примере учитываются лишь те из них, которые были съедены, проще говоря, оказались в желудке у мальчика. В последнем случае они туда не попали.
Правило умножения на ноль в математике действительно для любых чисел:
В любом случае произведение будет нулевым. С нулем можно производить следующие действия:
Деление на ноль
Математики говорят, что четыре арифметических действия: сложение, вычитание, умножение и деление неравноправны. Базовыми считаются первое и третье из них (сложение и умножение), а деление и вычитание — производными.
Например, разность между 5 и 2 равна 3. Это действие также можно записать в виде следующего выражения: Х + 2 = 5. Решением уравнения будет число 3. Аналогичное правило действует и для умножения. Деление 6 на 3 можно записать так: Х * 2 = 3.
Для действий с нулем можно использовать следующий прием. Выражение записывают так: Х * 0 = 0. Здесь X может быть равен любому числу. Из этого следует, что невозможно найти число, умножение которого на 0 давало бы произведение, отличное от 0.
Если попытаться найти результат от деления ненулевого числа (например, 5) на ноль, то это действие можно записать так: Х * 0 = 5. Так, при умножении любого числа на ноль получается ноль, у этого уравнения в арифметике нет решения.
Раскрытие неопределенностей
Действиями, связанными с делением на 0, занимается один из разделов высшей математики — математический анализ. В нем используется такое понятие, как бесконечность (бесконечно большая величина). Одно из ее определений — это предел, к которому стремится выражение а/Х при Х, стремящемся к нулю. Здесь а — любое ненулевое действительное число. Если в этом выражении уменьшать значение X, то результат будет увеличиваться, пока, в конце концов, не подойдет к бесконечности. С этой величиной можно делать различные математические действия:
В результате получится бесконечность. Следующие выражения дают в результате полную неопределенность:
Задачи с неопределенностями возникают при вычислении пределов функций, которые заданы формулами, дающими подобные выражения при подстановке предельных значений аргумента. Математики говорят, что результатом таких уравнений будет бесконечное множество чисел. Обычно для их решения используют различные схемы и алгоритмы. Это называется раскрытием неопределенности.
Над нулем можно проделывать все арифметические операции. Единственное ограничение — он не может быть делителем для любого действительного числа. Результатом деления ненулевого числа на ноль в высшей математике считается бесконечность, а деление нуля на ноль дает неопределенность. В арифметике подобные действия считаются невозможными и бессмысленными.
Уроки математики: умножение на ноль – главное правило
Впервые с таким арифметическим действием, как умножение, ученики знакомятся на школьной скамье. Учитель математики среди многочисленных правил поднимает тему «умножение на ноль». Несмотря на однозначность формулировки, у учащихся возникает множество вопросов. Давайте рассмотрим, что будет, если умножить на 0.
По две стороны спора
Правило, согласно которому умножать на ноль нельзя, порождает массу споров между преподавателями и их учащимися. Важно понимать, что умножение на ноль является спорным аспектом ввиду своей неоднозначности.
В первую очередь акцентируется внимание на отсутствии достаточного уровня знаний у учеников средней общеобразовательной школы. Переступая порог учебного заведения, участник образовательного процесса в большинстве случаев не задумывается о главной цели, которую необходимо преследовать.
Это интересно! Как раскрыть модуль действительного числа и что это такое
В течение обучения преподаватель освещает различные вопросы. В их число входит ситуация, что получится, если умножать на 0. Стремясь предвосхитить повествование преподавателя, некоторые ученики вступают в полемику. Они доказывают, по крайней мере, стараются, что умножение на 0 допустимо. Но, к сожалению, это не так. При умножении на 0 любого числа получается ровным счетом ничего. В некоторых литературных источниках даже встречается упоминание, что любое число, умноженное на ноль, образует пустоту.
Важно! Внимательные слушатели аудитории сразу схватывают, что если число умножить на 0, то в результате получится 0. Иное развитие событий прослеживается в случае тех учеников, кто систематически пропускает занятия. Невнимательные или недобросовестные учащиеся чаще остальных задумываются, сколько будет, если умножать на ноль.
В результате отсутствия знаний по теме преподаватель и нерадивый ученик оказываются по противоположные стороны противоречивой ситуации.
Различие во взглядах на тему спора заключается в степени образованности на предмет того, можно умножать на 0 или все-таки нет. Единственный допустимый выход из сложившейся ситуации – попытаться воззвать к логическому мышлению для поиска верного ответа.
Для объяснения правила не рекомендуется использовать следующий пример. У Вани в сумке лежат 2 яблока на перекус. В обед он задумался о том, чтобы положить в портфель еще сколько-нибудь яблок. Но в тот момент рядом не оказалось ни одного фрукта. Ваня не положил ничего. Иными словами, к 2 яблокам он поместил 0 яблок.
Это интересно! Считаем правильно: как находить процент от суммы и числа
В плане арифметики в данном примере получается, что если 2 умножить на 0, то не получается пустоты. Ответ в этом случае однозначный. Для этого примера правило умножения на ноль не актуально. Верное решение заключается в суммировании. Именно поэтому правильный ответ заключается в 2 яблоках.
В противном случае учителю не остается ничего иного, кроме как составить ряд заданий. Последняя мера – повторно задать прохождение темы и провести опрос на исключения в умножении.
Суть действия
Изучение алгоритма действий при умножении на ноль целесообразно начинать с обозначения сути арифметического действия.
Сущность действия умножить изначально определялась исключительно для натурального числа. Если раскрывать механизм действия, то определенное число, участвующее в вычислении, прибавляется к самому себе.
При этом важно учитывать количество прибавлений. В зависимости от данного критерия получается различный результат. Прибавление числа относительно самого себя определяет такое его свойство, ка натуральность.
Это интересно! Как разложить на множители квадратный трехчлен: формула
Рассмотрим на примере. Необходимо число 15 умножить на 3. При умножении на 3 число 15 троекратно увеличивается в своей величине. Иными словами, действие выглядит как 15 * 3 = 15 + 15 + 15 = 45. Основываясь на механизме расчета, становится очевидным, если число умножить на другое натуральное число, возникает подобие сложения в упрощенном виде.
Алгоритм действий при умножении на 0 целесообразно начинать с предоставления характеристики на ноль.
Обратите внимание! Согласно общепринятому мнению ноль обозначает целое ничто. Для пустоты подобного рода в арифметике предусмотрено обозначение. Несмотря на данный факт, нулевое значение не несет под собой ничего.
Следует отметить, что подобное мнение в современном мировом научном обществе отличается от точки зрения древних восточных ученых. Согласно теории, которой они придерживались, ноль приравнивался к бесконечности.
Иными словами, если умножить на ноль, то получится многообразие вариантов. В нулевом значении ученые рассматривали некое подобие глубины мироздания.
В качестве подтверждения возможности умножить на 0 математики приводили следующий факт. Если рядом с любым натуральным числом поставить 0, то получится значение, превышающее исходное в десятки раз.
Приведенный пример является одним из аргументов. Кроме доказательства подобного рода, существует множество других примеров. Именно они лежат в основе непрекращающихся споров при умножении на пустоту.
Это интересно! Как найти и чему будет равна длина окружности
Целесообразность попыток
Среди учеников довольно часто на первых порах освоения учебного материала встречаются попытки число умножить на 0. Подобное действие является грубейшей ошибкой.
По существу от таких попыток ничего не произойдет, но и пользы не будет. Если произвести умножение на нулевое значение, то получится в дневнике неудовлетворительная отметка.
Единственная мысль, которая должна возникать при умножении на пустоту, – невозможность действия. Запоминание в данном случае играет немаловажную роль. Выучив правило раз и навсегда, учащийся предотвращает появление спорных ситуаций.
В качестве примера, применяемого при умножении на нулевое значение, разрешается использовать следующую ситуацию. Саша решила купить яблоки. Пока она была в супермаркете, она остановила выбор на 5 крупных спелых яблоках. Сходив в отдел молочной продукции, она посчитала, что этого ей будет недостаточно. Девочка положила к себе в корзину еще 5 штук.
Поразмыслив еще чуть-чуть, она взяла еще 5. В результате на кассе у Саши получилось: 5 * 3 = 5 + 5 + 5 = 15 яблок. Если бы она положила по 5 яблок только 2 раза, то было бы 5 * 2 = 5 + 5 = 10. В том случае, если бы Саша не положила в корзинку ни разу по 5 яблок, было бы 5 * 0 = 0 + 0 + 0 + 0 + 0 = 0. Иными словами, купить яблоки 0 раз значит не купить ни одного.
Полезное видео
Подведем итоги
Правило умножения на нулевое значение порождает множество споров. Для понимания его сути достаточно рассмотреть пару примеров. Только запоминание формулировки позволит уяснить, можно умножать на 0 или нет.
Таблица умножения на 0
Основная таблица умножения на 0 от 1 до 10
При умножени любого числа на 0 результат всегда будет равнятся 0.
Множители | Произведение (Результат) | |||
---|---|---|---|---|
0 | × | 1 | = | 0 |
0 | × | 2 | = | 0 |
0 | × | 3 | = | 0 |
0 | × | 4 | = | 0 |
0 | × | 5 | = | 0 |
0 | × | 6 | = | 0 |
0 | × | 7 | = | 0 |
0 | × | 8 | = | 0 |
0 | × | 9 | = | 0 |
0 | × | 10 | = | 0 |
Рассмотрим пример:
В равенстве все слагаемые одинаковые, а занчит сложение можно заменить умножением.
0 + 0 + 0 + 0 + 0 = 0 × 5 = 0
При умножении нуля на любое число получается 0.
Дополнительная таблица до 100
Множители | Произведение (Результат) | |||
---|---|---|---|---|
0 | × | 11 | = | 0 |
0 | × | 12 | = | 0 |
0 | × | 13 | = | 0 |
0 | × | 14 | = | 0 |
0 | × | 15 | = | 0 |
0 | × | 16 | = | 0 |
0 | × | 17 | = | 0 |
0 | × | 18 | = | 0 |
0 | × | 19 | = | 0 |
0 | × | 20 | = | 0 |
0 | × | 21 | = | 0 |
0 | × | 22 | = | 0 |
0 | × | 23 | = | 0 |
0 | × | 24 | = | 0 |
0 | × | 25 | = | 0 |
0 | × | 26 | = | 0 |
0 | × | 27 | = | 0 |
0 | × | 28 | = | 0 |
0 | × | 29 | = | 0 |
0 | × | 30 | = | 0 |
0 | × | 31 | = | 0 |
0 | × | 32 | = | 0 |
0 | × | 33 | = | 0 |
0 | × | 34 | = | 0 |
0 | × | 35 | = | 0 |
0 | × | 36 | = | 0 |
0 | × | 37 | = | 0 |
0 | × | 38 | = | 0 |
0 | × | 39 | = | 0 |
0 | × | 40 | = | 0 |
0 | × | 41 | = | 0 |
0 | × | 42 | = | 0 |
0 | × | 43 | = | 0 |
0 | × | 44 | = | 0 |
0 | × | 45 | = | 0 |
0 | × | 46 | = | 0 |
0 | × | 47 | = | 0 |
0 | × | 48 | = | 0 |
0 | × | 49 | = | 0 |
0 | × | 50 | = | 0 |
0 | × | 51 | = | 0 |
0 | × | 52 | = | 0 |
0 | × | 53 | = | 0 |
0 | × | 54 | = | 0 |
0 | × | 55 | = | 0 |
0 | × | 56 | = | 0 |
0 | × | 57 | = | 0 |
0 | × | 58 | = | 0 |
0 | × | 59 | = | 0 |
0 | × | 60 | = | 0 |
0 | × | 61 | = | 0 |
0 | × | 62 | = | 0 |
0 | × | 63 | = | 0 |
0 | × | 64 | = | 0 |
0 | × | 65 | = | 0 |
0 | × | 66 | = | 0 |
0 | × | 67 | = | 0 |
0 | × | 68 | = | 0 |
0 | × | 69 | = | 0 |
0 | × | 70 | = | 0 |
0 | × | 71 | = | 0 |
0 | × | 72 | = | 0 |
0 | × | 73 | = | 0 |
0 | × | 74 | = | 0 |
0 | × | 75 | = | 0 |
0 | × | 76 | = | 0 |
0 | × | 77 | = | 0 |
0 | × | 78 | = | 0 |
0 | × | 79 | = | 0 |
0 | × | 80 | = | 0 |
0 | × | 81 | = | 0 |
0 | × | 82 | = | 0 |
0 | × | 83 | = | 0 |
0 | × | 84 | = | 0 |
0 | × | 85 | = | 0 |
0 | × | 86 | = | 0 |
0 | × | 87 | = | 0 |
0 | × | 88 | = | 0 |
0 | × | 89 | = | 0 |
0 | × | 90 | = | 0 |
0 | × | 91 | = | 0 |
0 | × | 92 | = | 0 |
0 | × | 93 | = | 0 |
0 | × | 94 | = | 0 |
0 | × | 95 | = | 0 |
0 | × | 96 | = | 0 |
0 | × | 97 | = | 0 |
0 | × | 98 | = | 0 |
0 | × | 99 | = | 0 |
0 | × | 100 | = | 0 |
Как быстро и легко выучить таблицу умножения?
Первое, что нужно для начала изучения таблицы умножения — это иметь перед глазами саму таблицу. Лучше, если обучение будет проходить по таблице умножения Пифагора, потому как приведённая выше таблица это лишь столбик, в котором число 0 умножают на различные числа. В данном случае невозможно объяснить логические связи между цифрами и закономерности между ними, поэтому ребёнку придётся заучить данный столбик наизусть, как стихотворение. Мы же рекомендуем начинать изучение таблицы умножения по таблице Пифагора.
Перед началом изучения таблици умножения рекомендуем ознакомиться с материалом: как быстро и легко выучить таблицу умножения. Не тратьте свои нервы и нервы своего ребёнка.
Таблицу умножения Пифагора можно использовать на нашем сайте, а также скачать её или распечатать.
Правило умножения любого числа на ноль
Ещё в школе учителя нам всем старались вбить в голову простейшее правило: «Любое число, умноженное на ноль, равняется нулю!», — но всё равно вокруг него постоянно возникает куча споров. Кто-то просто запомнил правило и не забивает себе голову вопросом «почему?». «Нельзя и всё тут, потому что в школе так сказали, правило есть правило!» Кто-то может исписать полтетради формулами, доказывая это правило или, наоборот, его нелогичность.
Кто в итоге прав
Во время этих споров оба человека, имеющие противоположные точки зрения, смотрят друг на друга, как на барана, и доказывают всеми силами свою правоту. Хотя, если посмотреть на них со стороны, то можно увидеть не одного, а двух баранов, упирающихся друг в друга рогами. Различие между ними лишь в том, что один чуть менее образован, чем второй.
Чаще всего, те, кто считают это правило неверным, стараются призвать к логике вот таким способом:
У меня на столе лежит два яблока, если я положу к ним ноль яблок, то есть не положу ни одного, то от этого мои два яблока не исчезнут! Правило нелогично!
Действительно, яблоки никуда не исчезнут, но не из-за того, что правило нелогично, а потому что здесь использовано немного другое уравнение: 2+0 = 2. Так что такое умозаключение отбросим сразу — оно нелогично, хоть и имеет обратную цель — призвать к логике.
Это интересно: Как найти разность чисел в математике?
Что такое умножение
Изначально правило умножения было определено только для натуральных чисел: умножение — это число, прибавленное к самому себе определённое количество раз, что подразумевает натуральность числа. Таким образом, любое число с умножением можно свести вот к такому уравнению:
Из этого уравнения следует вывод, что умножение — это упрощённое сложение.
Что такое ноль
Любой человек с самого детства знает: ноль — это пустота, Несмотря на то, что эта пустота имеет обозначение, она не несёт за собой вообще ничего. Древние восточные учёные считали иначе — они подходили к вопросу философски и проводили некие параллели между пустотой и бесконечностью и видели глубокий смысл в этом числе. Ведь ноль, имеющий значение пустоты, встав рядом с любым натуральным числом, умножает его в десять раз. Отсюда и все споры по поводу умножения — это число несёт в себе столько противоречивости, что становится сложно не запутаться. Кроме того, ноль постоянно используется для определения пустых разрядов в десятичных дробях, это делается и до, и после запятой.
Можно ли умножать на пустоту
Умножать на ноль можно, но бесполезно, потому что, как ни крути, но даже при умножении отрицательных чисел всё равно будет получаться ноль. Достаточно просто запомнить это простейшее правило и никогда больше не задаваться этим вопросом. На самом деле всё проще, чем кажется на первый взгляд. Нет никаких скрытых смыслов и тайн, как считали древние учёные. Ниже будет приведено самое логичное объяснение, что это умножение бесполезно, ведь при умножении числа на него всё равно будет получаться одно и то же — ноль.
Возвращаясь в самое начало, к доводу по поводу двух яблок, 2 умножить на 0 выглядит вот так:
Ведь съесть яблоко 0 раз — это означает не съесть ни одного. Это будет понятно даже самому маленькому ребёнку. Как ни крути — выйдет 0, двойку или тройку можно заменить абсолютно любым числом и выйдет абсолютно то же самое. А если проще говоря, то ноль — это ничего, а когда у вас ничего нет, то сколько ни умножай — всё равно будет ноль. Волшебства не бывает, и из ничего не получится яблоко, даже при умножении 0 на миллион. Это самое простое, понятное и логичное объяснение правила умножения на ноль. Человеку, далёкому от всех формул и математики будет достаточно такого объяснения, для того чтобы диссонанс в голове рассосался, и всё встало на свои места.
Деление
Из всего вышеперечисленного вытекает и другое важное правило:
На ноль делить нельзя!
Это правило нам тоже с самого детства упорно вбивают в голову. Мы просто знаем, что нельзя и всё, не забивая себе голову лишней информацией. Если вам неожиданно зададут вопрос, по какой причине запрещено делить на ноль, то большинство растеряется и не сможет внятно ответить на простейший вопрос из школьной программы, потому что вокруг этого правила не ходит столько споров и противоречий.
Все просто зазубрили правило и не делят на ноль, не подозревая, что ответ кроется на поверхности. Сложение, умножение, деление и вычитание — неравноправны, полноценны из перечисленного только умножение и сложение, а все остальные манипуляции с числами строятся из них. То есть запись 10: 2 является сокращением уравнения 2 * х = 10. Значит, запись 10: 0 такое же сокращение от 0 * х = 10. Получается, что деление на ноль — это задание найти число, умножая которое на 0, получится 10. А мы уже разобрались, что такого числа не существует, значит, у этого уравнения нет решения, и оно будет априори неверным.