через что осуществляется квантовая коммуникация

Квантовые коммуникации: что это и зачем они РЖД?

через что осуществляется квантовая коммуникация. Смотреть фото через что осуществляется квантовая коммуникация. Смотреть картинку через что осуществляется квантовая коммуникация. Картинка про через что осуществляется квантовая коммуникация. Фото через что осуществляется квантовая коммуникация

Как сообщает официальный сайт главы государства, были подписаны о намерениях между правительством и ПАО «Сбербанк» (направление «Искусственный интеллект»), ОАО «РЖД» (направление «Квантовые коммуникации»), госкорпорацией по атомной энергии «Росатом» (направления «Квантовые вычисления» и «Технологии создания новых материалов и веществ»), госкорпорацией «Ростех» (направления «Квантовые сенсоры», «Технологии распределенного реестра», «Новые поколения узкополосной беспроводной связи для интернета вещей и связи ближнего и среднего радиусов действия»), а также трехстороннее соглашение с госкорпорацией «Ростех» и ПАО «Ростелеком» по направлению «Беспроводная связь нового поколения».

Что касается РЖД, соглашение о намерениях в целях развития в РФ высокотехнологичной области квантовых коммуникаций подписали заместитель председателя правительства РФ Максим Акимов и генеральный директор – председатель правления ОАО «РЖД» Олег Белозеров.

О чем именно это соглашение?

В самой компании отмечают, что предметом соглашения является объединение и координация совместных действий правительства и ОАО «РЖД» для ускорения технологического развития и достижения РФ позиции одного из лидеров на глобальных технологических рынках в области квантовых коммуникаций.

В частности, сообщается, что будет разработана дорожная карта развития технологической области квантовых коммуникаций. Она предусматривает формирование научно-технологической и производственной инфраструктуры, продвижение продукции мирового уровня, в том числе на базе соответствующих отечественных технологий, и подготовку квалифицированных кадров.

Что такое квантовые коммуникации и как они смогут быть применены непосредственно на объектах РЖД и в работе компании, в монополии не комментируют. Для справки: базовая IT-инфраструктура компании включает свыше 70 тыс. км магистральных волоконно-оптических линий связи.

Что такое квантовые коммуникации?

Профессор, заведующий базовой кафедрой квантовой оптики и телекоммуникаций ООО «Сконтел» Московского института электроники и математики в НИУ ВШЭ, заведующий кафедрой физики в Московском государственном педагогическом университете Григорий Гольцман отмечает: до сих пор железная дорога не была включена в эти технологии.

Он объясняет: квантовые коммуникации относятся к безопасной передаче сообщений и информации на большие расстояния.

«В процессе передачи информации, если она не закодирована достаточно глубоко, ее могут скрытно перехватить. Важный момент: посылающие и принимающие информацию должны сразу же узнать о том, что произошел перехват, тогда это неопасно. Передача зашифрованной информации – это очень старая проблема. Но квантовая защита передаваемой информации – относительно новая технология, которая развивается сейчас очень интенсивно», – говорит он.

Шифрование информации происходит с помощью секретного шифровального ключа. Если его кто-то украдет, можно будет передавать ложные сообщения.

Ключ обычно основан на математике. То есть для того, чтобы его расшифровать, необходимо произвести большое количество операций. Сейчас скорость расшифровки ключа становится все быстрее и быстрее. Информация передается большими объемами в битах. Если это квантовые технологии, то тогда это квантовый бит – кубит. Такой кубит может быть в фотонах – частицах света.

По квантовым законам, любая квантовая частица может находиться в каком-то состоянии, но если пытаться обнаружить, измерить и попытаться узнать это состояние, это неминуемо состояние изменится. И тот, кто принимает информацию, сразу узнает о том, что информацию пытались хакнуть.

Шифровальный ключ может передаваться в состоянии квантовых частиц. Эта передача в фотонах происходит со скоростью света. Соответственно, если хакер что-то пытается сделать с этой информацией, получатель узнает об этом со скоростью света.

Передача квантового ключа обычно осуществляется через оптическое волокно, которое уже проложено в большом количестве мест.

«Другой способ передачи ключа – при помощи спутника, когда из одной точки на земле на спутник идет оптический ключ, отражается от зеркала на спутнике и попадает в другую точку на земле. Другими словами, квантовый ключ передается на большое расстояние. Такая система реализована пока только в Китае. Эти шифровальные ключи, к примеру, используются для того, чтобы из одного банка в другой, расположенный далеко от первого, передать секретную информацию о финансах», – комментирует Г. Гольцман.

В разговоре о железной дороге профессор говорит о железнодорожном составе, который в этом смысле аналогичен спутнику. Состав движется, проходит мимо станции с большой скоростью, не останавливается. За это время получает квантовый ключ или много ключей – и на станции, и по дороге. Передать информацию лучом света другому потребителю. Такую технологию пока никто не сделал, но это представляется возможным, говорит он.

На вопрос, насколько эти технологии затратны, Г. Гольцман обращает внимание на то, что сейчас все находится в стадии разработки учеными-инженерами, поэтому и затраты идут только на разработки.

Григорий Наумович, другими словами, с применением этих квантовых коммуникаций должна повыситься безопасность передачи информации на железной дороге?

– Да. Параллельно с развитием квантовых коммуникаций и передачей квантового ключа происходит разработка квантовых компьютеров. Тогда они будут гораздо более эффективны в расшифровке зашифрованных посланий. Это будет соревнование – между теми, кто шифрует, и теми, кто пытается скрытно получить ключи и что-то украсть.

В планах РЖДразработка дорожной карты развития технологической области квантовых коммуникаций. По Вашему мнению, насколько этот документ необходим?

– Я прочел за последние 15 лет несколько десятков дорожных карт в этом направлении. Но не вижу, чтобы это влияло на развитие технологий. Мне кажется, что деньги не очень следуют за дорожной картой.

В целом как давно развиваются квантовые коммуникации?

– Бурный рост происходит последнее время. Но сама идея, наверно, появилась лет 40 назад. Но, как известно, идеи принимаются в реализацию не сразу. Поэтому первая система передачи квантового ключа была создана в США, в районе Бостона. Наша компания «Сконтел» там тоже участвовала в виде детекторов – элементной базы таких технологий. Потом такие системы были созданы в Европе, в Японии, в Китае.

А в Америке это было в 2003–2004 гг.

Насколько Россия отстает в этой области?

– В России есть отдельные направления, которые не отстают, а опережают коллег. Почему мы принимали участие в том проекте в Америке? Компания «Сконтел», которую я основал, производит лучшие счетчики фотонов в мире. У нас их покупают на глобальном рынке. В этом отношении мы впереди. Но одной компанией не справиться. Если говорить о системах, здесь Россия отстает лет на 15.

Источник

Что такое квантовые технологии

Квантовая технология — это технология, основанная на квантовой физике. Ей уже более 70 лет. Всем известные транзисторы, лазеры, да и вся полупроводниковая электроника разработана с применением знаний о квантовой физике. Тогда почему об этой технологии все чаще говорят в будущем времени? Таким вопросом открыл конференцию профессор физического факультета Университета Калгари, член научного совета Российского квантового центра (РКЦ), редактор журнала Optics Express Александр Львовский. И тут же прояснил его.

Что такое квантовые коммуникации

Квантовые коммуникации (Quantum Communication — QC) — это область знаний о передаче неизвестного квантового состояния из одного местоположения (например, точка А) в другое, удаленное от первого местоположение (скажем, в точку Б). Эта задача не является тривиальной из-за теоремы о невозможности квантового клонирования состояния, которая запрещает делать это так, как делается в классической физике.

Ярослав Дубовиков, исполнительный директор Объединенной телекоммуникационной корпорации (оператор связи ОТК): «Когда квантовые коммуникации станут реальностью, они полностью перевернут наше представление о возможностях коммуникации. Это то будущее, которого мы все ждем».

Капитализация рынка квантовых технологий

«Современные кубиты быстро теряют когерентность. Не могут хранить информацию, — отметил он. — Главная задача на сегодня — создать хотя бы один логический кубит, который состоит из физических кубитов. И может хранить информацию сколь угодно долго посредством коррекции ошибок».

Данными общего рынка капитализации квантовых технологий также поделился физик-теоретик, сотрудник Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики (ИТМО) Антон Козубов:

Коммерциализация квантовых технологий в России

Она берет свое начало с 2017 года. Тогда РКЦ при поддержке Газпромбанка, ВЭБ, Сбербанка разработал квантовый блокчейн. В нем цифровые подписи заменили протоколами попарной аутентификации на основе квантовой криптографии. А конструкция «блоков» децентрализована по всей сети.

В то же время, некоторые эксперты приводят в пример разработки компании СКОНТЕЛ еще в 2004 году. Например, двухканальную систему регистрации оптических фотонов и приёмную систему терагерцевого излучения.

Завкафедрой квантовой оптики и телекоммуникаций МИЭМ НИУ ВШЭ, профессор Григорий Гольцман считает, что работы над квантовыми технологиями в России начались еще 17 лет назад.

«Важно не только пофантазировать о будущем, но и спуститься на землю и поговорить о том, как в небольшой группе российского университета МИЭМ делают свою квантовую технологию с 2001 года».

Тогда ученые создали сверхпроводящий однофотонный детектор SSPD. Новое развитие технологии, по словам Гольцмана, началось с установки SSPD на оптический волновод. И получения квантовых оптических интегральных микросхем. Применение оптического волновода увеличило эффективность регистрации фотонов до 91% от общего количества.

«Это может стать одним из шагов для создания оптических компьютеров», — сказал он.

Развитие квантовых технологий в России

Руководитель проекта Фонда перспективных исследований (ФПИ) Алексей Заблоцкий представил дорожную карту развития технологий квантовой обработки информации в Российской Федерации. Горизонт планирования установлен на 2030 год.

Карта выделяет четыре основных направления работы:

1. Квантовые вычисления и квантовое моделирование.
2. Квантовые коммуникации и квантовая криптография.
3. Квантовые стандарты частоты.
4. Квантовые датчики.

В рамках программы «Цифровая экономика РФ», которая предусматривает развитие квантовых технологий при финансировании РОСАТОМа, ФПИ и Минобрнауки РФ, был запущен пилотный проект по развитию технологий сверхпроводниковых кубитов.

Квантовые коммуникации: технологии

В этой области ученым удалось достичь гораздо больших успехов, чем в изобретении универсального квантового компьютера.

Львовский рассказал, что уже сегодня мы имеем три варианта реализации квантовой коммуникации.

1. По оптоволоконному кабелю — серверы связаны по уже существующим каналам коммуникации.
2. По открытому пространству — по оборудованию и сетям сотовых операторов.
3. Через спутниковую связь — обмен квантовым ключом шифрования с наземной станцией и орбитальным спутником.

Несомненным лидером по развитию квантовых коммуникаций является Китай. В стране работает сеть Пекин-Шанхай протяжённостью 2000 км с 32 узлами. А благодаря квантовой спутниковой станции была установлена сеть Пекин-Вена.

Системами квантовой коммуникации в России поделился Антон Козубов. В Университете ИТМО создали защищённый оптический маршрутизатор SCWQC моделированного излучения с квантовой рассылкой ключа на боковых частотах. Его внедрили в Санкт-Петербурге (квантовая сеть Университета ИТМО), Казани (коллаборация с телеком-оператором) и Самаре (коллаборация с ИТ-инфраструктурой).

Российская квантовая сеть

Помимо локальных квантовых сетей в России идет работа по созданию национальной квантовой сети. Так, коммерческий директор АО «СМАРТС» Игорь Наливайко рассказал о двух проектах компании, которые лягут в основу глобального построения национальной квантовой сети, составной части «Евразийского квантового пути».

• Проект «Создание автодорожных телекоммуникационных сетей». Он предусматривает прокладку магистральных ВОЛС в обочину автомобильных дорог протяженностью приблизительно 150 тыс. км на территории 85 субъектов РФ.

• Проект «Создание системы управления географически распределенными центрами обработки данных». Он обеспечит контроль доступа к информационным каналам, что повысит уровень информационной безопасности и решит задачи импортозамещения.

Чтобы не остаться на обочине прогресса, Россия создает Центр квантовых коммуникаций в рамках Национальной технологической инициативы (НТИ). Здесь будут сосредоточены все силы и ресурсы ведущих исследовательских центров и коммерческих компаний.

«Фактически все цифровые приборы, окружающие нас сегодня, — компьютеры, телефоны, лазеры и прочие гаджеты, — были продуктом первой квантовой революции, случившейся в середине столетия. Увы, сегодня в полупроводниковой индустрии мы сильно отстаем от мировых лидеров. Мы должны ухватиться за вторую квантовую революцию, которая уже началась», — говорит генеральный директор Российского квантового центра Руслан Юнусов.

«Центр квантовых коммуникаций будет не только решать важные научные задачи глобального уровня. Но и предоставит новые возможности для наших студентов и аспирантов. Их привлекут к работе в каждой лаборатории центра. Что поможет им войти подготовленными в завтрашний день», — подчеркивает ректор НИТУ МИСиС Алевтина Черникова.

«Условия в РФ будут способствовать возвращению отечественных ученых, которые уехали работать в зарубежные научные центры. Также мы сможем удержать в стране новых специалистов», — отметил зампред правления Газпромбанка Дмитрий Зауэрс.

В заключение, Александр Львовский сказал:

«Изменения в нашей жизни, к которым приведут квантовые коммуникации и технологии, сравнимы по масштабу революционности с теми, которые полупроводниковая электроника вызвала во второй половине XX века».

Источник

Квантовые технологии. Модуль 5

Узнайте больше о квантовых коммуникациях

В этом модуле вы узнаете:

• о роли и месте криптографии в современных телекоммуникационных системах;
• о главных уязвимостях сетей передачи данных;
• о квантовых методах, которые могут защитить от прослушивания;
• о принципах работы и устройстве квантовой связи и квантовых сетей.

Оглавление

Модуль 5. Квантовые коммуникации
Проверочный тест

Квантовые коммуникации (или квантовая криптография) — технология кодирования и передачи данных в квантовых состояниях фотонов. Законы физики не позволяют измерить квантовое состояние так, чтобы оно не изменилось, поэтому квантовый канал связи невозможно прослушать незаметно для адресатов.

Квантовые коммуникации и квантовые сети сегодня активно развиваются во всем мире, они востребованы банками, государственными организациями и военными.

Зачем нужна «обычная» криптография

Защита данных от посторонних глаз стала будничным делом почти для каждого человека, пользующегося электронной почтой, мессенджерами, банковскими приложениями или просто посещающего сайты в интернете.

Отправляя сообщение, заходя в приложение или открывая страницу в сети, мы передаем свою информацию, и ее нужно защитить от несанкционированного доступа. Для этого есть множество методов шифрования данных.

Хотя для нас, пользователей, они незаметны, представить без них нормальную жизнь и работу уже нельзя.

Шифрование обычно происходит так: исходный текст по определенным правилам преобразуется, чтобы его невозможно было прочесть и понять, а затем тот, кому он предназначен, проделывает обратную операцию — расшифровывает его.

Роль инструкции для шифрования и дешифровки играет шифровальный ключ. Чем длиннее ключ, тем сложнее «взлом» шифра, а если длина ключа сопоставима с длиной зашифрованного текста, то его дешифровка без знания ключа может быть просто невозможной.

Однако если ключ попадет в чужие руки, шифрование становится бессмысленным. Чтобы обеспечить безопасную передачу ключа, его можно отправить с доверенным курьером или по какому-то каналу, заведомо защищенному от прослушивания.

Но когда шифруется едва ли не вся информация в сети, создавать специальные каналы для ключей нецелесообразно. Особенно учитывая, что ключи для шифрования нужно постоянно менять. Поэтому и шифровальные ключи, и сами зашифрованные сообщения передаются по одним и тем же каналам.

Разумеется, ключи нельзя сообщать открытым текстом — либо они шифруются в соответствии со специальными алгоритмами, либо используются асимметричные криптографические алгоритмы с открытым и закрытым ключом.

И в том и в другом случае желающим сохранить в секрете свои данные остается полагаться только на то, что дешифровка сообщения без знания ключей требует слишком большой вычислительной мощности и слишком большого времени (в некоторых случаях речь идет о паре тысяч лет).

Один из самых распространенных методов защиты информации — использование криптографии с открытым ключом. Он основан на использовании односторонних функций, то есть таких, где x из известного y невозможно вычислить за разумный срок, в то время как вычисление y из x не представляет никаких сложностей.

Таким асимметричным действием может быть обычное умножение: если сложность операции умножения растет по мере увеличения множителей не слишком быстро и современные вычислительные машины легко перемножают даже очень большие числа, то обратная операция — разложение на множители, факторизация — для достаточно больших чисел может оказаться не по плечу даже самым мощным суперкомпьютерам.

Другой пример — хэш-функции, используемые для «опознавания» паролей. Из пароля пользователя по специальному алгоритму вычисляется символьная строка — «хэш», которая и хранится на сервере.

Каждый раз, когда пользователь пытается зайти на сервер (например, электронной почты), вводит пароль, программа вычисляет хэш и сравнивает его с тем, что хранится на сервере. При ошибке в пароле даже на один символ хэш изменится и в доступе будет отказано.

Заметьте, на сервере сам пароль не хранится и по сетям не передается, поэтому даже если вас будут «подслушивать», взломать вашу почту злоумышленник не сможет.

На такого рода асимметричных функциях основана криптография с открытым ключом, в частности алгоритмы RSA, PGP и многие другие. Однако их защита все же не абсолютна — в конечном счете даже очень сложные функции теоретически можно вычислить. Возможно, в скором будущем появятся квантовые компьютеры, которые смогут сделать это относительно легко.

Один из вариантов решения этой проблемы — защитить сам процесс передачи ключей, чтобы прослушивание было невозможно и посторонний, даже подключившись к вашей линии, не смог прочесть ваши данные. И здесь нам может помочь квантовая физика.

Как была изобретена квантовая криптография

В конце 1960-х годов студент университета Колумбии Стивен Визнер поделился со своим приятелем Чарльзом Беннетом идеей, как сделать банкноты, абсолютно защищенные от подделки, — квантовые деньги.

Для этого на каждую банкноту следовало поместить ловушку для фотонов, причем каждый фотон должен быть поляризован в одном из двух базисов: либо под углом 0 и 90, либо 45 и 135 градусов. Комбинацию поляризаций и базисов, соответствующую серийному номеру банкноты, знает только банк.

Если злоумышленник попытается воспроизвести банкноту, он должен будет измерить поляризацию каждого фотона. Поскольку он не знает, в каких базисах нужно измерять поляризацию, то он не сможет получить верные данные о состояниях фотонов, и его затея провалится.

Идею Визнера использовать квантовые методы для защиты информации долго не признавали. Первую статью он отправил в журнал IEEE Transactions on Information Theory еще в начале 1970-х годов, но редакторы ее отвергли.

Статья была опубликована только в 1983 году в журнале ACM Newsletter Sigact News. А в 1984 году Чарльз Беннет и Жиль Брассар придумали первый квантовый протокол передачи данных — BB84.

Первый реальный эксперимент по квантовой передаче данных они провели в 1989 году — квантовая связь была установлена на дистанции 32,5 сантиметра. Прибор менял поляризацию передаваемых фотонов, но при этом шумел по-разному в зависимости от поляризации.

«Наш прототип был защищен от любого подслушивающего, который был бы глухим», — писал Брассар. Тогда до появления первой коммерческой компании, которая вывела на рынок системы квантового распределения ключей, оставалось более 10 лет — первой это сделала американская компания MagiQ Technologies в 2003 году.

А еще через четыре года, в 2007-м, система квантовой защищенной связи, разработанная компанией Id Quantique, впервые использовалась для защиты данных о результатах голосования на парламентских выборах в швейцарском кантоне Женева.

Принципы квантового распределения ключей

Точно так же устроена и квантовая криптография: данные кодируются в состояниях фотона, которые в соответствии с законами квантовой механики необратимо меняются при попытке измерения.

В теории для квантовой связи можно использовать любые объекты, способные находиться в двух разных квантовых состояниях, иначе говоря, любые кубиты — например, электроны, ионы и так далее. Однако из-за широкого распространения волоконно-оптических сетей фотоны остаются практически безальтернативным вариантом для квантовой криптографии.

В обычных волоконных линиях информация кодируется в импульсах излучения лазера, например в двухуровневой форме (есть сигнал — 1, нет сигнала — 0).

Для квантовой связи данные кодируются в состояниях одиночных фотонов — например, в поляризации или фазе. Так, одному варианту поляризации приписывается значение 1, противоположному — 0.

Два главных участника квантовой беседы традиционно обозначаются как Алиса (отправитель сообщения) и Боб (получатель), иногда к этим героям присоединяется третий — Ева, которая пытается подслушать разговор. Когда Ева измеряет фотоны, их состояния меняются, и Боб понимает, что линия связи скомпрометирована.

Источник

Квантовые коммуникации: абсолютно защищённое будущее

Квантовые коммуникации (QC) — это область знаний о передаче неизвестного квантового состояния из одного местоположения в другое, удалённое от первого, местоположение. Технология QC позволяет передавать данные на большие расстояния абсолютно защищённым образом. Это реально существующая, практически применимая технология, которая давно выведена за пределы только лишь теории.

При поддержке Российского квантового центра научные деятели с мировым именем, а также представители бизнеса обсудили перспективы и преимущества внедрения QC.

Первая в истории квантовая коммуникация между спутником и наземной станцией произошла в 2017 году в Китае. Тогда квантовые спутники использовали для научных исследований по квантовому распределению сигнала. По словам профессора Научно-технического университета Китая (USTC) Фейху Сю, Китай продолжает работать над улучшением технологии и в течение пяти лет планирует запустить дополнительные спутники, при этом снизив их стоимость для коммерческого использования за счет уменьшения веса устройств.

Появление универсальных протоколов важно ещё и для укрепления международного сотрудничества и повышения безопасности квантовых коммуникаций.

«Мы работаем над вопросом сертификации, чтобы гарантировать необходимый уровень безопасности и минимизировать угрозу квантового хакинга (взлома). Защищённость квантовых коммуникаций сейчас действительно на высоком уровне, однако в теории есть что улучшать. Мы должны быть уверены, что все наши устройства действительно защищены. Для этого мы проводим эксперименты по квантовому хакингу»

Профессор Научно-технического университета Китая (USTC).

Квантовые коммуникации — это крайне сложная и дорогая для разработки и внедрения технология, поэтому в квантовой гонке выигрывают те, кто больше всего в неё инвестирует. В этом убежден Шон Квак, исполнительный вице-президент по вопросам инноваций компании ID Quantique: «Для соответствия спросу цена должна снизиться до уровня технологий коммуникации по оптоволоконным каналам, а для этого необходимы значительные инвестиции. Активная поддержка правительства очень важна для создания рынка квантовых коммуникаций».

Поддержка государства может потребоваться не только на уровне финансовых вложений, но и на уровне образования. «У нас происходит дефолт с точки зрения адаптации образовательной системы. Здесь и квантовые технологии, и коммуникации. Такое смешение самых разных научных подходов усложняет выработку интегральных образовательных программ», — сообщил Артур Экерт, профессор квантовой физики математического института в Oxford University, директор центра квантовых технологий Национального университета Сингапура.

Развитие всех видов квантовых технологий необходимо осуществлять на основе тесного сотрудничества между государством, бизнесом и наукой на международном уровне, подтвердил заместитель начальника департамента по квантовым коммуникациям ОАО «РЖД» Павел Дорожкин. По его словам, РЖД «начала переговоры с рядом международных партнёров и по совместным разработкам, и по совместному строительству и эксплуатации транснациональных квантовых сетей».

Спикеры также обсудили значимость квантовых технологий в целом, которую сложно переоценить. «В будущем разработки на стыке квантовых коммуникаций, квантовой криптографии, квантовых вычислений поспособствуют появлению целого поколения новых продуктов и устройств. Квантовые сети — это инфраструктура, на основе которой могут возникать совершенно новые приложения в дополнение непосредственно к шифрованию. Это могут быть распределенные реестры и блокчейны», — заключил Алексей Федоров, руководитель научной группы «Квантовые информационные технологии» в Российском квантовом центре, основатель и руководитель проекта QApp.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *